
COMMON SOURCE & PROVENANCE AT VIRTUAL PRODUCT HOUSE:
INTEGRATION WITH A DATA MANAGEMENT SYSTEM

F. Dressel∗, M. Rädel†, A. Weinert‡, M. Struck‡, T. Haase§, M. Otten¶

∗ German Aerospace Center (DLR), Institute of Software Methods for Product Virtualization, Dresden,
Germany

† German Aerospace Center (DLR), Institute of Composite Structures and Adaptive Systems, Bremen and
Braunschweig, Germany

‡ German Aerospace Center (DLR), Institute for Software Technology, Cologne and Bremen, Germany
§ German Aerospace Center (DLR), Center for Lightweight Production Technology, Augsburg, Germany

¶ University Bremen, Center for Industrial Mathematics, Bremen, Germany

Abstract
At the Virtual Product House (VPH) a multi-stakeholder process concerning the development and certification
of airplane components is implemented. An orchestrating tool is used that allows stakeholders to contribute
their abilities to a common workflow. In order to allow a comprehensible virtual certification the generation and
storage of provenance attributing the defined workflow execution and data flow is needed. In this paper the
requirements we discovered, the improved structure of the provenance containers we used, the usage of a
data management system to store and analyze the provenance & data and its application to the VPH process
are described.
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1. REQUIREMENTS IN COLLABORATIVE WORK-
FLOWS DURING VIRTUAL PRODUCT DEVEL-
OPMENT

Above a certain level of product complexity, a de-
velopment process requires multiple partners with
specialized skills for certain aspects of the engi-
neering processes. In addition to their individual
contributions to the development process, the project
partners must orchestrate the interaction of these
sub-processes. In the VPH start-project we devel-
oped the common-source architecture, a software
setup for this type of problem [1]. We moreover
applied it to the virtual development of an aircraft
moveable [2, 3, 4].
This architecture offers solutions and tools for collab-
orative product development while retaining the intel-
lectual properties on data and assessment capabili-
ties of each partner. It moreover allows the genera-

tion of provenance information of all data throughout
of the process as well as the persistent storage of all
information. The provenance information is needed
for virtual certification.
In this paper we describe our approach for com-
bining common source, provenance and a data
management system within the context of the VPH
to implement a consistent data handling for virtual
certification. To do so, we first present the context,
use case and derived requirements in the remainder
of this chapter. Chapter 2 gives a short introduc-
tion to provenance and the provenance container
concept, which we extended based on our previous
work. Chapter 3 gives an overview about the data
management system and the data structure we used
and describes briefly its integration into the common
source VPH process. Chapter 4 shows exemplary
approaches to work with the provenance in the whole
system we designed. Chapter 5 concludes and
summarizes our work.

1.1. Context

The VPH is an integration and test center for virtual
product development. The goal is to combine the
capabilities in this field available at the institutes of
the German Aerospace Center (DLR) with regards
to different aspects, e.g. aerodynamics, structures
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and systems. This includes technical aspects and
issues of digitization and virtual collaboration. These
capabilities can be combined with applications from
partners from industry and research and are applied
to use cases with the goal of a more simulation-
based/virtual certification.
Initial use cases for the demonstration are the move-
able of a passenger-aircraft configuration [5] and a liq-
uid hydrogen (LH2) tank [6].
The development process is implemented in Remote
Component Environment (RCE) [7, 8] workflows.
RCE allows workflow contributors to publish their
tools on a server. A tool interface is defined by the in-
and outputs. The execution itself is performed as a
black-box at the corresponding tool server.
A RCE workflow describes the execution order and
data transfer in a process. The workflow host has ac-
cess to the initial input data as well as all data that is
created and available as output during the workflow
execution. Otherwise, the data is distributed to the
clients, as seen in Figure 1a.

Workflow
host

Client 1 Client 2

(a) Previous work.

Workflow
host

Client 1 Client 2

Data
management

(b) This study.

FIG 1. Data flow.

The heterogeneous nature of the data produced by
the different assessment steps in the virtual product
development process creates certain requirements
on the data handling scheme, which we discuss in
the following.

1.2. Requirements

The VPH use cases are quite complex. In a classi-
cal design process, engineers from one project part-
ner would collaborate to analyze some property of a
model. To do so, they often use proprietary tools and
subsequently share the resulting data with engineers
from other project partners. This data sharing typi-
cally happens asynchronously, e.g., via email or net-
work shares.
It is one goal of the VPH to automate the evaluation
of models and the sharing of data. Each stakeholder
contributes functionality for their respective domain.
They do so based on an input-process-output model:
Each functionality accepts data in a predefined format
and returns data in a (probably different) predefined
format. The engineers chain the functionalities ac-
cording to the needs of the design process in a work-
flow. Executing such a workflow requires orchestrat-
ing the data flow and tool execution.

Data flows used for virtual certification have to be re-
viewable. During certification, it is decided whether or
not the given results are usable for a certification task
based on the data and its provenance (see, e.g., [9,
10]). To be reviewable, the data needs to be persis-
tent, accessible, consistent & traceable, attributable
and any changes to the data need to be traceable.
We describe these functional requirements and their
manifestations in the context of VPH in the following.
Subsequently, we address the non-functional require-
ments that originate from the business interests of the
individual partners.

Persistence

All data used in the virtual certification must be
persistently stored over the full life time of the cer-
tified product according to EU regulation 748/2012,
21.A.55 [11]. In aerospace engineering, certified
products usually have a life span of multiple decades.
During the life time of a product, the industry stan-
dards for data storage are prone to change. Hence,
the storage for certification data of aerospace prod-
ucts needs to take into account changing data
management systems and necessary migrations
between such systems.

Data accessibility

During the development and execution of the work-
flow, all partners share data and functionality. The
result of each workflow run is a complete data set
for the given aerospace problem addressed with the
workflow. Within the VPH, each partner contributes
openly. The resulting data needs to be accessible by
each of the partners. Later on, data may also be avail-
able for others. For such a case, access rights and
permissions need to be in place (see also the A in
FAIR [12] with that respect for this discussion).

Data consistency & traceability

The tools, dataflow and data are constantly evolving
during the virtual engineering processes and the de-
velopment of the workflow. Multiple versions of the
tools and data used and generated will be available.
However, only one final data set will be certified and
therefore a way to pull out data which belongs to-
gether out of the remaining data is needed.

Attributability

Multiple stakeholders participate in the development
of the workflow. Each stakeholder may adapt one or
more system properties during the engineering pro-
cess. Therefore, it is necessary to determine whether
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a specific project partner may be held liable for a given
piece of data. Each data point or set of data has to be
clearly attributed to one or more individual workflow
steps, which has in turn to be clearly attributed to one
or more stakeholders.

Modification detectability

Once certification is complete, the certified data
need to be stored for the lifetime of the product.
Ideally, these data should be immutable to prevent
malicious or negligent changes after certification.
While hardware-based approaches to immutable
data storage exist, applying these makes sense only
in certain specific scenarios. In the context of VPH
we aim to be able to detect after-the-fact alterations
to the data and require that each change has to be
easily traceable.

Non-functional requirements

The requirements discussed so far contribute to the
goal of generating results from a distributed virtual
engineering process. The process involves multiple
partners, both from industry and academia. On the
one hand, each partner wants to provide their abilities
to the other project members. On the other hand, they
have an interest in protecting their intellectual prop-
erty. This includes both the source code of their tools
as well as executables, which may be disassembled.
Therefore, each partner must be able to publish func-
tionality without publishing the tool itself.

1.3. Previous work

In previous work [1] we showed the basic concepts
for provenance (in the form of provenance containers)
and common source.

FIG 2. Provenance container format from previous work
[1]. Orange indicates control information, blue
indicates provenance and green the original
data. While the number of bytes for the control
information is fixed, the length o provenance and
data may be arbitrary.

We combined provenance and data together in one
file. The file contained some control information as
headers, followed by the provenance and data (see
Figure 2 for the file layout).

We used RCE [7] as workflow orchestration tool to im-
plement the core concepts of the common source ap-
proach. The data exchange between the tools of the
different stakeholders was also done via RCE and file
exchange. The files were stored locally on the com-
puter of the person, who started the workflow. For the
tool run time, the data used as input/output of a tool
are additionally stored on the respective tool server.
The person executing the workflow was the only per-
son who got a complete data set of a whole workflow
run (see Figure 1a).

2. PROVENANCE & PROVENANCE CONTAINER

Provenance is the information about the origin of
data. The de facto standard for provenance is the
W3C Prov model (see [10]). It consists of activities
(actions which are done to generate data), agents
(software and people, who perform the activities) and
entities (data) as basic building blocks. There are
relations between the elements defined. The model
itself is extensible and besides the basic model there
exist more elements for more specific use cases. We
used only the basic building blocks with the attributes
shown in Figure 3.
The RCE elements can be directly mapped to W3C
prov model elements: activities are RCE components
which are executed, agents are the tools and opera-
tors and entities are the used and generated files.

FIG 3. Provenance model used in this study. It is based
on the W3C Prov model but uses only a subset
of all possible elements and relations.

We use provenance containers to bring data and
provenance together. We used an enhanced two-file
layout for the study presented in this paper (see Fig-
ure 4). The provennace recorded is always referring
to the immediate activity. If data is used which is gen-
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erated by another activity, it is linked via reference.
The two-file layout provides the same benefits like
the layout from the previous work:
• Effective immutability of data and provenance
• Simple layout
• Content addressable
• Easy integration into arbitrary data management

systems
It mitigates problems with the one-file layout:
1) No preprocessing needed to use the standard

tools for the data
2) Unnecessary control information removed
3) Better performance when analysing provenance

for container with large data parts (some GB)
4) Data and provenance are allowed to have different

protection levels (encryption, access, ...)
1) Data is kept as is in a file and can be directly
read by the tools. 2) Provenance is stored as plain
JavaScript Object Notation (JSON) text and no fur-
ther processing is needed to use it. 3) If provenance
is analysed, the data (which may be huge) does
not have to be read. 4) Data and provenance are
now physically separated and different protection
measures like encryption, access regulations, ... can
be applied to both in distinct ways.

FIG 4. Two-file layout of provenance container. From
top down: Provenance in json format and data is
used to form a provenance container. First, the
hash over the data content is calculated. Sec-
ond, the provenance is extended to include the
data hash as reference. Third, the hash over
the provenance content is calculated. Fourth,
data and provenance is serialized at arbitrary
locations into something named according to
the corresponding hash. The two serialized el-
ements logically constitute the provenance con-
tainer.

3. DATA MANAGEMENT FOR COMMON-SOURCE
& PROVENANCE

Some of the requirements identified in chapter 1 need
a data management system. In contrast to our previ-
ous work, we extended the standard way when using

