DGLR-Publikationsdatenbank - Detailansicht

T. Mehling, F. Viertler, T. Paul
Current helicopter missions can achieve a huge operational benefit if manned platforms team with unmanned. Task-based operation of an unmanned aerial vehicle from a manned flying platform may reduce workload and relieve the crew of the manned helicopter. Task-based control in Manned Unmanned Teaming (MUM-T) includes variable automation of the unmanned aerial vehicle and Human Machine Interface enhancement for the crew of the manned helicopter. Research activities in a common project of ESG GmbH funded by the Federal Office for Equipment, Information Technology and In-Service Support and German Armed Forces engaged MUM-T to command and control an UAV from a manned helicopter. The manned mission avionics test helicopter (MAT) and the unmanned mission avionics test helicopter (UMAT) were operated in a common airspace and a distance down to 100m. The joint demonstration of MAT and UMAT included the provision of reconnaissance data for the crew of the manned helicopter, formation flight maneuvers, and complex mission phases. The German Army Aviation experimental pilot of the manned helicopter took the role of mission commander, coordinating with in-air displays to monitor the UMAT data. In parallel, the UMAT was operated from a dedicated control station of a passenger seat of the MAT. This paper examines conducted Manned-Unmanned Teaming flight trials during the summer of 2018 to model a level of maturity for task-based, semi-automated control of an unmanned platform from a manned platform. Flight tests demonstrated procedures of MUM-T, which were based on and transferred from procedures of manned helicopters during formation flight. Task-based control of an unmanned platform based on procedures of the German Armed Forces taking into account HMI requirements and Situational Awareness Management will be discussed. Aspects within human factors and downsizing of the control station to tablet format were examined based on the results of the flight tests and advanced MUM-T roadmap. The discussion culminates in long term human factor integration and capabilities required for task-based control of an unmanned platform to serve as Unmanned Wingman in a team with manned platforms.
Deutscher Luft- und Raumfahrtkongress 2019, Darmstadt
Verlag, Ort:
Deutsche Gesellschaft für Luft- und Raumfahrt - Lilienthal-Oberth e.V., Bonn, 2020
Conference Paper
21,0 x 29,7 cm, 6 Seiten
Stichworte zum Inhalt:
MUM-T, Unmanned Wingman
Download - Bitte beachten Sie die Nutzungsbedingungen dieses Dokuments: Copyright protected
Mehling, T.; Viertler, F.; Paul, T. (2020): Potential of the Unmanned Wingman in Manned-Unmanned Teaming Tested in Flight. Deutsche Gesellschaft für Luft- und Raumfahrt - Lilienthal-Oberth e.V.. (Text). https://doi.org/10.25967/490010. urn:nbn:de:101:1-2020011712244516997306.
Veröffentlicht am: