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Abstract
The overall European Air Traffic Management aims for an efficient utilisation of ATM sub-systems like the
European Air Traffic Management Network. Highly congested hub airports and controlled airspaces may lead
to Demand-Capacity-Balancing issues during high demand periods. Air Traffic Flow Management as one of
the European ATM domains resolves these issues with certain capacity balancing measures. Besides slot
allocation, one frequently used measure is (lateral) re-routing, which often leads to less efficient trajectories
resulting in additional CO2-emissions and costs for airspace users. Recent research suggests that the share
of inefficient short-term re-routing measures could be reduced by high-quality predictions of future flight
trajectories through Machine Learning methods. One essential requirement for the development of ML models
is the optimal choice of input parameters. In this study, a structured analysis of an extensive set of flight plan
data is conducted in order to identify key operational parameters for ATFM routing decisions. An extensive
flight plan data sample covering three months in 2016 is parametrised and analysed to gather a sufficient data
baseline. A set of representative Origin-Destination pairs with high demand rates are investigated in more
detail. Results show that flights approaching large hub-airports have a higher chance of being re-routed
resulting in a less efficient trajectory in terms of lateral ATS-efficiency. The parameters with the highest
relevance on ATFM routing decisions were found to be lateral ATS-efficiency, demand along the individual

sector profile as well as the weekday of departure for planned trajectories.

1. INTRODUCTION

The worldwide number of flights has grown from 2013 to
2018 over 20 % from 36.3 to 46.1 million [1]. With the
increasing number of flights and growing competitive
pressure, a demand for higher safety requirements and
increased efficiency evolved. In order to satisfy these
requirements, Air Traffic Flow Management (ATFM) was
introduced in Europe, which takes over the function of
strategic and tactical Demand-Capacity-Balancing (DCB)
as part of flight planning and ATFM network management.
In addition to delay allocation, a number of other ATFM
measures play a central role. These include the selection
and assignment of alternative lateral routes.

Alternative lateral routings often result in a decreased
mission efficiency. This contributes to the fact that within the
European Air Traffic Management Network (EATMN) the
distance of flights is extended by an average of 6 %
resulting in approx. 5 million tons of additional CO2
emissions and 2.5 billion € costs per year [2]. Besides the
steadily growing number of flights per year in the European
airspace (pre-Corona), the complex system of stakeholders
and the limited resource of airspace create further
complexity in route guidance. Compared to the US Air
Traffic Management (ATM) system with one Air Traffic
Control (ATC) organization, 21 control centers and one
operating system, the European system actually consists of
47 Air Navigation Services Providers (ANSPs), 58 control
centers and 22 operating systems.

Thus, the amount of en-route ATFM delay has doubled
within one year from 2017 to 2018 [3]. This is an indication
that European airspace is reaching its capacity limits. In
order to avoid congestion of specific airspaces resulting in
ATFM measures, a more precise demand prediction is
needed. The German Air Navigation Service Provider
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(DFS) has addressed this fact at the NM User Forum 2019
as the most important task of the Upper Area Control
Center Karlsruhe besides weather [4].

Since this is a complex problem with a high share of
uncertainty, it is a suitable application area for Machine
Learning (ML) and Deep Learning algorithms to lower these
levels of uncertainty by elaborated demand predictions.
One essential requirement for the development of ML
models is an optimal choice of input parameters used for
the prediction.

On the operational side, ATFM stakeholders may benefit
from the findings in terms of being able for more robust
traffic planning. Especially airlines may benefit from
feedbacks on their operational flight plan trajectories
regarding the ability to realize the individual route as filed.
Due to time-related mission length with different flight
routes, actual route predictions should have an impact on
the cost index (Cl) of a flight, which reflects the relationship
of time-related flight costs to fuel costs. If there is a high
probability, that a desired routing cannot be implemented
like planned, airlines may be able to better compute their CI
according to predicted flight routes. This study therefore
contributes in a first step to a higher flight planning
transparency also in terms of mission-related cost
calculation.

Moreover ML-supported traffic predictions may enable the
realization of an ATM-system with a higher automation
level. Such functionality would support a more predictive
network management, in which causal relationships e.g.
between planned flight missions would be better reconciled
on a higher level of automation.
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1.1. Related Work

Planned aircraft trajectories are generated on a high
granular level based on the flight performance database,
Eurocontrol’'s Base of Aircraft Data (BADA) [5]. On this
basis Zhiyuan Shi et al. [6] developed a Long short-term
memory (LSTM) network that predicts 4D trajectories.
LSTM networks are recurrent neural networks that are used
for sequential classification tasks. With this deep learning
approach higher prediction accuracy is achieved compared
to Markov models. The data basis is high-resolution
trajectory data (3-4 data points per second) of the
Automatic Dependent Surveillance-Broadcast (ADS-B).

The deep learning algorithm developed by Herbert
Naessens et al. [7] uses parameters of a planned trajectory
in connection with data for the reservation of airspaces for
military purposes to predict a 2D trajectory. The work
focusses exclusively on the upper airspace controlled by
EUROCONTROL Maastricht Upper Area Control Centre
(UAC). The developed model is integrated into the 4D
prediction logic of EUROCONTROL Maastricht UAC.

Yulin Liu et al. [8] have trained a deep learning network
based on meteorological and trajectory data to generate 4D
trajectories for flights between the airports in Houston (I1AH)
and Boston (BOS). Trajectories of 1342 flights from 2013
were used for training.

A paper by R. Kaidi et al. [9] also presents a model for
trajectory prediction. This model should serve the purpose
of automatic conflict detection and resolution between
trajectories in the vertical plane. The developed model is
limited to the simultaneous observation of a maximum of
two aircraft for trajectory prediction.

Although some papers deal with trajectory prediction, these
are either restricted to selected O-D pairs or to specific
airspaces. The aim of this study is to take the whole
European airspace into consideration.

1.2,

ATFM routing decisions can be implemented for various
reasons, such as weather phenomena, military activities or
congested ATC-sectors. This study focuses on the effects
of congested ATC-sectors. In order to better understand
their impact on ATFM routing decisions, a set of
representative Origin-Destination (O-D) pairs with high
demand rates is investigated (see fig. 1).

General Approach

The O-D pairs are selected based on the different route
characteristics. They differ with respect to their great circle
distance and provide a good representation of a larger
number of missions. The individual O-D pairs are described
in more detail in ch. 3.1.

After analysing the selected O-D pairs, the whole dataset is
investigated in order to compute correlations between
defined trajectory parameters and less efficient, i.e. longer
alternative routes. In a next step, a comparison is drawn to
the most important parameters identified by an Extra Trees
Classifier algorithm (Please refer to ch. 3). Identified key
parameters for ATFM routing decisions will be used in
future work for the development of Machine Learning
models for airspace demand and trajectory prediction.
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Figure 1. Analysed O-D pairs with different great circle distances.

1.3.

The analysis is conducted for an extensive flight plan data
sample covering 92 days in 2016 in the ECAC airspace with
over 3 million flights. It is provided by the EUROCONTROL
Demand Data Repository (DDR2) [10], which contains
individual mission parameters as well as detailed 4-
dimensional flight plan trajectory data. Flight plan and post-
operational trajectories with a total of over 170 ATFM
specific parameters per flight are evaluated, whereas
relevant ones are identified and analysed in more detail for
this study.

Data Sources

2. MODEL DEVELOPMENT

In a first step, the trajectories of both types are
parametrized as a preprocessing step for the model in order
to achieve better comparability. The following parameters
are determined:

1) Sectorprofile: Mission-related ATC-sectors along the
trajectories are computed, as well as the
corresponding sector entry times. The result is a
sequence of time dependent sectors for each
trajectory, called sectorprofile (see fig. 2).