RCE (which is storing everything locally on the ma-
chine of the workflow host) by using a data manage-
ment system. We used shepard as a concrete imple-
mentation.
Shepard1 (storage for heterogeneous product and
research data) is a centralized data management
system [13]. Shepard is designed to be the central
place to store, explore and find data. Users and
machines can access shepard though a standardized
Representational State Transfer (REST) Applica-
tion Programming Interface (API) as well as a web
frontend. This allows continuous data acquisition
and analysis across diverse processes of a product
lifecycle and thus provides an ideal basis for the
usage with virtual products, as shown by Krebs et al.
[14].
Under the hood, shepard is designed to combine data
from different data sources. Time series are stored in
an internal InfluxDB. InfluxDB is a database that is
specialized in storing time series data and is also ca-
pable of performing basic normalization and filtering
functions on the data. Binary files are stored in an
internal MongoDB via GridFS. Structured data (which
is basically just JSON) is stored in the same Mon-
goDB, allowing the usage of the MongoDB search
functionality for documents. In this way, MongoDB
can be used for two different purposes and there is no
need to maintain two different databases without loos-
ing performance or usability. Metadata and shepard-
internal objects are stored in an internal Neo4j graph
database. The graph database was chosen because
shepard works mainly with data points and relation-
ships between them, and Neo4j makes this very easy.
The use of multiple databases while making the sys-
tem more complex to set up and maintain, improves
overall performance and usability by eliminating the
need to find a single solution that meets all require-
ments sufficiently well. Instead, specialized tools can
be used that excel in their respective fields. The in-
dividual parts of shepard and an exemplary outlined
ecosystem can be seen in Figure 5.

FIG 5. Shepard architecture and ecosystem.

1https://gitlab.com/dlr-shepard
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In addition to the standardized REST API, shepard
also provides a generic data model to store arbitrary
data in a uniform way. This data model consists of
collections in the first level and data objects below. A
collection can contain data objects. The data objects
in turn can be interconnected with other data objects
of the same collection vertically as parent-child or hor-
izontally as predecessor-successor. This enables the
modeling of a wide range of configurations and pro-
cesses in shepard.
However, collections and data objects themselves do
not hold any data. Instead, there are containers that
store data of different data types, such as time series,
binary files, and structured data, utilizing the respec-
tive specialized databases. The actual payload data
can be referenced by data objects using so-called ref-
erence objects. This separation between the actual
data layer and the metadata layer allows for more flex-
ibility in data collection and use. An example of this
data model in use can be seen in Figure 6.

FIG 6. Shepard data structure for the VPH.

We structured the data of the VPH process in shepard
in the following way: A top level collection according
to each workflow run, a hierarchy of data objects
according to the different disciplines and the output
structure of each tool, references to the respective
files (see Figure 6). The last data object in this
hierarchy and its references represents a provenance
container and contains additionally provenance and
data hash as attributes. Each independent workflow
run gets a unique uuid assigned, which is used to
name the collection and therefore allow a clear sepa-
ration of data between the different runs. If there are
iterations within the workflow (in the VPH use case
for example to converge a fluid structure interaction
simulation) data objects are used to represent each
run of the iteration separately and are connected via
predecessor-successor relation. We created a RCE
component based on the shepard python API called
RCE2Shepard which can be seamlessly integrated
into the VPH workflow by any partner. It uses the
provenance container generated by the workflow
tools to store the output of each tool according to the

defined data structure. An exemplary cutout of a test
run can be seen in Figure 7.

FIG 7. Exemplary data structure of a workflow output
savd in shepard.

4. PROVENANCE APPLICATION

To review data (for virtual ertification), the whole
provenance back to the datas primary sources
should be taken into account. Within the architecture
shown in chapter 2 and 3 the provenance for each file
is stored in shepard. To make use of the provenance,
it need to be aggregated depending on the use case.
In this study we used shepard and applied its search
functionality to look at three different use cases:
• Find a provenance container based on its id
• Find provenance container based on provenance

attributes
• Trace an artefact to its primary sources
Each use case was implemented with a Jupyter note-
book using the shepard python client libraries. In the
following pseudo code examples, we simplified the li-
brary usage for simplicity.
Based on the data object architecture in shepard (see
chapter 3), we used the following approach to get the
provenance container (provenance and data) from a
data object.
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Algorithm 1 Function getP4DO to get the prove-
nance for a given data object

1: dobj ←< dataobject >
2: sr ← getStructDataRef(dobj)
3: prov← getPayload(sr)

Algorithm 2 Function getPC4DO to get a provenance
container based o an already given data object

1: dobj ←< dataobject >
2: prov←getP4DO(dobj)
3: datahash← getHashAttribute(dobj)
4: frs← getF ileReference(dobj)
5: while fr in frs do
6: tmp← getF ile(dobj, fr)
7: if calculateHash(tmp) == datahash then
8: data← tmp
9: break

10: end if
11: end while

prov and data form the (logical) provenance con-
tainer for the given hash.

