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Abstract
Planetary rovers have proven to be invaluable assets within space exploration missions, providing profound insights and
expanding scientific knowledge. As the frontiers of space exploration continue to expand, there is a growing demand for
rovers with advanced capabilities and a higher degree of autonomy. A key aspect of future rover generations involves
their ability to autonomously manipulate objects in extraterrestrial environments, particularly in missions involving sample
collection, analysis, or return. However, this task presents significant challenges due to the unknown nature of objects
and the complex terrains encountered. To address these challenges, this paper investigates the potential of deep learning
techniques to enhance autonomous robotic grasping in extraterrestrial environments. The proposed approach introduces
an end-to-end grasp estimation system, enabling rovers equipped with robotic arms to autonomously execute grasping ac-
tions solely based on visual information provided by its on-board sensors. Transfer learning is employed, harnessing the
power of pre-trained deep learning models from computer vision applications and pre-existing public grasping datasets.
These models are then finetuned using a self-generated dataset containing objects relevant to manipulation tasks in space
exploration missions. To bridge the gap between space exploration and deep learning research, a pipeline is introduced
to automatically generate a large, labelled dataset of objects suitable for autonomous grasping in planetary exploration
missions. Additionally, a 3D planetary robot simulation environment is developed as the core platform for generating and
automatically labelling synthetic custom data, emulating conditions encountered in extraterrestrial environments. Prelim-
inary results demonstrate the promising ability of the system to successfully grasp novel objects based only on RGB-D
visual information, achieving a success rate of 85%. This approach enables future rovers equipped with human-like grasp-
ing abilities to operate without prior knowledge of target objects, while maintaining resource efficiency, thereby enhancing
autonomous on-board decision-making in space missions.
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NOMENCLATURE

Symbols

h Height of the grasping rectangle

µ Friction Coefficient

µk Kinetic Friction Coefficient

µs Static Friction Coefficient

Q1 First quartile

Q3 Third quartile

σ Activation Function

θ Orientation of the grasping rectangle

w Width of the grasping rectangle

(x, y) Centre of the grasping rectangle

Acronyms

AI Artificial Intelligence

ANN Artificial Neural Network

API Application Programming Interface

CAD Computer Aided Design

CNN Convolutional Neural Network

CPU Central Processing Unit

DOF Degrees of Freedom

ESA European Space Agency

GPU Graphics Processing Unit

GUI Graphical User Interface

ILSVRC ImageNet Large Scale Visual Recognition
Challenge

IoU Intersection over Union

IQR Interquartile Range

ML Machine Learning

MRCP Modular Rover Chassis Platform
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MSE Mean Squared Error

NASA National Aeronautics and Space Administration

NUMA Non-Uniform Memory Access

ReLU Rectified Linear Unit

RGB-D Red, Green, Blue and Depth

RGB Red, Green and Blue

RL Reinforcement Learning

RMSE Root Mean Squared Error

RMSProp Root Mean Squared Propagation

RNN Recurrent Neural Network

ROI Region Of Interest

SGD Stochastic Gradient Descent

STN Spatial Transformer Network

URDF Unified Robot Description Format

V-HACD Volumetric Hierarchical Approximate
Convex Decomposition

1. INTRODUCTION

The exploration of space has been revolutionised by the
deployment of planetary rovers, which have provided invalu-
able insights into previously inaccessible extraterrestrial
environments. Generations of mobile robotic systems
(rovers) such as Spirit, Opportunity, and Curiosity have
made remarkable achievements by exploring planetary sur-
faces, leading to groundbreaking discoveries that enhanced
knowledge gains in multidisciplinary science fields [1]. De-
spite their significant technological advancements, current
rover operations are still heavily reliant on human operators
due to their limited autonomous capabilities [2, 3]. As the
frontiers of space exploration continue to expand, future
missions face increasingly complex challenges. These
include the necessity to cover longer traversal distances,
navigate through extreme environments that are scientifi-
cally intriguing like crater slopes or lava tubes, employ more
sophisticated scientific instruments, and manage large
amounts of data. However, the vast distances between
Earth and remote exploration sites introduce significant
delays in transmitting commands and receiving data, which
reduce the time available for crucial mission tasks, thereby
restricting the rovers’ potential for exploration as well as
their ability to adapt to unforeseen situations. Therefore,
enhancing the autonomous capabilities of planetary rovers
becomes crucial in order to achieve the ambitious goals
of future space exploration missions. In particular, au-
tonomous grasping and object manipulation play a central
role, especially in the context of analyses and processing,
or even in complex scenarios like sample return missions
aimed at gathering valuable data from celestial bodies [4,5].
In such missions, planetary rovers equipped with robotic
arms must possess the capability to safely retrieve samples
and store them in secure containers for transportation back
to Earth. Furthermore, planetary rovers that are able to