2) Sector demand: The planned and post-operational
sector demand is derived as followed:

flight entries per hour
sector demand = - (1)
sector capacity

For each sector in the planned sectorprofile the time
dependent sector demand is added to the trajectory
parameter list.

3) ATS-efficiency. The ATS-efficiency represents the
trajectory’s lateral efficiency, calculated by the
following formula:

trajectory distance

()

Nars = great circle distance
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4)  Origin airport

5) Destination airport

6) Airline

7) Aircraft type

8) Weekday of departure: The weekday of the departure
is derived from the Estimated Off-Block Time

parameter.

9) Estimated Off-Block time (EOBT)

P— T
—— Actual trajectory

W ATC-sector
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Figure 2. Example of a sectorprofile for a trajectory with intersected
ATC-sectors and entry times. The black line describes the great
circle.

The computed sectorprofiles for the planned as well as for
the post-operational trajectories are compared for each
flight. A flight is considered to be ‘“re-routed”, if the
sectorprofiles differ, meaning, that small deviations without
sector change are not considered, since those routes do not
represent a significant lateral shift of demand within the
EATMN. Fig. 3 depicts trajectory and airspace data of a
flight from Frankfurt (EDDF) to London (EGLL). Differences
of the sector profiles related to the respective planned and
post-operational trajectory are shown in red. The flight
received a lateral re-routing in the airspaces of Belgium and
Luxembourg and an adaptation of the vertical profile
segment within the TMA of the arrival airport (EGLL).

ATFM-restricted flights with assigned alternative routes are
classified into groups of flights with more and less efficient
alternative routes depending on route lengths. The goal is
to differentiate between different types of alternative routes
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based on capacity effects on the one side and on directs on
the other side, which are generally requested by pilots
during flight. This study focuses on less efficient (longer)
routes.

—
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W Planned and intersected sectors differ

\

Latitude

[ 5°F

Longitude

Figure 3. Example of a re-routing for a flight from Frankfurt airport
to London Heathrow. The black line describes the great circle.

3. RESULTS

In this chapter results of the analysis for the four selected
O-D pairs (see fig. 1) are presented. The correlation
between trajectory parameters and less efficient alternative
routes are compared to the most important parameters
identified by an Extra Trees Classifier algorithm. An Extra
Trees Classifier is a type of ensemble learning technique
which aggregates the results of multiple de-correlated
decision trees collected in a forest to output its classification
result [11]. Finally, most relevant ATC-sectors involved in
routing decisions are presented.

3.1.

The considered O-D pairs vary in their great circle distance
(GCD) as shown in table 1.

Origin-Destination Pairs

ICAO-Codes | O-D pair GCD [NM]

EDDF - EDDT | Frankfurt am Main — 235
Berlin Tegel

EDDF - EGLL | Frankfurt am Main — 353
London Heathrow

EGKK - LEBL | London Gatwick — 603
Barcelona El Prat

OMDB - EGLL | Dubai Intl — 3.004
London Heathrow

TAB 1.  Great circle distances for analysed O-D pairs.

The O-D pairs are selected based on the different route
characteristics. Frankfurt - Berlin is a frequently flown route
in domestic German airspace. Due to its function as a
spoke-hub connection, the route serves as a feeder for
medium and long-haul flights. With a great circle distance
of 235 NM it is the shortest of the considered connections.

Frankfurt/Main Intl. and London Heathrow are among the
largest airport hubs in Europe and are frequently used as
hub-hub connections. There are also many direct
connections, as both cities are home to important
institutions from the financial and economic sectors. The
spatial granularity of ATC-sectors on that route is high
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leading to a multitude of possible sector profiles.

The route between London and Barcelona is a hub-hub
connection, similar to the Frankfurt - London route. The
great circle distance is longer with 603 NM. Both airports
experienced a steady growth in passenger volume in recent
years.

Dubai Intl. is the most frequented of the considered airports.
For Europe, the airport is an important hub for connections
to Asia. The route London - Dubai is an intercontinental
connection leading through a large part of European
airspace and thus a multitude of ATC-sectors are
intersected. This, in conjunction with the long distance
(3.004 NM), allows a high number of possible sector profiles
to be selected.

In fig. 4 longer, shorter and non-routed flights are shown for
both directions each over the course of three months
covered by the dataset. With the exception of London —
Dubai there is a tendency towards a lower number of flights
with a longer great circle distance. There is also an
increasing percentage share of longer routed flights (shown
in red) with shorter GCD evident. Looking at the O-D pairs
London - Barcelona and London - Dubai, it can be seen that
there are more flights to London on these routes than in the
opposite direction. The higher frequented directions are
more relevant in route planning for airlines. Flights arriving
in London have a higher chance of receiving an extended
route. The reason is the high congestion in the vicinity of
London Heathrow. The results suggest a correlation
between the O-D pair parameter and longer re-routed
flights.
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Figure 4. The number of longer, shorter and not re-routed flights
for both directions of the four analysed O-D pairs for the whole
dataset covering three months in 2016. O-D pairs are sorted from
left to right by increasing GCD.

3.2,

As a representative O-D pair, Frankfurt - London is
investigated in more detail. Figure 5 shows the planned and
actually flown trajectories for the route Frankfurt - London
Heathrow (top) and London Heathrow - Frankfurt (bottom).

Representative O-D: Frankfurt — London
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There are three planned main routes for EDDF - EGLL. One
leads through Dutch airspace, one through Luxembourg
and Belgian airspace and the third through Luxembourg
and French airspace. The two less efficient routes are not
exactly flown in reality. All flights deviate towards the great
circle resulting in distance reduction. This is especially true
for the Belgian and German airspace. Flown trajectories
close to the great circle spread over a large area. Some
flights received a longer re-routing in the English Channel
area, indicating congested airspaces. In London, the
trajectories lead beyond the destination airport London
Heathrow. This is assumed to be due to the runway
direction, city noise regulations and a congested airport.

In the direction London - Frankfurt, two main planned routes
emerge, one near the great circle through Belgian airspace
and one through the Netherland airspace. As seen in the
opposite direction, some aircrafts received a less efficient
re-routing in the area around London and the English
Channel, indicating congested airspaces in this area. As
indicated also in the opposite flight direction, flights fly by
the arrival airport (EDDF) due to defined arrival procedures
and operational runway directions and noise constraints.

EDDF - EGLL
=== Plannedtrajectory
. — Actual trajectory
[}
el
s
by
)
1]
— s0°N
0°
Longitude
EGLL - EDDF
=== Plannedtrajectory
= MActual trajectory
[}
T
3
=
-
(3]
—

Longitude

Figure 5. Planned (blue) and post-operational (red) trajectories for
flights from Frankfurt airport to London Heathrow (top) and in the
opposite direction (bottom). The whole dataset was analysed
covering three months in 2016.
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The ATS-efficiency, as described in ch. 2., is a measure for
the lateral route efficiency. When looking at the probability
density distribution of ATS-efficiency for Frankfurt - London,
it is noticeable that mainly the planned route (X) through
Luxembourg and Belgian airspace is used (see fig. 6).
Longer re-routed flights show very different ATS-efficiency
values, whereby two specific routes seem to be selected
regularly (1)(2). Shorter re-routed flights run along similar
corridors (3). It can be concluded that shorter re-routed
flights often follow a similar path, while longer re-routed
flights are diverted in different ways. This is an indication of
multiple small and overloaded airspaces.
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Figure 6. The probability density function of the ATS-efficiency is
plotted for planned (blue) as well as for shorter (green), longer
(red) and not re-routed (grey) flights for the direction Frankfurt
airport to London Heathrow.

