
Space application development at "The On-Orbit Servicing
and Autonomy" group at the DLR

Kurt Schwenk, Katharina Willburger, Eicke-Alexander Risse

Abstract

The On-Orbit Servicing and Autonomy group of the Space Flight Technology department con-
ducts applied research for future missions in the fields On-Orbit Servicing and On-board Data
Analysis and Real-time Information Systems.

In On-Orbit Servicing, new Guidance, Navigation and Control concepts based on optical nav-
igation are developed for the approach to non-cooperative targets like space debris or satellites
at the end of their life-cycle. In the field of On-board Data Analysis and Real-Time Information
Systems, the goal is the development of real-time on-board data processing systems that allow
accessing information obtained from sensor data within minutes after recording of the data. Both
of these applications require computationally expensive data processing that has to be executed
directly on board the satellite. This brings two major challenges:

The first challenge is to develop on-board computing systems powerful enough for these de-
manding applications. The second challenge is to lower the software system requirements to a
point where a future modern on-board computer can handle the tasks. The current generation of
on-board computer systems were meant for controlling a satellite and are far from being powerful
enough to support data intensive applications. Therefore the development of these applications is
done hand in hand with the development of a high performance on-board computing system within
a DLR cooperation.

In this article the difficulties, approaches and progress of space application development of our
group in the last year are presented.

1 INTRODUCTION

1.1 BACKGROUND

The On-Orbit Servicing and Autonomy group of
the Space Flight Technology department at the
German Aerospace Center (DLR) conducts ap-
plied research for on-board intelligence and au-
tonomy in the fields of On Orbit Servicing (OOS)
and Onboard Data Analysis and Real-Time Infor-
mation Systems (ODARIS) [1].
In the field of OOS, Guidance, Navigation and
Control (GNC)-concepts based on optical navi-
gation1 are developed. The objective is to gain
know-how in approaching non-cooperative tar-
gets like satellites at the end of their life-cycle,
or space debris [3]. With the European Prox-
imity Operations Simulator 2.0 (EPOS) [1], the
Rendezvous and Docking (RvD) process as well
as the developed GNC-methods are verified by
Hardware in the Loop (HIL) simulations.
Within the ODARIS section, the goal is the devel-

opment of concepts and prototypes for access-
ing real-time information from a satellite. The
main question tackled here is, how relevant in-
formation can be extracted from sensors or other
sources on a satellite and delivered to the user
within minutes after retrieval of the data. Impor-
tant applications in this regard are alarming and
real-time query services. In the last three years
the prototype system Autonomous real-time de-
tection of moving maritime objects (AMARO) was
developed and successfully tested on an airplane
campaign in 2018 [4]. One main feature of the
AMARO system is a real-time query service. An
example query is getting the list of all ships (posi-
tion, size etc.) that have been detected in the last
three minutes. The other feature is the alarming
service. For example, the system can be config-
ured on runtime to inform the user when a ship
was detected in a predetermined region.
The OOS as well as the AMARO system soft-
ware are currently developed for x86-64 Linux
workstations. However, on a future space mis-

1sensors currently used: optical cameras, Photonic Mixer Device (PMD) [2], LIDAR sensors

©2019 doi:10.25967/490112

Deutscher Luft- und Raumfahrtkongress 2019
DocumentID: 490112

1

https://doi.org/10.25967/490112


sion these applications have to run on space-
qualified hardware on-board the satellite. There-
fore our group is also heavily involved in the de-
velopment of a future high-performance on-board
space computer, primarily in application develop-
ment [5].

1.2 CHALLENGES

Making the OOS and ODARIS applications com-
patible for running on-board of a satellite comes
with three major challenges:

1. Computing performance

2. Reliability

3. Platform compatibility

First, the computing performance available on
the current generation of DLR small-medium
sized on-board computers that we target as car-
rier platform of our applications, is far from be-
ing sufficient. For example, a typical system may
be built on top of an LEON3 processor [6], run-
ning with less than 100 MHz and having 64 MiB
RAM available. This kind of systems are meant
for control and light computing tasks. They are
not sufficient for data processing tasks, like im-
age or video data analysis, which are part of our
applications.
Second, the applications have to be far more re-
liable than the laboratory versions, due to the
very restricted supportability of the system. Ap-
plications also have to be prepared for on-board
computer failures due to single event upsets and
alike. It may even be necessary to keep control
of the spacecraft while handling those events in
critical situations.
Third, the applications have to be platform com-
patible to the on-board computer (OBC) sys-
tem, both from the hardware and the software
perspective. From the hardware perspective
the application has to support the OBC target
computing architecture, which under normal cir-
cumstances differs essentially from the platform
used for developing the laboratory version of the
application. Also hardware interfaces to sys-
tem components used for the laboratory ver-
sion of the application may not be supported on
the on-board system. From the software per-
spective the application has to be compatible

with the on-board systems software and devel-
opment environment. Significant differences be-
tween the laboratory development environment
and the on-board computing environment con-
test the re-usability of already developed code.
Differences can be the Operating System (OS)
used, supported computing language, supported
build tools, availability of software libraries, in-
terfacing to external hardware and system re-
sources.

1.3 OBJECTIVES

Hereafter, an overview of the on-board applica-
tion development activities of DLR-OOS is pre-
sented. First, a short description of the applica-
tions currently in progress is given. Then it is
shown how the challenges described in section
1.2 are approached. In the end an outlook of re-
search topics planned in the future is presented.

2 APPLICATIONS

As stated in section 1, two applications are cur-
rently developed at DLR-OOS: the AMARO sys-
tem and the GNC system. This section explains
both applications in detail.

2.1 REAL-TIME ON-BOARD INFORMA-
TION SYSTEMS

In the last years a prototype of a real-time on-
board information system was developed [4]. Its
main features are analysing sensor data on-
board and allowing a user to query the data or get
an alarm when predefined events happen. It was
developed within the AMARO project at DLR. An
idea sketch can be seen in figure 1.

©2019

Deutscher Luft- und Raumfahrtkongress 2019

2



Figure 1: AMARO idea

Within a flight campaign 2018 over the North Sea
it was shown, that ships could be detected on
board, that a user could query information via di-
rect communication with the satellite and get the
information within three minutes after sending the
request [4]. Furthermore, it was shown that the
user could be informed automatically when a pre-
defined event happened.

The AMARO system consists of a camera, an
Automatic Identification System (AIS) receiver
[7], an Iridium satellite Internet of things (IOT)
communication device [8] and a x86-64 based
on-board computer. On the latter, a standard
openSUSE Linux distribution [9] was installed,
on top of which the AMARO system software
was executed. The AMARO system software is
mainly programmed in C++ [10], and its main
tasks were the execution of data analysis and
the communication with the ground 2. The sys-
tem software itself consists of several indepen-
dent working services communicating over a
database. An overview is shown in figure 2.

Figure 2: AMARO service architecture

The system handles intensive data processing
while being responsive and reliable. At the cur-
rent state a user can query data from the sys-
tem’s internal database by directly sending Struc-
tured Query Language (SQL) [11] requests via
email over the Iridium IOT service. Also for the
alarm service SQL requests are used, which are
executed periodically. In case of the result of the
query not being empty, the user is informed.

2.2 GNC-APPLICATION FOR DEBRIS-
REMOVAL & ON-ORBIT SERVICING

The rendezvous GNC application [12] controls
a chaser satellite’s approach towards a possi-
bly uncooperative target object of an OOS mis-
sion by processing the information from optical
2D and 3D sensors. Mainly dictated by the ca-
pabilities of the associated hardware-in-the-loop
environment EPOS [1], the GNC application fo-
cuses on the final approach beginning at roughly
20 meters up to a mating point close to the target.
In its current state, the rendezvous GNC sys-
tem is equipped with a Charge-Coupled Device
(CCD) mono-camera and a PMD 3D camera
[13], with the former serving as the primary nav-
igation sensor. An edge tracking algorithm cal-
culates the relative pose of the target with re-
spect to the chaser satellite from the CCD im-
age data. An Extended Kalman filter computes a
smoothed solution from the combined estimates
of CCD - and PMD - camera-based trackers. The
guidance function provides a smooth and contin-
uous trajectory assembled from a succession of
automated sub-trajectories. Finally, the position