autonomously grasp diverse objects and tools can perform
a wide range of tasks that extend beyond sample collection,
such as collecting objects of interest, manipulating complex
scientific instruments, executing assembly operations, as
well as performing maintenance and servicing tasks. How-
ever, developing efficient grasping methods that meet the
increasing demands for autonomy while effectively man-
aging onboard resources presents a significant challenge.
Traditional techniques for autonomous object manipulation
heavily rely on prior knowledge of the target object and
its properties, often necessitating the maintenance of a
database of offline pre-computed grasps for each object the
robot might encounter, which can be resource-intensive, as
the size of such a database grows exponentially with each
potential object. Moreover, the uncertain nature of extrater-
restrial environments introduces another layer of complexity
to the grasping task, which traditional approaches fail to
handle, as they lack the necessary generalisation capa-
bilities due to their reliance on known objects and specific
environmental conditions. As a result, there is a com-
pelling need for novel, resource-efficient object grasping
and manipulation methods that can effectively address the
uncertainties inherent to space exploration missions.
Deep learning-based approaches have emerged as a
promising alternative to traditional grasping methods in the
robotics community. These approaches enable robots to
learn robust and generalisable behaviours, which holds
great promise for enhancing the effectiveness of robotic
grasping in extraterrestrial environments. Despite the re-
cent success of deep learning in robotics, its application in
space robotics is still in its early stages. As the next phase
of the Mars Sample Return Program approaches, involving
the retrieval of samples collected by Perseverance from the
Martian surface, recent studies [6–11] have demonstrated
the potential of deep learning techniques for enhancing
the sample retrieval process, leading to a more efficient
and precise sample collection. While the focus of these
studies has been on learning partial components of the
robotic grasping pipeline, such as object localisation or
pose estimation, a comprehensive approach to learning the
complete manipulation pipeline in an end-to-end manner
is yet to be explored. This paper aims to build upon this
previous work and presents an end-to-end grasp estimation
system by applying deep learning techniques to the task of
vision-based robotic grasping in extraterrestrial settings.
Previous work at the Space Robotics Lab at the University
of Stuttgart put strong emphasis on investigating space
exploration technologies and developing technical solu-
tions for future surface mission applications. Within this
context, a Modular Rover Chassis Platform (MRCP) was
developed for various robotic technology demonstration
scenarios. The MRCP also supports model payloads such
as 5-DOF robotic arms and deployable camera masts for
object detection [12, 13]. The robotic arms, developed
within interdisciplinary research projects, linking industry,
research and education, demonstrated their ability to grasp
and store sample tubes in a designated sample dispenser
on the rover, as well as secondary surface object. However,
to effectively enhance the technologies and capabilities
required for future surface exploration missions, a higher
level of autonomy is essential for the rover to autonomously
identify, collect, and store samples. Continual research
work in the field of space robotic exploration technologies
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at the Space Robotics Lab opened up the research field of
deep learning methods for autonomous grasping technolo-
gies in space applications. Within this context, this paper
shall describe and reflect on five major developments of the
ongoing research.
• Development of a resource-efficient end-to-end grasp
estimation system: the system is designed to allow rovers
equipped with a robotic arm to learn grasping based solely
on visual information acquired by the sensors on-board.
This is achieved by using deep learning techniques to train
the system to recognise objects and determine the best
way to grasp them. The computationally intensive training
process will be conducted on Earth, and once trained,
the resulting models can be used in conjunction with the
sensors on-board to accurately identify objects and infer
the best grasp configuration.
• Application of transfer learning with off-the-shelf pre-
trained deep learning models: due to the lack of publicly
available labelled datasets relevant to space exploration
missions, the study applies transfer learning. This involves
using pre-trained deep learning models, which are then
finetuned using a self-generated dataset containing ob-
jects relevant to manipulation tasks in space exploration
missions.
• Generation of a labelled dataset of objects suitable for au-
tonomous grasping in planetary exploration missions: the
study includes the development of a pipeline for automati-
cally generating a large, labelled dataset. This dataset in-
cludes objects that are suitable for autonomous grasping in
the context of planetary exploration missions.
• Development of a 3D planetary robot simulation environ-
ment: the study involves the creation of a 3D planetary robot
simulation environment, which serves as the core platform
for generating and automatically labelling synthetic custom
data.
A visionary motivation for this approach is that future rovers,
equipped with human-like grasping abilities would be able
to operate without prior knowledge of target objects, while
maintaining resource-efficiency. Furthermore, the devel-
oped platform lays the fundamentals for further research
and development in the field of autonomous robotic grasp-
ing and object manipulation in extraterrestrial environments,
providing valuable contributions for autonomous on-board
decision-making in space missions.
The following sections will provide a detailed examination
of the methodology, results, and implications of this study.
The paper is structured as follows: Section 2 provides an
overview of the theoretical foundations of deep learning and
robotic grasping. Section 3 describes the methodology used
in this study and discusses its key findings. Finally, Section
4 summarises the results and outlines future research direc-
tions.

2. THEORETICAL BACKGROUND

This section introduces the basic concepts of deep learning
and provides an overview of the robotic grasping problem,
aiming to provide a reference for notations and definitions
that were used and adapted for elaboration of this study.

2.1. Deep Learning

2.1.1. Introduction to Artificial Neural Networks

Recent advancements in computational power and data
availability have led to the emergence of deep learning, a
subfield of machine learning (ML) that has revolutionised
the field of artificial intelligence (AI). Deep learning has
outperformed traditional ML algorithms in fields such as
robotics, computer vision, and natural language process-
ing [14, 15], and in some cases, even surpassed human
performance [16]. Deep learning involves using Artificial
Neural Networks (ANNs), which are computational models
inspired by biological neural networks. ANNs can learn
hierarchical representations and complex mappings from
large amounts of data, without relying on explicit human
instructions. ANNs are powerful tools that can approximate
any continuous function to a high degree of accuracy
with enough neurons [17]. Therefore, ANNs are widely
recognised as universal function approximators.
Feed-forward neural networks are a fundamental type of
ANN architectures [16]. This architecture consists of an
input layer, one or more hidden layers, and an output layer.
As shown in Figure 1, the input vector (xi)1,...,n flows
through the hidden layers to produce a predicted output
vector (ŷi)1,...,n in the output layer. ANNs can be shallow or
deep depending on the number of hidden layers. Deeper
ANNs have more representational power, making them
better suited for solving complex problems. The fundamen-
tal building block of a feed-forward neural network, also
referred to as perceptron [16], is illustrated in Figure 1. The
perceptron consists of a single computational layer, where
the input values are fed into a single artificial neuron that
processes them to generate the output. Inspired by the
inner workings of human brain neurons, each input value
received by the perceptron xi is first multiplied by a corre-
sponding weight value wi. To account for the invariant part
of the prediction that doesn’t depend on the input values,
a bias term b is added to the sum of the weighted inputs.
The resulting quantity is then passed through an activation
function σ, ultimately producing the neuron’s output.

Figure 1. Typical structure of a Feed-forward Neural Network

2.1.2. Training Artificial Neural Networks

The training of Artificial Neural Networks (ANNs) is a com-
plex process that incorporates several key steps. At its core,
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training involves using the input data to obtain a prediction
from the network and then iteratively adjusting the weights
and biases of the neurons to improve the prediction accu-
racy.
Forward Propagation: in this initial training phase, an input
vector is introduced into the network, initiating a series of se-
quential computations across each layer, where the network
computes the output of each layer, using the current weights
and biases. Upon reaching the final layer, the output value
is computed, representing the ANN’s prediction for the given
input.
Loss Function: following the forward propagation phase,
a predicted output is generated for a specific input vector.
In order to evaluate the accuracy of this prediction, a loss
function is computed. This function quantifies the discrep-
ancy between the predicted output of the neural network and
the actual target value from the training data.
Back-Propagation: this phase primarily focuses on com-
puting the gradient of the loss function with respect to each
weight across the network, starting from the output layer and
moving backward through the network’s layers. Using these
gradients, standard optimisation techniques are employed
to adjust the weights, aiming to minimise the overall loss.
Optimisation: the process of training neural networks is
fundamentally an optimisation task, where the optimisation
objective is determined by the loss function. During train-
ing, the primary goal is to adjust the network’s parameters,
mainly its weights and biases, in a way that minimises the
loss function. Gradient descent-based optimisation algo-
rithms [18], such as Stochastic Gradient Descent (SGD),
Adam, and RMSProp, are the most commonly used opti-
misation algorithms in neural network training. These algo-
rithms operate by iteratively adjusting the model’s parame-
ters in the direction of the steepest descent of the loss func-
tion, aiming to find a local or global minimum that ensures
optimal network performance.
While the process of training ANNs as outlined above might
seem straightforward, it is important to emphasise the
inherent complexity of this optimisation task due to the high
dimensionality of the parameter space and the potential for
complex, non-convex loss functions. Therefore, achieving
optimal performance during training presents significant
challenges.
Underfitting and Overfitting: underfitting occurs when the
model is too simplistic, failing to model and learn the un-
derlying patterns in the data. Such models often have poor
performance due to their limited complexity. On the other
hand, overfitting arises when the network is too complex and
models the training data, including its noise and outliers, too
well, resulting in a lack of generalisation. When presented
with new data, the network tends to perform poorly. In both
cases, the predictive accuracy of the model is compromised.
Therefore, it is crucial to have a balanced model that can
capture the patterns in the data without sacrificing its abil-
ity to generalise. In order to avoid overfitting, regularisation
methods [19] are often employed, such as L1 and L2 regular-
isation, or dropout, to reduce the model’s complexity. While
L1 and L2 regularisation add a penalty term to the loss func-
tion, dropout, on the other hand, randomly drops out neu-
rons during training, forcing the model to be more robust.
Additionally, techniques such as early stopping can help to
determine the optimal number of epochs needed to train the
model without overfitting. This is achieved by evaluating

the model’s performance on unseen data, using a valida-
tion set that is distinct from the training data. By monitoring
the model’s validation performance during training, overfit-
ting can be prevented by selecting the model that achieves
the best generalisation performance on the validation set.
Vanishing and Exploding Gradient: the backpropagation
algorithm, responsible for updating the weights in a neu-
ral network, relies on the chain rule to compute gradients.
However, as these gradients propagate backwards through
the network, they may diminish to the point where they be-
come very small, almost zero. This phenomenon, referred
to as vanishing gradient, causes the earlier layers of the
network to receive minimal updates, which can hinder the
learning process. On the other hand, exploding gradients
occur when gradients amplify as they propagate through the
network layers, becoming excessively large. This results in
overly aggressive weight updates that may cause the model
to oscillate or diverge, which can destabilise the training pro-
cess. To address these issues, various techniques can be
used, such as using an adaptive learning rate to stabilise
the gradient descent process. Additionally, using batch nor-
malisation can help stabilise the gradient descent process
by normalising the inputs to each layer. The selection of an
appropriate activation function is also crucial. For instance,
the vanishing gradient issue is often associated with activa-
tion functions like Sigmoid, which have bounded derivatives
that can become very small for large input values. However,
there are alternative activation functions that can be used to
mitigate this issue, such as the rectified linear (ReLU) ac-
tivation function and its variants, which have proven to be
more robust against the vanishing gradient problem due to
their larger derivatives.
Hyperparameters Tuning: while the model’s internal
parameters are adjusted during training, hyperparameters
are set before training begins and remain constant through-
out. Common hyperparameters include the learning rate,
number of hidden layers, and batch size. Finding the op-
timal set of hyperparameters can significantly improve the
model’s accuracy, but it can be computationally intensive
due to the extensive search over a large parameter space.
Techniques for hyperparameter tuning include manual
tuning, grid search, random search , and Bayesian opti-
misation. Grid search and random search are automated
techniques that evaluate the model’s performance on a
pre-defined grid of hyperparameters. Bayesian optimisation
is a more advanced technique that models the model’s
performance as a function of the hyperparameters and
uses this model to guide the search towards the optimal set
of hyperparameters.

2.1.3. Convolutional Neural Networks

By emulating the hierarchical structure of the visual cor-
tex [20], Convolutional Neural Networks (CNNs) were
developed to identify objects and patterns in images. CNNs
have revolutionised the field of computer vision, enabling
machines to perform tasks that were previously considered
beyond their capabilities, such as image classification [21],
object detection [22], and semantic segmentation [23].
CNNs have achieved unprecedented success in image
classification, outperforming transitional computer vision
techniques and even surpassing human capabilities [24].
This success is mainly attributed to their ability to process
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image data while preserving its spatial structure, unlike
feed-forward neural networks that flatten image data into a
one-dimensional vector, ignoring any spatial relationships
between the pixels.
Figure 2 displays the basic architecture of CNNs, which typ-
ically consists of convolution, pooling, and fully connected
layers. The convolution and pooling layers are designed to
extract hierarchical features from the input image data, start-
ing with the detection of low-level features such as edges,
lines, and curves. As these features are passed from one
layer to the next, they are combined to form increasingly
complex higher-level features, allowing the network to iden-
tify more complex patterns and structures in the image data.
The extracted feature maps of the final convolution or pool-
ing layer are then flattened into a one-dimensional vector
and passed to a set of fully connected layers. These lay-
ers are responsible for mapping the extracted features to
the application-specific outputs of the network, such as the
probabilities of each class in image classification tasks.

Figure 2. Typical structure of a Convolutional Neural Network

In recent years, several well-known CNN architectures
have been developed for image recognition tasks, achiev-
ing state-of-the-art results on the ImageNet dataset.
AlexNet [25] was the first CNN to win the ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) [26]. VG-
GNet [27] demonstrated that increasing the depth of neural
networks can improve their performance, while Incep-
tion [28] introduced the inception module, which integrates
a network-in-network design to add depth and width while
preserving computational efficiency. Introduced in 2015,
ResNet [29] distinguished itself by achieving an order of
magnitude more layers than prior architectures thanks to
the introduction of skip connections to address the problem
of vanishing gradients, which had been a major obstacle in
training very deep neural networks. Winning the ILSVRC
competition in 2015, ResNet was the first deep learn-
ing model to achieve human-level performance in image
recognition tasks.

2.1.4. Transfer Learning

Transfer learning is a widely used technique in machine
learning that modifies a pre-trained model to address new
tasks without requiring training from scratch. By leveraging
the foundational knowledge obtained during the primary
training phase, transfer learning allows the model to adapt
to new challenges and tasks with minimal additional train-
ing. This approach can save valuable time and resources,
especially in cases where a large amount of labelled data
may not be accessible for the new task. CNNs pre-trained
on extensive datasets like ImageNet [30] are particularly
well-suited for transfer learning. Once trained, such net-

works can process any image dataset, as the early layers
are responsible for extracting general features from im-
ages, which are useful for a variety of tasks beyond image
classification. By replacing or finetuning the last layers of
the network, which are more task-specific and responsible
for making the final predictions, the pre-trained network
can be adapted to the new task with less data and time
than training from scratch, while still leveraging the general
features learned from the original dataset.

2.2. Robotic Grasping

2.2.1. The Mechanics of Grasping

Grasping is one of the most fundamental capabilities in
robotics, as it enables robots to interact with objects in
their environment. To design effective grasping strategies,
a deep understanding of the underlying mechanics is
essential [31], including the role of friction, as it affects
a robot’s ability to securely hold an object and prevent it
from slipping or dropping. The Coulomb friction model is
a basic framework for understanding the frictional interac-
tions between two solid surfaces. According to this model,
the frictional force, which is the force resisting the motion
between two surfaces in contact, is directly proportional
to the normal force pressing them together, with the factor
of proportionality being the friction coefficient µ and the
direction of this frictional force always opposing potential
or actual motion. Within this model, friction is categorised
into two main types: static and kinetic friction [32]. Static
friction is the force that prevents an object from immediately
moving when a force is applied to it. This resistance ad-
justs to match the applied force, up to a certain threshold,
which is determined by the product of the coefficient of
static friction µs and the normal force. Once the applied
force exceeds this value, the object begins to move and
kinetic friction comes into play. Unlike static friction, kinetic
friction has a constant magnitude, given by the product of
the coefficient of kinetic friction µk and the normal force.
Typically, µk is lower than µs, meaning that less force is
required to maintain an object’s motion than to initiate it.
Another fundamental concept is the frictional cone, which
describes the range of forces at a contact point. In a robotic
grasping scenario, where a gripper’s fingertip comes into
contact with an object, the primary force pressing these
surfaces together is the normal force. However, friction
introduces additional forces that can act tangentially to this
contact point. These tangential forces, when visualised in
relation to the normal force, form the frictional cone, which
essentially represents all permissible forces that can be
exerted to an object without causing it to slip.

2.2.2. Robotic Grasping Methods

This section provides an overview of methods used in
robotic grasping, with a particular focus on planar grasping
techniques using a parallel-jaw grippers, which are relevant
to this paper.
Foundational robotic grasping approaches include analyti-
cal techniques [33], which rely on mathematical and physi-
cal modeling and require prior knowledge of the geometric
properties of objects being grasped. Over time, the research
community has shifted towards data-driven techniques [34],
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focusing on learning from real or simulated data to predict
effective grasps.
Deep learning-based methods have revolutionised the field
of robotic grasping, enabling the development of more
effective grasping systems, by learning directly from raw
sensor data. This shift towards deep learning for grasping
was enhanced by the availability of large publicly acces-
sible datasets, which can be used to train and evaluate
deep learning models. The following provides an overview
of some datasets used for parallel-jaw grasping that are
particularly relevant to this study.
Cornell Grasp Dataset [35]: developed in 2010 by re-
searchers at Cornell University, this dataset is widely used
for robotic grasping, containing a total of 885 real RGB-D
images of 240 different objects as well as 8019 hand-
labelled grasp rectangles.
Jacquard Dataset [36]: another popular dataset for robotic
grasping is the Jacquard grasping dataset, which contains
54,000 RGB-D images of 11,000 objects, along with their
objects’ segmentation masks and over 1 million annotations
of successful grasps from simulated attempts.
GraspNet 1 Billion [37]: introduced in 2020, this dataset is
currently the largest dataset available for robotic grasping,
providing over 1 billion annotated grasps for more than
95,000 real RGB-D images. Unlike the two other datasets
that only cover planar grasps, GraspNet 1 Billion is known
for its comprehensive grasp annotations, which include
6-DOF grasps.
Based on their output type, deep learning-based grasp-
ing methods can be classified into two main cate-
gories: classification-based and regression-based. While
classification-based methods aim to classify input data into
pre-defined categories, regression-based methods aim to
predict a numerical value based on input data.
Classification-based methods: Lenz et al. [38] were
among the first to apply deep learning to the problem of
robotic grasping. Eliminating the need for manual features
engineering, the authors introduce a two-step cascaded
system, where the first network generates candidate grasps,
and the second network evaluates and ranks them. Pinto
et. [39] used a CNN-based classifier to evaluate each
image patch, which represents a potential grasp-oriented
rectangle, for its likelihood of being a successful grasp
location. Using multiple-stage spatial transformer networks
(STN), Park and Chun [40] introduced a novel classification-
based approach for robotic grasp detection, which allowed
for partial observation of intermediate steps in the grasp
detection process, making the model more transparent and
interpretable.
Regression-based methods: Redmon et al. [41] intro-
duced a real-time approach for robotic grasp detection of
novel objects using CNNs, specifically AlexNet for features
extraction. Their single-stage regression-based approach
enables the prediction of grasping rectangles directly
from RGB-D images, eliminating the need for standard
sliding window or region proposal techniques. Evaluated
on the Cornell Grasp Detection Dataset, this approach
achieved an accuracy of 88%. In a related study, Kumra
and Kanan [42] used a deeper neural network architecture,
namely ResNet50, for features extraction, achieving a
higher accuracy of 89.21% on the Cornell Grasp Dataset.
Focusing on multi-modal fusion, Zhang et al. [43] propose
a CNN-based approach that combines RGB features and