Three main planned routes (X) can be identified for the
direction London - Frankfurt, but the one with the average
ATS-efficiency between 1.1 and 1.3 is used most frequently
(see fig. 7). The longer re-routed flights are assigned to two
main routes (4). It can be concluded that flights with the
highest ATS-efficiency 1.3 are rarely longer re-routed. The
function of the ATS-efficiency for planned routes is reflected
in the profile for shorter re-routed flights with a shift towards
a lower value of ATS-efficiency (5)(6)(7). In this direction
shorter re-routed flights are diverted in different ways,

©2020

whereas longer re-routed flights tend to follow a similar
path.
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Figure 7. The probability density function of the ATS-efficiency is
plotted for planned (blue) as well as for shorter (green), longer
(red) and not re-routed (grey) flights for the direction London
Heathrow to Frankfurt airport.

It can be concluded, that the high congestion at the
destination airports as well as in ATC-sectors across the
English Channel plays a major role in ATFM routing
decisions. In addition, the high number of requested directs
have a significant impact on the flown trajectory and the
resulting ATS-efficiency.



Deutscher Luft- und Raumfahrtkongress 2020

3.3.

The Pearson correlation coefficients for considered
trajectory parameters are calculated for the whole dataset
as a measurement for linear correlation (see fig. 8). Itis a
statistical value, describing the relationship between two
quantities and ranges from -1 to +1. It can be used to
evaluate different parameters as input for Machine Learning
models [12].

The arrival airport as an input variable seems to have the
highest impact on the fact, if a trajectory will be affected by
routing decisions resulting in a less efficient trajectory. This
is due to congested arrival airspaces. It was previously
detected that trajectories often lead beyond certain
destination airports due to runway directions, resulting in a
longer flight distance. This also seems to contribute to the
high correlation coefficient besides en-route re-routings on
which this study focuses.

Parameter correlation

The airline itself also represents an important input
parameter. Differences in flight planning constitute one
possible reason, the location of the individual hub also has
an influence. Differences in the size and business models
may have an influence.

The departure airport seems to be less relevant than the
arrival airport regarding routing decisions. It can be
concluded that flights with congested arrival airports are
more likely to receive a longer route than flights with
congested departure airports.

A lower impact on the fact, if a trajectory will be affected by
routing decisions resulting in a less efficient trajectory was
found in the Estimated Off-Block Time, the aircraft type, the
planned ATS-efficiency as well as the weekday of
departure. It should be noted, that the Pearson correlation
coefficient only represents linear correlations. As the ATFM
network is complex, it is assumed that non-linear
relationships exist. Therefore, the most important
parameters for extended alternative routes compared to
planned routes were identified using an Extra Trees
Classifier algorithm.

3.4.

An Extra Trees Classifier algorithm [13] was used in order
to evaluate the feature importance based on the Gini
Impurity [14]. The Gini Impurity is used for different decision
trees in the Extra Trees Classifier algorithm as
mathematical criteria to split the data for the classification
task. It was shown that the planned ATS-efficiency had the
highest impact on routing decisions (see fig. 9). This
contradicts the results of the correlation coefficients,
whereby the planned ATS-efficiency had a lower value. The
combination with other parameters seems to provide a
relevant information gain. In addition to the planned ATS-
efficiency and the weekday of departure, the planned
demand of various ATC-sectors is highly relevant for ATFM
routing decisions.
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= 0.5
EOBT -
Planned ATS-efficiency -ooom
Actual ATS-efficiency --"-DDBBH o
o2 .Y
Re-routed - 0o o0 o 3
b5
Not Re-routed - ooz a0 5
c
Longer Re-routed | oo oo 5
o o
Shorter Re-routed -o.ooss cooss o s
_
Weekdav E}f departure - 002 -0.0064 00058 002 -0.02 Pooosd o.oie 8
c
Airline -voor? a3 ooes em o1 J-o.07s|-0.03s -0.00031 8
--0.25
o
Aircraft - oos3 o033 ooes 012 012 oo foosz 0034 01 &
Departure - 0.012 00033 000081 -0.17 017 J-0.061 011 0025 0078 -0.069
Arrival -vooos2 n.oo7 -0.000a4 015 018 | 012 |-004s 0028 007 -0oes | 02 - os
O‘b zo'\ C\\},@, & 8 & &Qp(@g *\\(\ (},b " &e*&@
o &S o O N
O A X )
‘& Ko & of SL YL
2 e € & & q~ xS o
«‘7 & & & &
& NN 25
s N

Figure 8. The Pearson correlation coeffients for combinations of mission-related parameters derived from flight plan-

trajectories.
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Fig. 10 presents these most relevant ATC-sectors in terms
of ATFM routing decisions. The northern German airspace
and ATC-sectors across the English Channel were found to
be most significant on routing decisions. This coincides with
the findings from the observation of the trajectories for the
O-D pair Frankfurt - London. In the airspace above the
English Channel a large number of “directs” and increased
alternative routes are observed. ATC-sectors in these areas
appear to be heavily congested.

Based on the results of the Extra Trees Classifier, it can be
deduced that the lateral ATS-efficiency for the planned
trajectory, the demand along the individual sector profile as
well as the weekday of departure for planned trajectories
are most relevant as input for machine learning models for
demand prediction. The parameters EOBT, airline, aircraft
type, departure and arrival airport could be considered
additionally to achieve higher prediction accuracy. In doing
so, a balance must be struck between additional
information gain and the complexity of the model.
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Extra trees classifier relevance
Figure 9. Relevance of trajectory features evaluated by an Extra
Trees Classifier based on the Gini Impurity.
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Figure 10. Most relevant ATC-sectors in terms of ATFM routing
decisions. The northern German airspace and ATC-sectors
across the English Channel were found to be most significant.
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4. CONCLUSION AND OUTLOOK

In this study, an extensive flight plan data sample covering
three months in 2016 was parametrised and analysed to
gather a sufficient data baseline. Furthermore, a set of
representative Origin-Destination (O-D) pairs on high-
demand routes were investigated in more detail.

The correlation between selected trajectory parameters
and less efficient post-operational routes was compared to
most important parameters identified by an Extra Trees
Classifier algorithm. The goal was to identify those
parameters with high relevance for ATFM routing decisions.
In this context, fig. 10 provides an indication of most
affected airspaces regarding routing decisions.

Results show that flights approaching large hub-airports
had a higher chance of receiving an alternative route
resulting in a less efficient trajectory in terms of lateral ATS-
efficiency. The reasons are congested ATC-sectors along
the trajectory as well as near the airport. Furthermore, the
high number of requested directs seem to have a significant
impact on the actual trajectory and the resulting ATS-
efficiency. These may be explained by an increasing
competitive pressure between airlines.

The parameters with the highest relevance on ATFM
routing decisions were found to be the lateral ATS-
efficiency, the demand along the individual sector profile as
well as the weekday of departure for planned trajectories.
The latter ones are related to each other in terms of
repetitive traffic load patterns, whereas the impact of lateral
ATS-efficiency is of higher complexity. It is clear, that also
pilot’s decisions play a role in this matter and it is therefore
not totally transparent yet, if a mathematical approach like
the one presented will be able to cover such impact
systematically.

The northern German airspace and ATC-sectors across the
English Channel were most significant in terms of ATFM
routing decisions. These airspaces are highly congested
during nominal demand conditions. The Identification of the
key parameters for ATFM routing decisions will be used in
future work for the development of Machine Learning
models for airspace demand and flight trajectory prediction.

In future work, trajectory parametrisation could be
performed using a grid instead of the ATC-sector network.
This could provide a more detailed insight into ATFM
routing decisions.
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