2answering user requests and sending alarm messages

©2019

Deutscher Luft- und Raumfahrtkongress 2019

3



controller computes control forces from filter es-
timates and guidance trajectory.
In the future, GNC application development will
lead to more sensors, like a scanning LiDAR, and
more sophisticated pose initialization and track-
ing algorithms to increase robustness, reliability
and flexibility.
The GNC application is designed as decen-
tralized modular software in C++ to support
parallel and asynchronous as well as limited-
performance computer architectures. For exam-
ple, the Kalman filter processes input data with
time stamps, such that a considerable and vary-
ing delay, a typical property of non-deterministic
pose estimation algorithms in general, can be
handled robustly and elegantly. All its mod-
ules provide separate telemetry and telecom-
mand (TM/TC) capability via ESA Packet Utili-
sation Standard (PUS) [14] conform packets to
support control of the approach in a real multi-
mission control room at German Space Opera-
tions Center (GSOC).

Figure 3: Architecture of End-to-End Simulation
(E2E): blue: ground segment, green: software
simulation, orange: hardware-in-the-loop simula-
tion

This close-range approach is routinely performed
as part of the distributed End-to-End-Simulation
[3] shown in figure 3, which is developed by a
cooperation of four DLR Institutes at Oberpfaf-
fenhofen and Berlin, Germany. This setup al-
lows to simulate and test the most critical phases
of an OOS mission in a unique simulation envi-
ronment. E2E includes a full ground segment
and simulations of the communication path and
the space segment. The space segment com-
prises a satellite simulator, two hardware-in-the-
loop test facilities and the inspection, rendezvous

and robotic payloads. Future OOS and space
debris removal missions can use E2E, for exam-
ple for servicing of DLR compact satellites. Sin-
gle subsystems can be easily replaced due to its
decentralized and modular architecture. This al-
lows to integrate for example new sensors or al-
gorithms developed by partner institutes, indus-
try or universities.

3 ON-BOARD COMPUTING
PLATFORM

Migrating the applications described in section 2
to a space computing platform poses major chal-
lenges.

First, the space systems we target are small to
medium sized (experimental) satellites like Bi-
spectral InfraRed Optical System (BIROS) [15] or
Eu:CROPIS [16]. On these platforms, the avail-
able computing systems were designed to exe-
cute control tasks, and are not capable of han-
dling computationally intensive applications. Nei-
ther do they offer enough computing resources
nor do they support a system software stack that
is adequate for developing larger software appli-
cations.

To address these issues, DLR launched the
project Scalable On-board Computing for Space
Avionics (ScOSA) [17]. In this section, an
overview of the hardware- and software architec-
ture of this on-board computer is presented.

3.1 HARDWARE PLATFORM

ScOSA builds upon a distributed computing
architecture [18], where the on-board com-
puter consists of several independent comput-
ing nodes, which are connected via spacewire or
ethernet. Managing the nodes is done on a soft-
ware level [19]. A schema of the system can be
seen in figure 4.

©2019

Deutscher Luft- und Raumfahrtkongress 2019

4



RCN

IFN

HPN

Dev.

PC

HPN

HPNRCN

Et
h
e
rn

e
t

Other Subsystems

(e.g. ACS)
S
p
W

 R
t.

SpW Rt.

S
p
W

 R
t.

S
p
W

 R
t.

TM/TC

TM/TC

Figure 4: block diagram of the ScOSA system
base design and test-bed [17]

Three types of nodes are currently used, each
specialized for a different aspect: Reliable Com-
puting Node (RCN), High Performance Node
(HPN) and Interface Node (IFN). Reliable nodes
are very similar to classical on-board comput-
ers, using certificated space hardened hardware
components. The focus is reliability and en-
durance. The current version of the RCN uses
a radiation hardened LEON3 System on a chip
(SOC) accompanied by a flash-based Field Pro-
grammable Gate Array (FPGA). The RCN offers
a 50 MHz dual LEON3 processor [6], a 64 MiB er-
ror correcting RAM and non-volatile memories for
boot-images and arbitrary uses [17]. The RCNs
are primarily used for critical system manage-
ment and surveillance tasks, which are less com-
putationally demanding.
For executing computationally intensive tasks,
the HPNs are used. To achieve high comput-
ing performance and keep system costs down,
Commercial off-the-shelf (COTS) hardware is
used. At the moment a Xilinx-Zynq Z7020 SOC
[20] is used accompanied by 1 GiB of Random-
access memory (RAM) and 4 GiB flash-based
non-volatile memory for the operating system
and the application software. The dual core ARM
Cortex-A9@866 MHz CPU [21] of the Xilinx-Zynq
SOC offers significantly more performance than
the LEON3 used for the RCNs. Apart from this,
an FPGA is part of the Xilinx-Zync SOC, which
is intended to be used for implementing highly
computationally intensive tasks. Due to the na-
ture of a distributed system, it is possible to use
other kinds of high-performance nodes, like GPU
accelerators or in the future replace them with
modern, more performant hardware, without the
need of replacing the whole system.
For designing the applications we are currently

using the development board shown in figure
5, which consists of three HPNs. For software
development RCNs are not necessary, because
the HPNs can execute the system management
tasks, too. For connecting external components
and for controlling the system, standard Ethernet
is used.

Figure 5: development board consisting of 3
HPNs

For connecting with external components like
cameras IFNs are used. IFNs are specially
built for connecting with external components. A
bread-board version of an IFN is shown in figure
6.

Figure 6: Interface Node with 12 RS-422 con-
nectors, 4 space wire ports and an artix7 control
FPGA

3.2 SOFTWARE PLATFORM

In the next chapter an overview of the software
stack of an HPN is given, as this is the relevant
part for application developers. A graphical illus-
tration of the software stack is shown in figure 7.

©2019

Deutscher Luft- und Raumfahrtkongress 2019

5



HARDWARE

OS

MIDDLEWARE OS

Application

Figure 7: middleware based software stack of the
ScOSA system.

The software stack of the HPN supports Yocto
Linux and the RTEMS Real Time Operating Sys-
tem [22]. In this article we focus only on the
Yocto Linux software stack, as this is used for
the applications. Yocto Linux is a customizable
Linux distribution provided by the Yocto Project
[23]. Yocto Linux is specialized on embedded
platforms and supports a wide range of open
source libraries and tool. Since our applications
are Linux based, we can reuse a substantial por-
tion of our software for the on-board computing
versions. The ScOSA middleware is managing
the different nodes of the on-board computer and
is responsible for deploying the tasks on the dif-
ferent nodes, for inter-node communication, for
failure detection and recovery, for reconfiguration
and many other system aspects [19]. For pro-
gramming applications, the middleware offers a
data-flow driven Application Programming Inter-
face (API) which allows application developers to
take advantage of the distributed architecture of
the ScOSA system. A schema of a typical data
processing application can be found in figure 8.

DATA 
SOURCE

TASK

PROCESS A
TASK 

PROCESS A
TASK 

PROCESS A
TASK 

PROCESS B
TASK

PROCESS B
TASK 

PROCESS B
TASK 

DATA
SINK
TASK

Figure 8: data-flow schema of a typical applica-
tion, with the data source distributing the data to
three different execution paths, to speed up pro-
cessing.

The tasks can be distributed to different comput-
ing nodes, while the ScOSA middleware handles

the communication. One feature of the ScOSA
middleware is, that it can detect if a node is
failing, move the tasks on an other functional
node and restart them without stopping the ap-
plication. Furthermore, the application developer
can use the check-point feature of the ScOSA
framework, such that the interrupted tasks are
restarted by the framework with their last valid
state. More about application development for
the tasking framework can be found in [5] and
more details about architecture and features of
the ScOSA middleware in [19].

4 DEVELOPMENT METHODOL-
OGY

In this section our development methodology for
migrating the laboratory versions of our applica-
tions to the ScOSA on-board computing platform
is presented. Our migration process involves
several steps:

1. Porting the software from the laboratory
computing platform to the on-board com-
puting platform.

2. Integrating the applications in the on-board
computing software framework.

3. Optimizing the application performance.

4. Adding Fault Detection, Isolation and Re-
covery (FDIR) functionality to the applica-
tion.

The first step is porting the applications from
our laboratory computing platform to the on-
board computing platform. As stated in the sec-
tion 1.2, this may be a big issue, if the laboratory
platform is too distinct from on-board platform,
even leading to complete redevelopment of the
application. The applications presented in sec-
tion 2 are developed for x86-64 Linux, written
mostly in the C++ programming language [10]
using the CMake build system [24] and using
open source libraries as Boost [25], OpenCV [26]
and SQLite [27]. A major feature of the ScOSA
system is, that it supports the Poky Linux Distri-
bution as an OS. One important advantage of
using the Poky Linux Distribution is, that it of-
fers quite a complete collection of open source

©2019

Deutscher Luft- und Raumfahrtkongress 2019

6



libraries, programs and tools. All important li-
braries and programs used for the laboratory ver-
sion of the applications are available for the on-
board platform. Without changing a lot of code,
we were able to build the applications for the
ScOSA on-board system and to successfully run
them on one ScOSA HPN.