depth features to enhance grasp detection accuracy. In-
stead of predicting the grasp parameters for the entire
image, some methods use a Region of Interest (ROI)-based
or pixel-wise approach, which focuses on specific regions
or pixels within the image. Once the ROIs are identified,
the grasp parameters are predicted based on the fea-
tures extracted from these ROIs. Applying this approach,
Zhang et al. [4] achieved impressive success rates of
92.5% and 83.8% in single-object and multi-object scenes,
respectively.
Reinforcement learning (RL) techniques are gaining pop-
ularity in the field of robotic grasping [44]. Using this ap-
proach, robots can learn effective grasping policies through
trial and error. By receiving feedback from their interactions
with the environment, robots are also able to improve their
performance over time.

3. METHODOLOGY

This section outlines the methodology used in this study
starting with the problem statement, followed by describing
the custom dataset generation pipeline, and concluding with
the training procedure.

3.1. Problem Statement

3.1.1. Previous Work at the Space Robotics Lab

This study builds upon prior research conducted by the
Space Robotics Lab at the University of Stuttgart. The lab
has significantly contributed to the field of space robotics
through various projects. These include designing and
operating miniaturised robotic systems for space explo-
ration. In a cooperative technology development project,
the Nanokhod Microrover is prepared for a long-term Lunar
Surface Application [45]. A further focus of the lab is
developing sensory components and software to facilitate
autonomous operation of such systems. One of the lab’s
technology development platform is the Modular Rover
Chassis Platform (MRCP) [12, 13], which serves as the
basis for this study. The MRCP, a reconfigurable platform
designed for adaptability and superior locomotion perfor-
mance, is equipped with modular interfaces that facilitate
integration of additional subsystems and payloads.
Within an interdisciplinary education program, several in-
house developed robotic subsystems were successfully in-
tegrated and operated into the MRCP [46]. Relevant for this
study, are a 5-DOF robotic arm and a 2-DOF camera mast,
which expand the platform’s capabilities to perform complex
tasks such as sample collection and instrument handling in
space environments. The MRCP’s capabilities were demon-
strated during a sample return challenge, where the platform
showed promising results in terms of its performance in col-
lecting samples and storing them in a dispenser, as depicted
in Figure 3. However, as the first technology demonstrator,
the current control architecture of the robotic arm is not de-
veloped for fully autonomous operation. Therefore, through-
out the experiments, the arm was controlled manually.

3.1.2. Proposed Approach

This study aims to improve the capabilities of robotic sys-
tems by enabling it to perform grasping tasks autonomously
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Figure 3. Overview of the sample return challenge conducted at the
Space Robotics Lab of the University of Stuttgart using
the Modular Rover Chassis Platform (MRCP) [47]

using deep learning algorithms while taking the limited re-
sources available for space systems into account. Auton-
omy is a crucial capability in space robotics as it allows for
efficient use of resources, including time, power, and cost
savings, while also providing higher scientific returns, partic-
ularly in advanced mission scenarios where real-time tele-
operation may be inefficient or unreliable. The study intro-
duces a resource-efficient end-to-end grasp estimation sys-
tem, designed for rovers equipped with a robotic arm with
a parallel gripper. By implementing a new framework, this
study aims to lay the groundwork for future innovations in
autonomous grasping under extraterrestrial conditions.
Existing robotic systems often struggle in uncertain and un-
known environments, necessitating an approach that can
handle novel objects. To this end, the proposed system is
trained using deep learning techniques, enabling the rover to
identify and grasp objects autonomously based solely on the
visual information provided by its onboard sensors, thereby
eliminating the need for any prior information about the ob-
jects being grasped. To ensure the system’s resource effi-
ciency, the computationally intensive training process is con-
ducted on Earth. Once trained, the resulting models can
be used in combination with the sensors on-board to accu-
rately identify objects and infer the best grasp configuration.
Once the grasp estimation is completed, conventional in-
verse kinematics methods can be employed to execute the
computed grasps. The entire process is shown in Figure 4.
While deep learning techniques have proved their efficiency
in terrestrial grasping tasks, applying them to extraterrestrial
environments is limited by the lack of publicly available,
labelled grasping datasets containing objects relevant to
space missions. To address this challenge, this study
proposes the use of transfer learning, to exploit off-the-
shelf pre-trained CNNs from computer vision applications.
These CNNs, having been previously trained on large-scale
datasets such as ImageNet [30], have acquired the ability to
recognise a wide range of objects with high accuracy, thus
developing essential capabilities such as feature extraction
and pattern recognition from images. Due to their hierar-
chical learning process, these models are able to identify
lower-level features such as edges, textures, and shapes in
the early convolutional layers, and higher-level features like
object classes in the deeper layers.
To adapt these models to the task of robotic grasping, the
first layers, responsible for learning universal features, are

