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Abstract
Unmanned Aerial Vehicles (UAV) enable swift and autonomous response to urgent needs, such as search & rescue
missions or material delivery. At the same time, airspace restrictions are being established to reduce the external risk
of UAV operation considering air and ground risk, which may hinder the efficient usage of UAV in combination with
their range-limiting battery capacity. In this study, we present a robust optimization model for a facility location
problem of UAV hangars, considering demand hotspots, restricted areas, a standard mission to satisfy battery capacity
constraints, and the impact of wind scenarios using water rescue missions as an example. We use open source GIS
data to derive positive and negative location factors for UAV hangars and areas of increased risk of drowning as
demand points. The pathfinding for the UAV mission uses an A* algorithm to find the shortest mission trajectories
in five different restriction scenarios. In addition, binary occupancy grids and image processing algorithms identify
restriction-free connections for faster computation. For the optimal UAV hangar locations, we maximize accessibility
while minimizing the service time to the demand points showing an improvement of the average service time of
624.20 s for all facility candidates to 401.69 s for one and 315.38 s for two optimal facilities, respectively.
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1. INTRODUCTION

According to the World Health Organization [1], drown-
ing is the third leading cause (7%) of unintentional injury-
related deaths worldwide. The 2021 DLRG annual re-
port [2] shows that around 85% of all victims in Germany
drowned in inland waters. Therefore, alerting emergency
responders and localizing victims in the water consti-
tute particular challenges within the rescue chain. Au-
tonomous Unmanned Aircraft Systems (UAS) for Search
& Rescue (SAR) operations may detect persons in dis-
tress faster than helicopters, boats, or lifeguards. Fur-
thermore, the precise dropping of a flotation device may
extend the chance of survival until conventional rescue
service arrives. However, it also requires safe integration
into the airspace, well-suited operation automation, and
ensuring the safety of third parties on the ground.
The research project RescueFly studies the prototypical
implementation of two non-holonomic THOLEG1 Un-
manned Aerial Vehicle (UAV) for inland water SAR at
the remote Lusatian Lake District located in the fed-
eral state of Brandenburg and the Free State of Sax-
ony in Germany. The UAVs will act automatically once
an emergency call with an initial search location has been
raised. Thereby, RescueFly covers all elements from UAS
and intelligent UAV hangar development, safe and effi-
cient mission planning, autonomous detection of persons
in distress, automatic dropping of flotation devices, and

1https://tholeg.com/

the operational integration in the existing rescue chains
of the two federal states.
This paper focuses on the determination of optimized
locations for decentralized autonomous UAV considering
areas with increased potential for incidents (hotspots),
standard mission profiles respecting flight restriction
zones and potentially crowded areas, and requirements
for the UAV hangar location. For this purpose, we dis-
cretize and merge 109 geo-referenced layers from open
data sources to determine the solution space, plan safe
flight routes, and solve the Uncapacitated Facility Loca-
tion Problem (UFLP) given two finite sets of potential
hangar locations and hotspots. The geo-referenced data
are transformed into a binary occupancy grid image and
labeled using a fast connected-component algorithm to
identify non-permissible connections between potential
UAV hangar locations and hotspots to reduce computa-
tional effort during the path search. In addition, direct
connections, i.e., paths not affected by restrictive areas,
are identified using a fast ray-occupancy-intersection
algorithm. Finally, the A* algorithm served to compute
all remaining paths. Since battery capacity constrain
the UAV mission, the accessibility and service time are
determined considering a standard SAR mission and a
save return to the UAV hangar.
This paper continues with a review of the state of the art,
focusing on other SAR applications for UAS, UAV mis-
sion planning, automated detection of persons in distress,
and UAS Facility Location Problem (FLP). The follow-
ing chapter then describes the methodology to solve the
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UAV facility location problem in a multi-objective opti-
mization, considering positive and negative location fac-
tors and constraints like battery capacity and external risk
for up to two locations as an example. Subsequently, the
results of our work are shown, indicating candidate lo-
cations for the UAV hangars. Finally, an outlook on the
next steps in the RescueFly project concludes the paper.

2. STATE OF THE ART

2.1. SAR Concepts with UAS

Various SAR concepts have been studied using UAS as a
component in the rescue chain. Ajgaonkar et al. [3] devel-
oped a UAV to assist lifeguards at coastal beaches. They
assumed that the lifeguard provides the initial identifica-
tion of the person in distress to a UAVoperator, who then
searches the area to drop a flotation device. Similarly,
Seguin et al. [4] conducted a study with UAV delivering
flotation devices to swimmers at the lifeguard’s remote
control, showing that the faster delivery compared to the
lifeguard or a jetski reduces the submersion time and
therefore the risk of drowning significantly. Dufek and
Murphy [5] introduced a concept of combining an UAV
with an autonomous Unmanned Surface Vehicle (USV)
for offshore emergencies, which searches the person in
distress and serves as a flotation device. The UAV serves
to first guide the USV to the victims and then to track
the drift of USV for the emergency responders.
Liu et al. [6] presented an operational concept for UAV us-
age in SAR missions over rivers, in which they predicted
the drift to delimit the search area using Monte-Carlo
simulations. For the faster coverage of larger areas, au-
thors like Ruetten et al. [7] proposed swarm networks con-
sisting of many UAVs that organize themselves to reach
optimal coverage with minimal overlapping. While this
approach ensures fast detection over large areas, it poses
an additional external risk to persons and significantly in-
creases the required infrastructure and equipment. Thus,
it is deemed unfeasible for SAR missions at bathing lakes.

2.2. UAV Flight Path Planning for SAR

The most crucial factor in SAR is the time since the early
detection of a drowning person substantially improves the
chances of survival. Additionally, the battery capacity
limits the flight time of an UAV, which requires efficient
path planning from the UAS facility to identify, reach and
search the target area. Brühl et al. [8] provided a method-
ology to estimate energy consumption based on the flight
phase for various large air taxis, including multi-copter
designs similar to UAVs for SAR. Chu et al. [9] ana-
lyzed the impact of wind on the battery capacity for small
quad-copter UAV, considering wind speed, direction, and
turbulence in a simulation. They found wind conditions
up to 11ms−1 suitable for surveying crash areas regard-
ing the additional energy consumption, although higher
turbulence significantly increases their consumption.
Lin and Goodrich [10] created a probability distribution
map to accelerate wilderness SAR with a UAV flying 60m
above ground. With the map, they converted the path

search into a discretized combinatorial optimization prob-
lem and applied variants of Complete-coverage, Local Hill
Climbing, and Evolutionary algorithms with and without
a defined destination, finding that the Local Hill climb-
ing algorithm with a convolution kernel performs best.
Hayat et al. [11] developed a multi-objective path plan-
ning based on a genetic algorithm that minimizes the
search time, which balances the search area coverage with
the network connectivity coverage to ensure communica-
tion to the emergency responders. Wang et al. [12] pro-
posed a vortex search algorithm for multi-objective path
optimization to guide UAV to forest fires, considering ob-
stacles and terrain described with a cubic interpolation
method.
After reaching the search area, an efficient method for
sweeping this area is required. Zuo et al. [13] suggested
an extended square search, which expands from the cen-
ter of the search area, assuming that positions closer to
the center are more likely than distant ones. Liang et al.
[14] developed a heuristic to avoid redundant image cov-
erage and maximize image quality during a SAR mis-
sion with an energy-constrained UAV. Dakulović et al.
[15] developed a complete coverage D* algorithm for a
floor-cleaning mobile robot, minimizing path length and
search time in a constrained space with unknown obsta-
cles. Xu et al. [16] studied a Complete Coverage Neural
Network (CCNN) for an unmanned surface vehicle for
complete coverage of a search area and combined it with
an improved A* algorithm to escape deadlock situations
efficiently. Sun et al. [17] proposed a two-step auction
method to coordinate multiple UAV to cover a mutual
search area, considering the avoidance of obstacles and
the energy constraints of the UAV.

2.3. Automated Detection of a Person in Distress

When covering the search area with the UAV, the person
in distress must be detected swiftly and automatically,
even when large groups of persons are swimming at the
same time. For this, Qingqing et al. [18] analyzed differ-
ent altitudes and camera angles for human detection in
marine SAR to find a trade-off between speed and detec-
tion accuracy with the real-time object detection model
of YOLOv3. They found that persons can be detected
farther away the closer the camera angle is to facing
straight down. Above 100m, however, the confidence
and accuracy drop since it is a function of the camera
lens and image resolution. Rudol and Doherty [19] pre-
sented a method to detect human bodies lying or sitting
on the ground by combining video and thermal sensors.
For maritime SAR, it remains unclear if a thermal sensor
can produce similar results, especially for submerged per-
sons. Bejiga et al. [20] trained a Convolutional Neural
Network (CNN) to assist avalanche SAR with a faster
detection of victims utilizing optical cameras fitted to
UAV. Lygouras et al. [21] used CNN to detect persons
swimming in open water for an autonomous UAV. Feraru
et al. [22] proposed a concept to deploy autonomous UAV
for man-overboard incidents using a probabilistic leeway
model with a Faster Region-based Convolutional Neural
Network (R-CNN) to detect the person in the water. Liu
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and Szirányi [23] studied a two-stage approach, in which
they first detected persons in UAV video footage and then
interpreted basic gestures used by persons in distress us-
ing neural networks. Wang et al. [24] proposed a different
two-stage approach. First, persons are located with sim-
pler features to reduce the search space, and second, a
CNN is applied to the previously selected areas.