The second migration step is integrating the
application in the ScOSA software framework.
This is a necessary step for getting support
for starting and executing the applications on
satellite operation, getting access to external in-
terfaces and using the performance and FDIR
features of the ScOSA system. For integrat-
ing applications in the ScOSA framework, it of-
fers a C++ API. Nevertheless porting a free-
standing Linux application in a framework re-
quires some refactoring. We split the applica-
tions in a system-independent library part and an
system-dependent application part. The library
part contains all program logic and is indepen-
dent of the system API. The system-dependent
application part contains code parts for the ac-
cess of system resources and the execution of
the application. With this approach we were able
to build up a shared code base, which we use for
laboratory as for the on-board setup.

The third point is optimizing application per-
formance. The distributed computing architec-
ture of the ScOSA system is quite different from
the shared memory architecture of our applica-
tions. To be able to use more than one node of
the ScOSA system, the applications have to be
divided in smaller execution units, called tasks.
Tasks are only able to share data, by sending
and receiving messages from other tasks. In the
ScOSA framework the tasks are connected like
parts on an electric circuit, as illustrated in figure
8. Each task can be configured to run on one
of the HPNs of the ScOSA system. Communi-
cation and execution management is handled by
the ScOSA system software.

With both our applications based on a shared
memory architecture, quite a lot of work has to
be done to make them compatible to a data-flow
architecture. The OOS application is a paral-
lel application, where different threads commu-
nicate over a shared memory pool. The ODARIS
application is working similar, with the difference
that the different services are communicating by

using (shared) SQLite database files.
The last migration step is adding FDIR support
to the application. The ScOSA framework can
detect the failing of a computing node and it can
migrate the tasks executed on the failing node
to functioning nodes. For configuring the initial
state of a migrated node, the application can use
a checkpoint service. With the checkpoint ser-
vice, important status information of a task can
be continuously registered, which can then be
used for the initialization procedure of a migrated
task.
More details about developing applications for
the ScOSA platform can be found in [5].

5 RESULTS

In this section some results of our approach and
insights, regarding the space application devel-
opment of the group OOS is presented.
As noted in section 1.2 there are three major
challenges, that we have to handle, to being able
to migrate our applications, presented in section
2 to a on-board computing platform: Computing
performance, reliability and platform compatibil-
ity.
Let’s start with the computing performance.
The computing performance of the current gen-
eration of small-medium sized DLR satellites, we
target as carrier platform for our applications, is
not sufficient to handle our data processing ap-
plications. But with DLR’s progress in the devel-
opment of the next generation high performance
on-board computing platform ScOSA, we are at
a point, where we can start migrating our appli-
cations to an on-board platform. We were able to
migrate and execute the OOS and the ODARIS
applications to one ScOSA HPN. Since the com-
puting performance of one ScOSA HPN is about
10-100 times less compared to our workstation
laboratory PCs, we can execute the applications,
but the application performance is not sufficient
for operation yet. We could already demonstrate
a successful rendezvous for one depicted test
case, but the system is not yet able to handle
more difficult cases. For the OOS application
we are currently in the process of optimizing the
performance of the application. With the ScOSA
computing platform there are two starting points,

©2019

Deutscher Luft- und Raumfahrtkongress 2019

7



where we suppose that a significant increase of
the performance of our applications is possible:

1. multi-node support (distributed computing)

2. hardware acceleration (with FPGA)