(a) Get visual data (b) RGB image of the target object,
used as input to the CNN

(c) Grasp estimation using the offline
trained CNN

(d) Grasp execution

Figure 4. Illustration of the proposed approach for the online sample
collection process

retained, while the last layers are replaced with new ones
dedicated to learning the grasping task. These new layers
use the low-level features learned by the model’s initial con-
volutional layers to infer the optimal grasp rectangles based
on the input RGB image. The next stage involves training
the adapted models using publicly available robotic grasping
datasets. This process provides the models with a founda-
tional understanding of the grasping task, by allowing them
to gain preliminary experience with objects with a wide vari-
ety of shapes, sizes, and textures, thereby enhancing their
ability to grasp novel objects. These models are then fine-
tuned using a self-generated dataset containing objects rel-
evant to manipulation tasks in space exploration missions.
This process further refines the grasping abilities of the mod-
els, ensuring their efficiency in handling objects likely to be
encountered in extraterrestrial environments. This training
procedure in shown in Figure 5 and is further described in
Section 3.3.
To bridge the gap between space exploration and deep
learning research, this study also proposes a pipeline to
automatically generate a large, labelled dataset of objects
suitable for the task of autonomous grasping in planetary
exploration missions. The dataset contains objects that
the rover is likely to encounter in an extraterrestrial envi-
ronment, such as sample tubes critical for sample return
missions, and maintenance tools required for maintenance
and servicing tasks. A 3D planetary robot simulation
environment was developed as a platform for generating
and automatically labelling synthetic custom data. This
environment, taking extraterrestrial factors into account,
including aspects such as lighting, gravity, and terrain, can
also be used to evaluate the performance of the trained
deep learning models by executing the grasps generated
by these models in a simulated planetary setting.

3.1.3. Grasp Representation

This research primarily focuses on planar grasping due to
the abundance of public datasets available for this prob-
lem. Moreover, restricting the gripper movements to a
two-dimensional plane considerably reduces the complexity
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(a) Load pre-trained CNN from computer vision applications

(b) Pre-train CNN using publicly available grasping datasets

(c) Finetune CNN using self- generated custom dataset

Figure 5. Illustration of the training procedure for an end-to-end
grasp estimation system

of the problem, thereby enabling a more efficient training
process. Nevertheless, the proposed dataset generation
pipeline is capable of generating data for both planar and 6-
DOF grasping scenarios, allowing for the future expansion
of this research into more complex grasping settings.
In this paper, the task of robotic grasping is addressed as
a regression problem, where the aim is to identify a grasp-
ing rectangle within the image plane, representing the opti-
mal grasp pose for a given object, as illustrated in Figure 6.
The grasping rectangle is characterised by its centre (x, y),
width w and height h in image coordinates, as well as its ori-
entation θ. This 5-dimensional grasp rectangle, introduced
by [35] serves as a compact representation of the full 7-
dimensional parallel-jaw gripper’s configuration used by the
robot to perform a grasp and consisting of the 3D position,
3D orientation, as well as the opening width of the gripper.
To obtain the 3D position, the centre of the grasping rectan-
gle can be used along with the depth information obtained
from the RGB-D data on-board to compute the grasp depth
or the z-position of the gripper. The 3D orientation is de-
termined by the three Euler angles, but for planar or 4-DOF
grasping, certain gripper movements are restricted. As the
gripper approaches objects from above, two orientation an-
gles are set to zero, leaving only the rotation angle around
the z-axis θ. Finally, the width of the rectangle is used to
compute the gripper’s opening width.

3.2. Custom Dataset Generation

3.2.1. Dataset Creation Techniques

Deep learning approaches rely heavily on the concept of
data-driven learning, which requires a significant amount of
high-quality labelled data to train deep learning models. In
recent years, several large labelled grasping datasets have
become publicly available [35–37], primarily focusing on ter-

(a) (b)

Figure 6. Illustration of the grasp representation g = (x, y, w, h, θ)
in the 3D simulation environment (a) and in the image
plane (b)

restrial robotics applications and containing objects such as
tools, office supplies, and household items. However, these
objects are not representative of those encountered by a
rover in an extraterrestrial planetary environment, making
them less suitable for space robotics applications. To ad-
dress this limitation, it is essential to create a more appropri-
ate dataset that includes a diverse range of objects relevant
to planetary exploration missions. While generating images
of objects of interest is relatively straightforward, the chal-
lenge lies in accurately labelling these images, which can be
achieved through one of the following three techniques [36].
Manual labelling: this technique relies on human exper-
tise and involves human annotators manually and marking
grasping rectangles on images, representing potential ways
to grasp the object. While this approach benefits from hu-
man intuition about object properties and grasp dynamics, it
can be time-consuming. As the variety of objects increases,
the manual approach becomes less efficient for creating a
comprehensive dataset, which limits the scalability of the
process. Furthermore, the lack of a unified standard for de-
termining optimal grasp configurations can lead to inconsis-
tencies among annotators who may have different opinions
of optimal grasps, resulting in discrepancies in dataset qual-
ity.
Real-robot experiments: this approach involves using a
physical robot to attempt grasping real objects in various
ways. Successful attempts are added to the dataset, re-
sulting in an accurate representation of the complexities of
the real world. The resulting dataset provides precise data
that takes into account the challenges and uncertainties in-
herent in real-world situations. However, creating a com-
prehensive dataset requires significant resources, including
various objects and multiple robots. Additionally, the contin-
uous operation of robots can lead to increased wear, result-
ing in higher maintenance costs and potential operational
downtime, making it time-consuming and expensive. Fur-
thermore, human intervention may still be needed to deter-
mine whether a grasp attempt is successful or not, as the
robot’s sensors might not be able to accurately evaluate the
stability and effectiveness of the grasp.
Simulation-based labelling: simulation-based techniques
are not only efficient, but also cost-effective for gener-
ating large datasets for robotic grasping without human
intervention. These techniques use computer models of
various objects with different shapes and sizes, which can
be integrated into a simulated environment where a virtual
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robot attempts to grasp them. Successful grasps can then
be recorded and used to train deep learning models. This
approach offers great scalability and flexibility, allowing
researchers to generate large-scale datasets with a wide
range of variables that can be expanded as needed, which
would be time-consuming and resource-intensive to achieve
through manual labelling or real-robot experiments. The
Jacquard dataset [36] provides a great example of the
potential of simulation-based techniques, containing over
50,000 images of 11,000 unique objects and over 1 million
annotated successful grasps.
Driven by the need for a scalable, efficient, and cost-
effective method, a simulation-based approach was
adopted. Several physics simulators were considered,
but ultimately PyBullet [48] was selected due to its flexibility,
performance, and ease of use. PyBullet is an open-source
physics engine with a Python API, making it well-suited
for robotics and machine learning applications. One of
PyBullet’s key features is its synthetic camera integration,
which can generate RGB-D images, crucial for producing
object images within the simulation.