4.1. Find a provenance container based on id

Data objects can be searched in shepard via their at-
tributes. Each leaf data object stores both data hash
and provenance hash (see chapter 3). The prove-
nance hash is unique for the whole provenance con-
tainer and therefore, the following approach can be
used:

Algorithm 3 Find provenance container for given id

1: container_id←< containerid >
2: dobj ← doForPHash(container_id)
3: pc← getPC4DO(dobj)

4.2. Find provenance container based on prove-
nance attributes

With shepard, it is possible to search provenance
based on a JSONPath [15] expression for a field
within the JSON representation of the provenance
model (see chapter 2).
We used the following approach:

Algorithm 4 Find provenance container for attributes

1: path←< jsonpath >
2: value←< value >
3: dobj ← doForSearch(path, value)
4: pc← getPC4DO(dobj)

4.3. Trace an artefact to its primary sources

Used entities are in a provenance container only
referenced by the underlying provenance container

hash and are not included directly. These references
need to be followed to trace all used entities along the
whole entity-activity graph to finally reach the primary
sources.
Provenance over multiple entities forms a directed
acyclic graph. We generated a representation of the
graph in memory for further analysis by an recursive
depth-first approach. We did not used a specific data
structure like graph data structures but used the data
object layout described in chapter 3 (performance
was acceptable with the data volume observed). The
following algorithm was used to build the graph:

Algorithm 5 Generate the parent child relationship for
the provenance graph.

1: nodes← []
2: current←< containerid >
3: function TRACE(id)
4: dobj ← doForPHash(current)
5: prov ← getP4DO(dobj)
6: nodes[current]← {′id′ : current,′ used′ : []}
7: for u in prov.used do
8: nodes[current].used+ = u
9: if u not in nodes then

10: TRACE(u)
11: end if
12: end for
13: end function

The result of Algorithm 5 is the graph from a given
provenance container in shepard to each of its pri-
mary sources via all used entities including any in-
termediate steps. Line 6 is a simplification: More in-
formation from the provenance can be integrated into
the graph depending on the analysis, which should be
performed.

5. CONCLUSION

In this work we demonstrated our approach of
combining a collaborative multi-stakeholder, multi-
disciplinary workflow, provenance and a data man-
agement system within the VPH. The VPH process
takes place within a common source scenario, in
which data and functionality is shared between
stakeholders but no sharing of tools or source code
takes place. We build upon our previous work [1] by
extending the common source and provenance con-
tainer concept and combine it with shepard (a data
management system) to fulfill the identified functional
requirements: Persistence, data accessibility, data
consistency & traceability, attributability and modifi-
cation detectability. The non-functional requirements
were satisfied as before with the usage of RCE as
the workflow orchestration tool. Attributability, data
consistency & traceability and modification detectabil-
ity were satisfied with the help of provenance and
provenance containers. We used shepard as a data
management system for data persistence, data ac-
cessibility and performing the analysis of provenance
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information for tracing. The data structure we have
chosen within shepard allowed easy persistence of
the data and easy access for all project partners. On
the other hand it implies no constraints on the data
itself which is a strict requirement if data need to be
available for decades (like for virtual certification). We
showed our algorithmic approach for using shepard
and its search capabilities for tracing data through
the workflow back to its primary sources based on
the recorded provenance.
The combination of common source, provenance &
provenance container and shepard successfully satis-
fied the requirements we identified for the use cases.
With the approach shown in this study we are confi-
dent to deliver data which can be used for virtual cer-
tification tasks.
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