Unfortunately these two options require a huge
amount of development effort. For the OOS ap-
plication we are currently in the process of adding
multi-node support. As the distributed computing
architecture of the ScOSA platform is quite differ-
ent from the shared memory architecture of the
laboratory version of the application we have to
heavily refactor the way how data is distributed
within the application. Currently we think that
it will also be necessary to accelerate some in-
tensive parts of the OOS application, by using
the FPGA available on the ScOSA HPNs. For
the ODARIS application computing performance
is not as critical, but if we want to be able to
analyse huge amount of sensor data (for exam-
ple multi-spectral image data) within a moderate
time span, we also have to face computing per-
formance. But currently we are still in the process
of migrating the application to the on-board plat-
form.
The second challenge is making the applications
reliable enough for space operation. There are
two levels we have to address concerning relia-
bility:

1. application reliability

2. system reliability

With application reliability we mean that the ap-
plication should be able to handle each situation
that can occur during a mission when the com-
puting system is operating regular. This means
that the application does not have any software
bug that effects the operability of the applica-
tion and that it is able to handle each scenario
which can occur. For both of our applications we
are currently working on enhancing the software
quality and the test coverage to a point, where
the occurrence of software bugs concerning the
operability of the mission is quite unlikely. The
harder point is to ensure that the application can
handle each scenario which can occur during a
mission, specially for the OOS application, as it is
system critical. The most critical point here is the
pose estimation of the target object. This is also

related to computing performance, as with higher
computing performance we are able to use more
reliably but also more computationally intensive
algorithms. Furthermore, we can increase the
sensor sample time and we can even use addi-
tional sensors for target identification and track-
ing observation. With system reliability we mean
that the system should even be reliable if the
computing system is performing irregular. This
happens for example if a computing node mal-
functions because of an radiation impact. For this
kind of problem the ScOSA system offers FDIR
features. Until now, we have not started to imple-
ment this features.

The last challenge is platform compatibility of
our applications. Our applications have to be
compatible with the on-board computing system.
With the current generation of DLR satellites this
would have been a big issue as they support only
real-time operation systems or specialized sys-
tems, which have a significantly different API as
the Linux architecture. This would have required
to write specialized versions of the applications
for the on-board system, which would have re-
quired the redevelopment of a huge amount of
the codebase. Specially, some software libraries
we are using, may not be supported by the
on-board platform. And last but not least, the
on-board version and the laboratory version do
not share code anymore, which would force us
to support and develop two systems in paral-
lel. But as stated in section 4 with the ScOSA
on-board computing system, supporting Yocto
Linux, we where able to migrate the laboratory
Linux applications to the ScOSA computing sys-
tem, nearly one to one. As stated in section
4 still large changes have to be done, to inte-
grate the applications in the ScOSA middleware
framework, due to the software architecture dif-
ferences. But with splitting the applications up
in an API-independent library part and an API-
dependent application part, we are able to share
most of the codebase with the laboratory ver-
sions. This means that we only have to sup-
port one version of the library part, which inhibits
most of the codebase. With that, for example
new features and bug fixes integrated in the lab-
oratory version, are immediately available for the
on-board version, too.

Altogether, with the modern system architecture

©2019

Deutscher Luft- und Raumfahrtkongress 2019

8



and the higher computing performance of the
ScOSA system, we were able to get a big step
closer towards a future on-board implementation
of our applications.

6 SUMMARY

This article gives a short overview over the space
application development we are conducting at
the DLR OOS group. The three main challenges
we face for on-board computing application de-
velopment are computing performance, reliabil-
ity, and platform compatibility. We are currently
working on two applications, an application for
"Guidance, Navigation and Control for On Or-
bit Servicing" and an "Onboard Data Analysis
and Real-Time Information Systems" application.
These applications require much more comput-
ing resources as available with the current gener-
ation of on-board computers used by the DLR. To
address this issue, DLR has started to develop
a reliable high performance on-board computer
platform, called ScOSA. For getting high perfor-
mance and reliability, the ScOSA system is us-
ing a distributed computing architecture in com-
bination with FPGA hardware acceleration. An
important feature of the ScOSA system for ap-
plication development, is the offering of a rather
complete Linux open source development stack.
With support of the Linux API and a rich set of
open-source libraries and tools, developing ap-
plications and deploying software is much more
simplified, relative to specialized on-board com-
puting operation systems. Linux laboratory appli-
cation versions can be migrated to the on-board
computing system bit by bit, performing follow-
ing steps: Porting the software to the on-board
computing platform, integrating the application in
the on-board computing software framework, op-
timizing the application performance and adding
FDIR functionality to the application. One im-
portant result is, that we were able to migrate
the applications from the laboratory version to
the ScOSA platform, with sharing a large portion
of the source code with the laboratory version
of the applications. One other result is, despite
the ScOSA system being a performant on-board
computing system out of the box, without opti-
mizing our applications for the ScOSA system,
the application performance is barely sufficient