3.2.2. Computational Pipeline

To ensure the relevance and accuracy of the dataset, a cus-
tom 3D simulation environment has been developed to sim-
ulate extraterrestrial conditions such as reduced gravity and
various terrain types. This section introduces the compu-
tational pipeline used to generate a large custom dataset
for space robotics applications. The dataset generation pro-
cess consists of multiple steps, which are illustrated in Fig-
ure 7.
3D object models: as previously mentioned, the main
objective of future planetary exploration missions is to en-
able rovers to perform complex robotic tasks autonomously,
such as sample collection or maintenance and servicing
tasks, without any human intervention. To accomplish these
tasks, rovers must be capable of handling specific objects
that align with these mission objectives, such as sample
tubes and maintenance tools. However, accurate interac-
tion with these mission-critical objects in a 3D simulation
environment requires precise 3D object models. For sample
tubes, the primary source of 3D models is a generic CAD
model developed at the Space Robotics labs. Based on this
model, a more flexible parametric model was developed
in Siemens NX. This allows the manipulation of certain
design parameters, such as tube length and diameter, to
create a wide range of CAD models with different configu-
rations. By programmatically adjusting these parameters,
various sample tubes with different characteristics can be
generated, which can be used to simulate many grasping
scenarios. On the other hand, to ensure that the simulation
environment has a diverse and realistic set of objects for
maintenance and servicing tasks, maintenance tools are
selected from publicly available datasets, primarily the
YCB-Dataset [49] and the 3DNet-dataset [50], which offer
a comprehensive collection of 3D models of household
objects, including maintenance tools.
Automatic URDF Generation: 3D object models are often
represented as STL or OBJ files, which contain all the nec-
essary geometric information about the object. However,
physics engines, such as PyBullet, only work with URDF
files, which include both the geometric and physical prop-

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7. Illustration of the dataset generation pipeline, starting with
scene creation (a,b,c), followed by Monte-Carlo grasp la-
bels generation (d,e) and concluding with grasp attempt
(f,g) and outcome (f)

erties of the object. To convert 3D object models to URDF
files, an automatic tool has been developed in Python. First,
the 3D object model is scaled to the desired size, using a
defined scale factor. This factor is computed based on the
field of view and far value of the camera to ensure that the
object fits comfortably within the view and contributes to a
realistic representation of the scene. With the object prop-
erly scaled, the next step is to create a visual mesh. This
mesh serves as the object’s graphical representation within
the simulation environment, providing all the surface details
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necessary for the rendering engine to draw the object on
the screen. Simultaneously, a collision mesh is generated
to handle the physics-based interactions between the ob-
ject and the robotic gripper. Collision meshes are simplified
versions of the visual mesh, designed to reduce the com-
putational load during physics simulations. However, this
simplification often leads to inaccurate collision detection,
particularly for objects with complex or concave surfaces.
To overcome this issue, the V-HACD algorithm [51] is used
to generate an optimised collision mesh that accurately rep-
resents the object’s surface. The V-HACD algorithm works
by dividing the object into smaller convex shapes, which are
then reassembled into a simplified mesh, while maintaining
the object’s original shape as much as possible. The final
step involves the computation of mass and inertia using the
trimesh library [52], which enables accurate computation of
these properties based on the object’s mesh and its density.
Gripper Model: inspired by the European Space Agency’s
(ESA) Analog-1 project [53], the Robotiq85 gripper, dis-
played in Figure 6, is used in this paper as an exemplary
end-effector model. Focusing only on the interaction be-
tween the gripper and the object, dummy links and joints
are used in the gripper URDF file to represent the rest
of the robotic arm. This approach allows the gripper to
"float" in the simulation, eliminating the need for additional
inverse kinematic computations, thereby reducing the
computational complexity of the simulation.
Scene Creation: the scene creation process involves sev-
eral steps, starting with setting up the simulation environ-
ment in which the gripper will interact with various objects.
To create a realistic simulation environment, the gravity is
set to match that of Mars, which is approximately 38% of
Earth’s gravity. After that, a plane is loaded as the base
surface for the simulation. To increase the realism of the
landscape for the gripper to interact with, textured planes or
terrain models generated based on Mars topography data
can be used instead of basic flat surfaces. The user can
choose between using a textured plane or the path of the
Curiosity rover, which can be obtained from NASA’s 3D re-
sources [54]. Next, the selected object’s 3D model is loaded
in STL or OBJ format, converted to URDF files using the
conversion tool described and added to the scene. The ob-
ject is then dropped from a random position and orientation,
and additional elements such as rocks can be loaded into
the simulation for a more challenging and realistic environ-
ment for the robotic grasping algorithm, as shown in Figure
7a. Once the scene is set up, RGB-D images of the object
are captured, which will then serve as input to the neural
network that powers the robotic grasping algorithm. Further-
more, a hash function is used to create a unique ID for each
scene. This ID is then used to name the image files, simpli-
fying their association with the specific object and simulation
they represent. Finally, the robotic gripper is loaded into the
simulation, moved to a user-defined start position (see Fig-
ures 7b and 7c) and the simulation loop is executed. During
each iteration, the robotic gripper attempts to grasp the ob-
ject and records the outcome of each attempt.
RGB-D Perception: during the simulation, the camera is
positioned above the object to capture the entire object
within its field of view, providing comprehensive visual
data for the subsequent grasping operation. The synthetic
camera emulates the same camera system which is cur-
rently being used on the robotic camera mast at the space

