DGLR-Publikationsdatenbank - Detailansicht
Autor(en):
R. Zahn, V. Völkl, M. Zieher, C. Breitsamter
Zusammenfassung:
This paper presents a reduced-order modeling (ROM) approach based on a hybrid neural network in order to calculate wing buffet pressure distributions due to structural eigenmode-based deformations. For this hybrid ROM a convolutional autoencoder (CNN-AE) and a long short-term memory (LSTM) neural network are connnected in a serial fashion. The NASA Common Research Model (CRM) with the FERMAT structural model is used for forced-motion computational fluid dynamics (CFD) simulations at transonic buffet conditions. Aerodynamic responses are obtained as a result of the eigenmode-based deformations. As eigen shape the first symmetric wing bendig mode is selected. The unsteady simulations are carried out with the triangular adaptive upwind (TAU) solver of the German Aerospace Center (DLR) and the hybrid ROM is trained with this data. When investigating the prediction capability of the hybrid ROM a high accuracy with respect to the forced-motion buffet loads is indicated.
Veranstaltung:
Deutscher Luft- und Raumfahrtkongress 2023, Stuttgart
Verlag, Ort:
Deutsche Gesellschaft für Luft- und Raumfahrt - Lilienthal-Oberth e.V., Bonn, 2023
Medientyp:
Conference Paper
Sprache:
englisch
Format:
21,0 x 29,7 cm, 10 Seiten
URN:
urn:nbn:de:101:1-2023111011540577424731
DOI:
10.25967/610103
Stichworte zum Inhalt:
Deep Learning, Convolutional Autoencoder (CNN-AE), Long Short-Term Memory Neural Network (LSTM), hybrid Reduced Order Model (ROM), Wing Buffet Aerodynamics, Forced Structural Vibrations, NASA Common Research Model (CRM)
Verfügbarkeit:
Download
- Bitte beachten Sie die Nutzungsbedingungen dieses Dokuments: Copyright protected
Kommentar:
Zitierform:
Zahn, R.; Völkl, V.; et al. (2023): Transonic Wing Buffet Load Prediction at Structural Vibration Conditions. Deutsche Gesellschaft für Luft- und Raumfahrt - Lilienthal-Oberth e.V.. (Text). https://doi.org/10.25967/610103. urn:nbn:de:101:1-2023111011540577424731.
Veröffentlicht am:
10.11.2023