for real-world scenarios yet. But with optimizing
the application for the distributed computing ar-
chitecture of the ScOSA system and with making
use of the hardware acceleration via the built-in
FPGA, we are confident that we can reach an
acceptable application performance.
As an overall conclusion, we think that we are on
the right track to bring our applications to space,
and that we have the tools and knowledge avail-
able to achieve this.

7 ACKNOWLEDGMENTS

A thanks to my colleagues Matthias Burri, Flo-
rian Rems, Heike Benninghoff and Michael Beer
whose comments and suggestions significantly
improved both clarity and precision of the paper.
Also thanks to the ScOSA project colleagues for
providing information and illustration material.

References

[1] Benninghoff, H., Rems, F., Risse, E.-A.,
and Mietner, C., “European proximity opera-
tions simulator 2.0 (epos) - a robotic-based
rendezvous and docking simulator,” Journal
of Large-Scale Research Facilities JLSRF
(April 2017).

[2] Klionovska, K., Benninghoff, H., and
Strobl, K. H., “Pmd camera- and hand-eye-
calibration for on-orbit servicing test scenar-
ios on the ground,” in [14th Symposium on
Advanced Space Technologies in Robotics
and Automation (ASTRA) ], (Juni 2017).

[3] Benninghoff, H., Rems, F., Risse, E., Brun-
ner, B., Stelzer, M., Krenn, R., Reiner, M.,
Stangl, C., and Gnat, M., “End-to-end simu-
lation and verification of gnc and robotic sys-
tems considering both space segment and
ground segment,” CEAS Space Journal 10,
535–553 (Dec 2018).

[4] Schwenk, K., Willburger, K., and Pless, S.,
“Amaro-autonomous real-time detection of
moving maritime objects: introducing a flight
experiment for an on-board ship detection
system,” (2017).

©2019

Deutscher Luft- und Raumfahrtkongress 2019

9



[5] Schwenk, K., Ulmer, M., and Peng, T.,
“Scosa: application development for a high-
performance space qualified onboard com-
puting platform,” in [Proc. SPIE 10792, High-
Performance Computing in Geoscience and
Remote Sensing VIII ], Proceedings of
SPIE VIII, SPIE Remote Sensing (Septem-
ber 2018).

[6] Cobham Gaisler AB, “LEON3 product
description.” https://www.gaisler.com/
index.php/products/processors/leon3
(2019).

[7] Wikipedia, “Automatic identification
system.” https://en.wikipedia.org/
wiki/Automatic_identification_system
(2019).

[8] Iridium Communications Inc., “Iot Products.”
https://www.iridium.com/iot-products
(2019).

[9] SUSE LLC., “Open Suse.” https://www.
opensuse.org (2019).

[10] Standard C++ Foundation, “The stan-
dard C++ foundation.” https://isocpp.org
(2019).

[11] Wikipedia, “Structured Query Language.”
https://en.wikipedia.org/wiki/SQL
(2019).

[12] Rems, F., Risse, E.-A., and Benninghoff, H.,
“Rendezvous GNC-system for autonomous
orbital servicing of uncooperative targets,”
in [Proceedings of the 10th International
ESA Conference on Guidance, Navigation
& Control Systems ], (2017).

[13] Klionovska, K., Ventura, J., Benninghoff,
H., and Huber, F., “Close range tracking
of an uncooperative target in a sequence
of photonic mixer device (PMD) images,”
Robotics 7(1) (2018).

[14] European Cooperation for Space Stan-
dardization, “Ecss-e-st-70-41c – telemetry
and telecommand packet utilization,” (Apr.
2016).

[15] DLR, “Mission Firebird.” https:
//www.dlr.de/dlr/desktopdefault.

aspx/tabid-10891/1596_read-17992/#/
gallery/23115 (2019).