2.4. Facility Location Problem

A FLP models the selection and localization of facilities
to serve demand at specific points or areas, e.g., for ap-
plications like hospitals, fire stations, or warehouses. The
UFLP is one of the most commonly considered combina-
torial optimization problems, in which two finite sets of
potential facilities and demand points are considered by
assessing the associated costs for the facility construction
and the distance or cost for each combination of demand
point and facility location. The objective of the opti-
mization problem is to select the facility locations to be
established and allocate the demand points by minimizing
the total operational costs [25, 26]. The k-facility prob-
lem is a UFLP with the additional constraint of k ∈ N
facilities being allowed to open. For facility construc-
tion costs equal to zero, k-median clustering can be ap-
plied to determine centroids as facility locations. This
approach, however, assumes that all distances are as the
crow flies [27]. Another option is the lower-bounded FLP,
e.g., with the algorithm of Ahmadian and Swamy [28],
where each facility must serve a certain minimum amount
of demand.
For UAV delivering first-aid products, Zhu et al. [29] de-
veloped a two-stage FLP approach for robust optimiza-
tion considering customers demand uncertainty. They
proposed three models for the problem that outperform
a deterministic FLP. Lynskey et al. [30] studied the dis-
tribution of UAV ground facilities. They solved the prob-
lem with k-means clustering while adding the energy con-
sumption of the UAV as costs using a traveling salesman
algorithm to enable UAV to perform multiple tasks with
one flight. According to our understanding, restricted
areas for the UAV, such as the UAS geographic zones
according to the Commission Implementing Regulation
(EU) 2019/947 [31] and § 21h LuftVO [32], have not
been considered in a FLP problem for UAV yet. These
regulations, however, impact the routing significantly as
they aim to reduce external risk. In some cases, they
may prohibit the placement of a UAV hangar entirely, so
it should be included in the FLP problem and the related
mission planning.

3. METHODOLOGY

3.1. Overview of the Approach

The RescueFly concept of operations plans to assist SAR
missions at Geierswalder Lake and Partwitzer Lake uti-
lizing automated UAS located in decentralized hangars.
For this, the hangar location(s) should provide minimal
service time to hotspot areas where increased accidents
are expected due to their geographic characteristics and

nearby amenities while considering positive and negative
hangar location factors. For this purpose, the shortest
restriction-free flight trajectories from all candidate loca-
tions to all hotspots are computed, considering national
and European regulations and external risk factors like
potentially crowded areas, to identify the location(s) serv-
ing all hotspots while minimizing their service time. For
this, this paper utilizes open source data to determine an
optimal location of the UAV hangar. FIG 1 summarizes
the approach. The input and output of each step are
indicated by the green and blue colors, respectively.

FIG 1. Overview of approach

A hangar facility must provide solid ground, electricity
supply, and reasonable access for installation and main-
tenance of the system. Furthermore, the communication
must not be shaded by vegetation or located within re-
strictive areas (e.g., hazard areas, flight restriction zones,
natural reserves). At the same time, designated beaches,
recreation sites, hotel and camping facilities, grasslands,
and other facilities where people are engaged in activ-
ities adjacent to lakes, e.g., barbecue areas, boat slip-
ways, and boat rentals, increase the intrinsic risk for ac-
cidents in water bodies. When planning a SAR mission,
the risk to uninvolved parties, here the air and ground
risk, must be considered. SAR operations are excluded
from the remit of Regulation (EU) 2018/1139 [33], which
means that the competent national authority is respon-
sible for regulating SAR operations. According to § 21k
LuftVO [32], authorities conducting SAR operations are
permitted to fly through UAS geographical zones defined
by EU 2019/947 [31] and § 21h LuftVO [32]. As the UAV
hangar locations should provide a robust and optimal so-
lution concerning various restrictive flight areas to decide
on complying with or flying through UAS geographical
zones as an operational decision, e.g., depending on the
urgency or the exposed crowd size at beaches. For this
purpose, this paper considers five different scenarios:
1) Restriction-free flight from the hangar to the hotspot

invoking the special rights of authorities conducting
SAR missions according to § 21k LuftVO [32];

2) Compliance with specified air risk relevant UAS geo-
graphical zones according to EU 2019/947 [31] and §
21h LuftVO [32], e.g. required distance to airfields;

3) Compliance with specified air and ground risk relevant
UAS geographical zones;

4) Compliance with all specified UAS geographical
zones; and
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Key Value(s)

landuse grass, greenfield
natural grassland, heath, srub, scree

TAB 1. OSM map features for positive UAV hangar location
factors

5) Compliance with all specified UAS geographical zones
and additional avoidance of potentially crowded areas.

Furthermore, the solution should be robust against wind
effects. Therefore, different wind scenarios are considered
for each of the above scenarios.

3.2. Acquisition of Open Source Data

This section reviews open source data to retrieve relevant
information for UAV hangar location evaluation, divided
into three georeferenced data requirements groups. First
are positive and negative location factors for constructing
UAV hangars. Second, data serve to identify areas of high
intrinsic risk for a waterside accident or incident. More-
over, third, data describing the UAS geographic zones
according to EU 2019/947 [31] and § 21h LuftVO [32]
to be avoided during mission planning, minimizing the
external risk and environmental impact. The primary
source for the former two is the OpenStreetMap (OSM)2,
a community-driven database for georeferenced data lay-
ers. OSM defines the georeferenced data with nodes,
ways, and relations to describe the geometry, supple-
mented by tags (key-value principle) describing the ob-
ject’s function. Using Overpass API3, it is possible to
define queries for extracting data based on region, layers,
and tags.
The location factors are defined based on the surface and
its ability to accommodate a UAV hangars. As listed in
TAB 1, six tags for areas with grass and minimal vege-
tation are considered positive. Eight tags for areas with
forest, large amounts of trees, or wetlands will require
additional construction work or shading effects for com-
munication, expressed with a negative location factor ac-
cording to TAB 2. Furthermore, we assume that each
potential UAV hangar location requires road access (24
values included from the highway tag) with a maximum
permitted distance of 20 m from the road. In addition,
the UAV hangar cannot be established on water surfaces,
provided as Web Map Service (WMS)4. Finally, the avail-
ability of power supply should be another positive loca-
tion factor, but the required data is not public.
TAB 3 shows 34 map features representing hotspot indi-
cators. We assume that these features induce a higher
probability of an incident or accident near water bodies.
For this purpose, we extrude the resulting map feature
nodes and areas by a radius of 150m in size, followed by
an intersection with the water surfaces in the area un-
der investigation. Areas that are subsets of the extruded
hotspot indicators and subsets of the water areas result

2https://www.openstreetmap.org/
3https://overpass-turbo.eu/
4https://geoportal.brandenburg.de/de/cms/portal/start

Key Value(s)

boundary forest, forest_compartment, hazard
landuse forest
natural tree, tree_row, wood, wetland

TAB 2. OSM map features for negative UAV hangar loca-
tion factors

Key Value(s)

amenity boat_rental, boat_sharing,
ferry_terminal, public_bath, parking,
parking_space, lounger

building beach_hut
emergency lifeguard, life_ring, phone
landuse grass
leisure marina, slipway, swimming_area,

swimming_pool, water_park,
beach_resort, park, picnic_table

lifeguard tower
man_made pier
natural beach, shingle, shoal, sand
sport sailing, swimming, surfing, wakeboard-

ing, water_polo, water_ski
tourism camp_site, caravan_site

TAB 3. OSM map features for hotspot areas

in the hotspot areas. The radius of 150m is determined
from the distance between buoys and shore of approx-
imately 120m plus an additional 30m, since the OSM
features may georeference slightly outside water areas.
We assume that most swimmers tend to keep within the
prescribed limits, increasing the risk of accidents in these
areas.
For the flight path planning of the standard SAR mis-
sion, data concerning UAS geographic zones [31, 32] is
required. Theoretically, § 21k LuftVO [32] permits public
safety agencies to operate in UAS geographic zones, e.g,
for SAR missions. However, this works aims to minimize
both ground and air risk. Thus, we implemented differ-
ent scenarios in the FLP to consider varying constraints to
the path-finding process to study the impact of the geo-
graphic zones. For the operation of UAV in Germany, the
Digital Platform for Unmanned Aviation (dipul) provides
a map tool5 and web map service which provides the UAS
geographic zones defined as separated layers. For the
transmission of data, the availability of a sufficient board-
band connection should be considered as well. However,
the so-called Breitband-Monitor6 of the German Bun-
desnetzagentur provides only coverage at ground level,
so open-source data at cruising and search altitude can-
not be retrieved.

5https://maptool-dpul-prod.dfs.de/
6https://www.breitband-monitor.de/mobilfunkmonitoring
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FIG 2. Vertical profile of the standard SAR mission divided
into the approach from the UAV hangar to the
hotspot area, the search to cover the whole hotspot
area and the return to the UAV hangar

