DGLR-Publikationsdatenbank - Detailansicht
Autor(en):
O. Bergmann, F. Möhren, C. Braun, F. Janser
Zusammenfassung:
The primary noise source in general aviation and urban air mobility is propeller and rotor noise, which is an important annoyance factor of aviation. A feasible measure to reduce noise emissions is the application of swept propellers. It is crucial to have simulation methods of swept planforms to find an optimized propeller design. This paper presents existing and novel sweep correction models for blade element theories (BET). The correction models are compared against Reynolds-Averaged Navier Stokes (RANS) solutions for different propeller sweeps. The comparison shows a significant improvement of the BET performance prediction by applying existing correction methods and using the airfoil sections orthogonal to the local radius. The novel correction models derived from geometric planform parameters further improve the power prediction accuracy of the BET approach. The RANS and BET comparison shows that no sweep correction models are required for less swept propellers for accurate thrust and power prediction. However, the sweep correction models improve the overall performance prediction.
Veranstaltung:
Deutscher Luft- und Raumfahrtkongress 2021
Verlag, Ort:
Deutsche Gesellschaft für Luft- und Raumfahrt - Lilienthal-Oberth e.V., Bonn, 2021
Medientyp:
Conference Paper
Sprache:
englisch
Format:
21,0 x 29,7 cm, 12 Seiten
URN:
urn:nbn:de:101:1-2021121012443759503617
DOI:
10.25967/550151
Stichworte zum Inhalt:
BET, CFD Propeller Simulation, Propeller aerodynamics, Actuator disk modelling, Propeller Performance
Verfügbarkeit:
Download
- Bitte beachten Sie die Nutzungsbedingungen dieses Dokuments: Copyright protected
Kommentar:
Zitierform:
Bergmann, O.; Möhren, F.; et al. (2021): Aerodynamic Analysis of Swept Propeller with BET and RANS. Deutsche Gesellschaft für Luft- und Raumfahrt - Lilienthal-Oberth e.V.. (Text). https://doi.org/10.25967/550151. urn:nbn:de:101:1-2021121012443759503617.
Veröffentlicht am:
10.12.2021