[16] Schulze, D., Philpot, C., Morfill, G., Klein,
B., and Beck, T., “Food production in space
– operating a greenhouse in low earth orbit,”
in [SpaceOps 2016 ], (Juni 2016).

[17] Treudler, C. J., Benninghoff, H., Borchers,
K., Brunner, B., Cremer, J., Dumke, M.,
Gärtner, T., Höflinger, K. J., Lüdtke, D.,
Peng, T., Risse, E.-A., Schwenk, K., Stelzer,
M., Ulmer, M., Vellas, S., and Westerdorff,
K., “Scosa - scalable on-board computing
for space avionics,” in [IAC 2018 ], Pro-
ceedings of the International Astronautical
Congress, IAC (Oktober 2018).

[18] Lüdtke, D., Westerdorff, K., Stohlmann, K.,
Börner, A., Maibaum, O., Peng, T., Weps,
B., Fey, G., and Gerndt, A., “Obc-ng: To-
wards a reconfigurable on-board comput-
ing architecture for spacecraft,” in [2014
IEEE Aerospace Conference ], 1–13 (March
2014).

[19] Peng, T., Höflinger, K., Weps, B., Maibaum,
O., Schwenk, K., Lüdtke, D., and Gerndt, A.,
“A component-based middleware for a reli-
able distributed and reconfigurable space-
craft onboard computer,” in [35th Sym-
posium on Reliable Distributed Systems
(SRDS) ], Proceedings of the IEEE Sympo-
sium on Reliable Distributed Systems , 337–
342, IEEE (September 2016).

[20] Xilinx, “Zynq product description.”
https://www.xilinx.com/products/
silicon-devices/soc/zynq-7000.html
(2019).

[21] ARM Ltd., “Cortex a9 product descrip-
tion.” https://developer.arm.com/
ip-products/processors/cortex-a/
cortex-a9 (2019).

[22] OAR, “Rtems offical website.” http://www.
rtems.com (2019).

[23] Yocto Project, “The Yocto Project.” https:
//www.yoctoproject.org (2019).

[24] Kitware, “CMake.” http://www.cmake.org
(2019).

©2019

Deutscher Luft- und Raumfahrtkongress 2019

10

https://www.gaisler.com/index.php/products/processors/leon3
https://www.gaisler.com/index.php/products/processors/leon3
https://en.wikipedia.org/wiki/Automatic_identification_system
https://en.wikipedia.org/wiki/Automatic_identification_system
https://www.iridium.com/iot-products
https://www.opensuse.org
https://www.opensuse.org
https://isocpp.org
https://en.wikipedia.org/wiki/SQL
https://www.dlr.de/dlr/desktopdefault.aspx/tabid-10891/1596_read-17992/#/gallery/23115
https://www.dlr.de/dlr/desktopdefault.aspx/tabid-10891/1596_read-17992/#/gallery/23115
https://www.dlr.de/dlr/desktopdefault.aspx/tabid-10891/1596_read-17992/#/gallery/23115
https://www.dlr.de/dlr/desktopdefault.aspx/tabid-10891/1596_read-17992/#/gallery/23115
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
https://developer.arm.com/ip-products/processors/cortex-a/cortex-a9
https://developer.arm.com/ip-products/processors/cortex-a/cortex-a9
https://developer.arm.com/ip-products/processors/cortex-a/cortex-a9
http://www.rtems.com
http://www.rtems.com
https://www.yoctoproject.org
https://www.yoctoproject.org
http://www.cmake.org


[25] boost.org, “Boost C++ Libraries.” https://
boost.org (2019).

[26] OpenCV team, “OpenCV.” https:

//opencv.org (2019).

[27] SQLite Project, “SQLite.” https://sqlite.
org (2019).

©2019

Deutscher Luft- und Raumfahrtkongress 2019

11

https://boost.org
https://boost.org
https://opencv.org
https://opencv.org
https://sqlite.org
https://sqlite.org

	 Introduction
	 Background
	 Challenges
	 Objectives

	Applications
	 Real-time on-board information systems 
	 GNC-Application for Debris-Removal & On-Orbit Servicing 

	 On-board computing platform 
	 Hardware platform 
	 Software platform 

	 Development Methodology 
	Results
	Summary
	Acknowledgments