3.3. Definition of the standard SAR Mission

As the battery capacity limits the operation duration of
the UAV, a restriction-free flight path between each po-
tential UAV hangar location and each hotspot, and a
standard search mission must be defined to assess the
accessibility of the hotspot and feasibility of the search
mission, given varying UAS geographic zones and wind
scenarios. Each standard SAR mission consists of three
components the approach, the search mission, and the
return flight. For a consistent consideration, we assume
that the approach and return flights have the same hor-
izontal and vertical profiles. Furthermore, as shown in
FIG 2, we assume a vertical climb at the UAV hangar to
the approach altitude ha, which is maintained until the
UAV reaches the hotspot area. There, the UAV descends
vertically to the search altitude hs, which depends on
the required resolution to detect a person in distress, and
continues the flight with a search pattern at constant hs.
After the search, the UAV climbs, maintaining the return
altitude hr until reaching the origin.
A constant altitude of ha = hr = 100m above ground is
assumed for approach and return, leaving a safety buffer
to the maximum permitted altitude of 120m according to
’specific’ category [31]. hs depends on the characteristics
and orientation of the camera and the required resolution
for the automated detection of a person in distress. The
camera of our UAV has an aspect ration of 4 : 3 with a
resolution of R = 12Mpx, a lateral field of view α = 56◦

and a vertical field of view β = 45◦. The camera is facing
down perpendicular to the water surface, guaranteeing
the best coverage and detection [18]. Furthermore, the
larger α is perpendicular to the search direction so that
the UAV is centered above the middle of the covered
surface in a single camera frame, as shown in FIG 3.
Then, the achieved pixel density D in [pxm−2] per frame
is given with the search width ws and length ls in [m]
according to:

(1) D =
R

ws · ls
Using the tangent of two assumed right-angle triangles,
ws and ls can be determined at given hs utilizing the
camera parameters α and β:
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FIG 3. Covered surface in one frame during search given
with search width ws and length ls as a function of
the camera’s lateral and vertical field of view (α and
β, respectively) for a defined search altitude hs

ws = 2 · hs · tan (0.5 · α)(2)
ls = 2 · hs · tan (0.5 · β)(3)

The required minimum pixel density Dmin significantly
drives the optimal hs to detect persons in distress au-
tonomously. A trade-off is necessary between a high-
as-possible hs for minimum-time coverage of the search
area and thus fast SAR and a sufficiently high pixel den-
sity to solve the detection and recognition task, i.e., to
distinguish persons in distress from all other swimmers.
For estimating Dmin, a set of test images of 35 swim-
ming volunteers has been taken at Lake Partwitz under
sunny and clear conditions without any significant wind.
From the set, 96 images of different pixel densities be-
tween 5 to 3300 pxm−2 have been generated and pre-
sented to 10 test persons (3 female, 7 male) aged 30 to
40 (μ = 33.4, σ = 3.34),thus equals 960 samples. The
test person’s tasks are (a) detecting objects in the im-
age and (b) recognizing and describing the activity of
the swimming persons. If all persons per image are de-
tected, task (a) is classified as positive; if at least one
person remains undetected, it is considered negative. If
the test persons describe all activities of the swimmers
correctly (e.g., breaststroke with drawn legs), task (b) is
classified as positive. The experiments show an average
Dmin,(a) = 9 pxm−2 (σ(a) = 8) and Dmin,(b) = 503
pxm−2(σ(b) = 493) . The task complexity strongly cor-
relates with the number and types of objects per test
image resulting in high standard deviations. Thus, im-
ages containing few volunteers or volunteers on floating
objects (e.g., surfboards) show significantly lower Dmin

due to contrast and size. Also, their activities are rec-
ognized more reliably than images with many volunteers
swimming closely together. The obtained Dmin from
the test persons serve as estimates for the Deep Convo-
lutional Neural Network (DCNN) intended to automati-
cally detect a person in distress, assuming it will not per-
form significantly better or worse than humans. van Dyck
et al. [34] confirm this hypothesis, in which the DCNNs
ResNet18 and vNet achieved 79.05% and 84.76% ac-
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curacy, respectively, compared to 89.96% of human ob-
servers. With Dmin, eqs. (1) to (3) are rearranged to
solve for hs:

(4) hs ≤

√
R

4 ·Dmin · tan (0.5α) · tan (0.5β)

Since the goal of the search mission is the reliable recogni-
tion of the person in distress, it is assumed that Dmin =
Dmin,(b) + 3σ(b) = 1981 is required to avoid misdetec-
tion. With eq. (4), hs ≤ 82.92m is determined to fulfill
the task (b).
With the standard UAV mission, a set can be generated
from the potential UAV hangar location F (Facility), a
hotspot D (Demand), a wind scenario W , and a geo-
graphic zone scenario Z. The corresponding total flight
time tm,n

i,j ∈ R+, for i ∈ F , j ∈ D, m ∈ W,n ∈ Z
constitutes the evaluation metric. The flight distance
dni,j results from the shortest restriction-free flight path
from i ∈ F to j ∈ D considering n ∈ Z. For this, the
approach and return flight are assumed identical, i.e.,
dni,j := dnj,i. Since various shapes of hotspot areas exist
and the search time depends on the coverage algorithm,
we assume a simplified rectangular hotspot area aj [m2]
with edge length ws [m] of FIG 3 and add a detour factor
k = 1.1 to account for different coverage algorithms and
shapes, resulting in a search distance sj :

