DGLR-Publikationsdatenbank - Detailansicht
Autor(en):
A. Berquand, D. Dold
Zusammenfassung:
Launched in a New Space era, the space economy is experiencing rapid growth with an ever-increasing number of new commercial entrants. In this context, we present an approach based on Natural Language Processing (NLP) and Knowledge Graph Embedding (KGE) to model and analyse the socio-economic landscape of the European space sector. In this prototype study, we present the initial results obtained by extracting information from 3 databases containing information on R&D studies led at the European Space Agency (ESA), and on European companies. This information is merged in a semantically compatible way as a Knowledge Graph (KG). Combining NLP and KGE, we predict new links to complete and clean this KG, enabling novel insights into the integrated databases. The presented results demonstrate the potential of our approach for enhancing ecosystem monitoring, mapping existing capabilities, and identifying technology gaps. Although we obtain encouraging results, we also identify several challenges for adapting such an approach in production, to be solved in future studies.
Veranstaltung:
Deutscher Luft- und Raumfahrtkongress 2023, Stuttgart
Verlag, Ort:
Deutsche Gesellschaft für Luft- und Raumfahrt - Lilienthal-Oberth e.V., Bonn, 2023
Medientyp:
Conference Paper
Sprache:
englisch
Format:
21,0 x 29,7 cm, 7 Seiten
URN:
urn:nbn:de:101:1-2023111011564392229564
DOI:
10.25967/610139
Stichworte zum Inhalt:
Knowledge graphs, Representation learning
Verfügbarkeit:
Kommentar:
Zitierform:
Berquand, A.; Dold, D. (2023): Modelling the European Space Sector with Knowledge Graphs. Deutsche Gesellschaft für Luft- und Raumfahrt - Lilienthal-Oberth e.V.. (Text). https://doi.org/10.25967/610139. urn:nbn:de:101:1-2023111011564392229564.
Veröffentlicht am:
10.11.2023