(5) sj = k ·
(
aj
ws

− ls

)
According to the manufacturer, a reliable cruise speed
during approach and return v1 = 10ms−1 and a vertical
rate v2 = 2.5ms−1 is achieved. During the search phase,
we assume slower search speed v3 = 5ms−1 to provide
suitable coverage and reduced motion blur. The total
flight time for successive maneuvers (cf. FIG 2) is:

(6) tm,n
i,j =

(
2
ha

v3
+ 2

dni,j
v1

+ 2
ha − hs

v3
+

si
v2

)
· fm

fm in eq. (6) represents the detour factor per wind sce-
nario m ∈ W . The actual values are derived from Chu
et al. [9], using windspeeds below 11ms−1 as recom-
mended. We computed fm for seven wind scenarios in
TAB 4 with the battery use from table 10 [9], averaging
over all wind directions and normalized on 1 s of flight
time. Furthermore, wind scenario m = 1 with 0ms−1

and turbulence index 0 is added as a baseline case with
fm = 1.
Given the flight endurance E = 22min, each rescue mis-
sion from i to j is evaluated, so tm,n

i,j ≤ E from eq. (6)
are only classified as accessible:

(7) Am,n
i,j · (E − tm,n

i,j + ϵ) ·M ≥ E − tm,n
i,j + ϵ

Thus, Am,n
i,j ∈ {0, 1} is the binary accessibility variable

from i ∈ F to j ∈ D, avoiding the n ∈ Z and con-

No.
m ∈ W

Windspeed
[ms−1]

Turbulence
index

Detour factor
fm

1 0 0 1.0

2 3.5 0 1.023

3 10.5 0 1.237

4 3.5 10 1.018

5 10.5 10 1.311

6 3.5 20 1.109

7 10.5 20 2.199

TAB 4. Wind scenarios with detour factors fm derived from
the battery use studied by Chu et al. [9]

sidering m ∈ W , with the Big-M parameter M and an
infinitesimally small positive quantity ϵ.

3.4. Optimization Model for UAV Hangar Positions

This section describes the FLP model to determine P ∈
N optimal UAV hangar locations with maximum acces-
sibility to all hotspots j ∈ D across all wind scenarios
n ∈ W and all UAS geographic zone scenarios n ∈ Z
while minimizing the respective total flight time. For
that, we consider a finite set D of hotspots and finite
set F of potential facilities with the binary success vari-
able Am,n

i,j ∈ {0, 1} from eq. (7) and total flight time
tm,n
i,j ∈ R+ from eq. (6), such that:

(8) max
∑
i∈F

∑
j∈D

∑
m∈W

∑
n∈Z

(Am,n
i,j − tm,n

i,j )

With the binary parameter yj ∈ 0, 1 and P facility lo-
cations to be established, while xn

i,j ∈ 0, 1 ensures that
each i is connected to only one j:

∑
i∈F

yi ≤ P ∀i ∈ F(9)

xn
i,j ≤ yi ∀i ∈ F, j ∈ D,n ∈ Z(10) ∑

i∈F

xn
i,j ≤ 1 ∀i ∈ F, j ∈ D,n ∈ Z(11)

To this end, we process the data of section 3.2 in a geo-
referenced 5m× 5m grid inside [51.48◦, 51.55◦] latitude
and [14.04◦, 14.20◦] longitude. Then, the location fac-
tors from TAB 1 and 2 identify the solution space for
candidate locations. To reduce the computational ef-
fort, a spacing of 50m between the candidates for UAV
hangar locations is chosen, resulting in |F | = 12569 can-
didate locations. The hotspot areas from section 3.2
are processed with a Connected Component labeling, re-
sulting in 11 separate hotspot areas of varying extents
across the two lakes. Each hotspot area is represented
by hotspot locations using the centroids of a k-means
algorithm with k depending on the respective area sur-
face, resulting in a total of |D| = 19 hotspot locations.
Consequently, a total of 19 · 12569 · 7 · 5 = 8.358 × 106
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FIG 4. Connected-component labeling of the target area for
n = 5, indicating all UAV hangar candidate locations
(white dots) with valid connection in yellow, and in-
valid connections in other colors.

path computations for one optimal facility location and
19·

(
12569

2

)
·7·5 = 5.252×1010 calculations for two hangar

locations is required. Since restriction-free pathfinding
with the A* algorithm has a high computational effort,
we reduce the number of paths by applying two tech-
niques.
First, we label the discretized binary occupancy grid using
a Connected Components algorithm removing all inacces-
sible candidates due to restrictions. FIG 4 illustrates the
method using n = 5, n ∈ Z, as an example. All can-
didate locations labeled ’yellow’ are valid connections to
the hotspots, removing invalid candidate locations (e.g.,
’purple’) from the later pathfinding.
Second, a fast occupancy intersection algorithm checks
if straight paths from j to i exist that do not infringe on
restricted areas. If this is the case, the shortest path is
already found, and the A* computation is not required
for this particular combination. FIG 5 illustrates the pro-
cedure using n = 5, n ∈ Z, as an example. Green marked
location candidates permit direct paths, given one exam-
ple hotspot at Geierswalder Lake. Red borders show in-
terruptions due to the occupancy envelope, respectively,
non-valid direct path.
With these two steps, all UAV hangar candidates without
valid connections and with unrestricted straight connec-
tions have been identified. Accordingly, only the candi-
dates with the same connected-component label in FIG 4
and intersecting with the occupancy envelope in FIG 5 re-
quire calculating a restriction-free path with the A* algo-
rithm in the two-dimensional discretized operation space.
Horizontal, vertical, and oblique movements are allowed.
The cumulative great circle distance of the georeferenced
path nodes along the shortest path from each source to
each sink was subsequently calculated, considering geo-
graphic areas.

FIG 5. Ray occupancy intersection for finding candidate lo-
cations with direct, unrestricted flight paths (green)
to one sample hotspot (red dot) to reduce the com-
putational effort of the pathfinding.

4. RESULTS

Using P = 1 and P = 2 planned UAV hangar facilities
as examples, we demonstrate the resulting optimal lo-
cations according to eqs. (8) to (11) and evaluate their
performance compared to the remaining candidates. For
the shortest path calculation, the two methods described
in section 3.4, cf. FIG 4 and 5, predetermine 100% of
the distances for n = 1, 81.66% for n = 2, 70.98% for
n = 3, 62.31% for n = 4 and 44.37% for n = 5, result-
ing in a significant reduction of the computational time.
The remaining shortest paths are calculated with an A*
algorithm to determine dni,j for eq. (6).
FIG 6 shows the accessibility score Ai∀i ∈ F derived from
the accessibility Am,n

i,j from eqs. (8) to (11) normalized
over all n and m based on the maximum number of acces-
sible hotspots. Ai = 0 indicates that any hotspot cannot
be reached over all scenarios m and n, while Ai = 1
represents the hangar location with the most accessible
hotspots over all scenarios. Different shades of gray in-
dicate the geographic zones depending on the different
scenarios n.
Since some hotspots, e.g., j = 1, are located inside geo-
graphic zones, they cannot be reached from any location
candidate in the scenario n containing this particular geo-
graphic zone. For n = 1, all hotspots are located outside
geographical zones, so they can be served as desired. For
n = 2, one hotspot is inside a geographical zone, reduc-
ing the maximum accessible hotspots to 18. In this case,
the inaccessible hotspot is removed from the score, re-
sulting in Ai = 1 for the best candidates. Analogously, a
maximum of [19, 18, 17, 16, 16] hotspots is achievable for
all n. Accordingly, for P = 1 two potential locations exist
that cover the most hotspots across all scenarios n ∈ W
and m ∈ Z. TAB 5 shows the number of hotspots cov-
ered for the two candidates.
FIG 7 summarizes Ai per wind scenario m, indicating
that the zero- and low-wind cases m = {1, 2, 4} provide
a very high median accessibility of approx. 75% for all
location candidates. Furthermore, the optimal locations
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FIG 6. Accessibility score Ai for all UAV hangar location
candidates, normalized over all hotspots, geographic
zones (gray-shaded areas) and weather scenarios,
with Ai = 1 for candidates with maximum access
to the hotspots

Wind scenarios
m ∈ W

A 1 2 3 4 5 6 7

G
eo
gr
ap
hi
c
zo
ne

n
∈
Z

1 19 19 19 19 19 19 11
2 18 18 18 18 18 18 11
3 17 17 17 17 17 17 10
4 16 16 16 16 16 16 9
5 16 16 16 16 16 16 9

TAB 5. Number of hotspots served by the P = 1 optimal
UAV hangar locations per wind and geographic zone
scenario

for both P = 1 and P = 2 provide 100% accessibility in
all wind scenarios except m = 7. In this high-wind-high-
turbulence case, the available Endurance E is smaller
than a subset j of t5,ni,j , so the SAR operation cannot be
guaranteed for all hotspots. However, P = 2 provides a
higher accessibility compared to P = 1 in m = 7. Con-
sequently, the probability and impact of adverse weather
situations should be studied further, as it may justify a
third UAV hangar.
For analyzing the SAR performance, we compute the ser-
vice time Sm,n

i,j in [s], which is the duration until the
search mission ends and the return to the UAV hangar
starts. Thus, it indicates the upper bound for the time
until the person in distress will be discovered, with:

(12) Sm,n
i,j =

(
ha

v3
+

dni,j
v1

+
ha − hs

v3
+

si
v2

)
· fm

FIG 8 summarizes the service times across all n ∈ Z for
all i ∈ D as a box plot. As indicated by the markers,
the P = 1 and P = 2 optimized locations provide ex-
cellent service times compared to all other candidates,
significantly below the median and close to the minimum

FIG 7. Accessibility score Ai for all location candidates per
weather scenario m, indicating 100% accessibility for
P = 1 and P = 2 optimal locations except for m = 7

FIG 8. Service time of all location candidates per hotspot,
with markers indicating the the optimal UAV hangar
locations for P = 1 and P = 2

for each hotspot. Only hotspots j = 15 to j = 19, lo-
cated at the farther side of Lake Partwitz, cf. FIG 9,
show a slightly worse service time due to the balanced
optimization among all hotspots.
FIG 9 shows the optimal location for P = 1, satisfying
eqs. (8) to (11), and the shortest flight paths from the
optimal facility to all hotspots j ∈ D while respecting
the UAS geographic zones, using n = 5 as an example.
The heatmap indicates the average service time to all j
across all m ∈ W and n ∈ Z as a normalized score for all
facility candidates with Ai > 0.9 indicating near-optimal
locations with a slightly inferior result, which may be used
as alternatives if the optimal location is not available for
building the UAV hangar.
For P = 2, 80 possible combinations of candidates have
the maximum accessibility score. FIG 10 shows the com-
bination satisfying eq. (8). The plotted paths indicate
the hotspot assignment according to eqs. (9) to (11) for
n = 5 as an example. This assignment is part of the opti-
mization process and represents the shortest service time
in each case. However, for operational reasons, the other
facility may also serve the hotspot if satisfying eq. (7).
Furthermore, the service time eq. (12) is significantly bet-
ter compared to P = 1, especially for hotspots j = 15
to j = 19, cf. FIG 8.

5. CONCLUSION AND OUTLOOK

We demonstrated a fast and robust method for optimiz-
ing UAV hangar locations considering restrictive areas

8

https://creativecommons.org/licenses/by-sa/4.0/


FIG 9. Optimal UAV hangar location for P = 1 (square) and the optimal flight paths for n = 5 (black) to the hotspots
(red) with the restricted areas in gray. The heatmap indicates the service time score for candidates with Ai > 0.9,
if the optimal site is not available.

FIG 10. Optimal UAV hangar locations for P = 2 (squares) and the optimal flight paths with the allocation to the hangars
for n = 5 (green and orange) to the hotspots (red) with the restricted areas in gray
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and wind scenarios using open-source data. The opti-
mal locations show significantly greater accessibility and
lower service time than the other hangar location can-
didates. Furthermore, the rescue times improved com-
pared to maximum response time regulated for each fed-
eral state in Germany. Typically, rescue stations shall
be established to reach any emergency site along a pub-
lic road within 15min for 95% of all annual cases, e.g.,
in Brandenburg [35]. Consequently, emergency services
should arrive at the closest public road to the accident
site at the lake in about 900 s. Then, additional time is
required to reach the shoreline area, which may be dif-
ficult to access, and the SAR time in the water. With
the optimal UAV hangar locations, average service times
over all n ∈ Z for m = 1 of S̄P=1 = 401.69 s and
S̄P=2 = 315.37 s, respectively, were achieved guarantee-
ing a significant reduction in SAR time. During this time,
the UAV will provide a flotation device to the person in
distress. Thus, it reacts earlier than required, provides
measures to increase survivability, and guides emergency
responders to the right location faster. If even faster UAV
responses are deemed necessary, a maximum permissible
service time may be serve as an additional constraint to
our optimization model.
The identified UAV hangar locations are an optimal solu-
tion concerning the determined hotspots. Thus, the op-
timal converage is provided in these hotspot areas. Nev-
ertheless, the RescueFly concept of operations also plans
SAR missions outside these hotspot areas. Our concept
of hotspots successfully prioritizes areas with high proba-
bility of swimming accidents, but it does not exclude the
UAV from operating over other parts of the lakes. The
accessibility of eq. (7) indicates if the endurance permits
these operations.
Next, we plan to integrate a UAV flight performance
model for a more precise estimation of the energy con-
sumption, thus, considering the UAV endurance as a dy-
namic value affected by the weather and other operating
conditions. In addition, the RescueFly project partners
work on the automated recognition of persons in distress,
leading to a more precise definition of the standard SAR
mission. Finally, flight demonstrations are planned for
the proof of concept.
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