(a)

(b)

Figure 8. Examples of scene creation in the 3D simulation environ-
ment illustrating a flat surface (a) and a terrain (b) that
replicates the path of the Curiosity rover, obtained from
NASA’s 3D resources [54]

robotics lab. The camera model, which is implemented us-
ing OpenGL [55], involves transformations between multiple
coordinate systems. These transformations are used to
convert the gripper pose between camera coordinates and
world coordinates, and vice versa. Additionally, the depth
buffer values provided by the synthetic camera are trans-
formed into meaningful depth information. Once completed,
RGB and depth images are saved along with segmentation
masks that separate the object from the background.
Grasp Labels Generation: the robotic grasping process
can be executed in two distinct modes: manual and auto-
matic. In manual mode, the user has direct control over the
gripper’s movements and actions, which is particularly use-
ful for testing and debugging purposes. In automatic mode,
the gripper’s movements are controlled automatically to gen-
erate random grasps by using a Monte Carlo approach. The
robotic gripper attempts multiple grasps on each object from
different angles and orientations. Each grasp is evaluated
based on pre-defined success criteria. Successful grasps
are then automatically added to the dataset, while unsuc-
cessful ones are discarded.
Monte-Carlo grasps generation: first, the gripper’s width
w is sampled from a uniform distribution ranging from its
minimum to maximum opening width. In order to gener-
ate grasp candidates in the most promising areas, a pixel
(x, y) within the object’s bounding box is sampled from a
normal distribution. Using the depth value at the selected
pixel, the target gripper position in world coordinates can be
computed, and the gripper is moved to that position, as illus-
trated in Figure 7d. Next, the yaw rotation angle of the grip-
per θ is sampled from a uniform distribution ranging from −π

2

to π
2

and the gripper is rotated accordingly (see Figure 7e).
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Finally, the grasp is executed by moving the gripper down-
wards until it either makes contact with the object or reaches
a pre-defined z-position, as displayed in Figure 7f. The grip-
per then closes and returns to its start position (see Figures
7g and 7h). The grasp is considered successful, if the object
is still held within the gripper’s finger pads. The gripper jaw
size h, which remains constant across each grasp attempt,
is then mapped to image coordinates. The resulting grasp
label represented by (x, y, w, h, θ), as well as the object’s im-
ages captured at the beginning of the simulation, are then
stored in the corresponding folder based on the outcome of
the grasp attempt.
Automatic Dataset Generation: for the automatic dataset
generation, the simulation is executed in the direct mode,
which is one of two modes offered by the PyBullet physics
engine. The other mode is called GUI Mode, which provides
a graphical interface to visualise the simulation in real-time.
In direct mode, commands are executed in the background
without the need for a graphical interface, enabling parallel
computation on a cluster and reducing computational de-
mands by redirecting resources from rendering graphics to-
wards the simulation. To further accelerate the dataset gen-
eration process, parallelisation is used in direct mode. This
involves replicating the simulation across all available CPU
cores. In each replication, the same object is dropped from
a different position and orientation at the start of the simula-
tion. Alternatively, the user can choose different objects for
each replication. The simulations are run on an available in-
house cluster, which has 128GB RAM and is powered by 2
NUMA nodes, where each node has 8 Intel Xeon CPUs, with
2 threads per core. In order to ensure the smooth operation
of the simulation, a comprehensive logging system is imple-
mented, documenting each step, along with any errors or
warnings that arise during the dataset generation process.
Additionally, a YAML configuration file is included, which al-
lows the user to adjust various parameters without having to
delve into the underlying code, making the simulation even
more user-friendly while providing precise control over the
dataset generation process.

3.2.3. Results & Discussion

The custom simulation environment has been successfully
implemented to replicate extraterrestrial conditions. Initial
runs of the simulation demonstrated its ability to emulate
the physics and dynamics of grasping tasks in such envi-
ronments. However, during the dataset generation process,
computational challenges were encountered despite paral-
lelisation being implemented and accelerating the process.
Generating a large dataset within a reasonable time frame
requires significant computational power, which was not fully
provided by the available cluster, thereby limiting the size of
the dataset that could be generated.
Despite these computational limitations, a preliminary
dataset was generated that serves as a proof of concept,
evaluating the pipeline’s efficacy. A simple textured plane
served as the base surface for the simulation environment
in this dataset. Future datasets can benefit from integrating
more complex terrains, particularly those derived from Mars
topography data. While a diverse range of objects was
available for grasping, this preliminary dataset focused
on sample tubes due to their inherent presence and sig-
nificance in recent planetary exploration missions with

grasping applications. A broader range of objects can be
included in subsequent datasets to increase the diversity
and robustness of the training data.
Figure 9 illustrates a portion of the preliminary dataset.
The simulation-based approach used to generate grasp
labels proved efficient, with the grasp labels consistently
aligning with the visual data. Grasp attempts were randomly
generated, as described above, resulting in multiple suc-
cessful grasps for each object instance, as shown in Figure
9. Each image is accompanied by comprehensive data
detailing the object’s characteristics, grasp parameters, and
the simulated environmental conditions during the grasp
attempts. This dataset creation pipeline demonstrated its
ability to generate a rich, scalable, large dataset suitable for
training deep learning models to address the challenges of
robotic grasping in space exploration missions.

(a) (b)

(c) (d)

Figure 9. Examples of RGB images from the preliminary dataset
along with their successful grasp labels

3.3. Training Procedure

3.3.1. Data Pre-processing

The aim of this study is to harness the power of publicly
available robotic grasping datasets for pre-training the deep
learning models before proceeding with the training phase
on the custom-generated dataset. This study focuses
on public datasets compatible with parallel-jaw grippers,
including the Cornell Grasp dataset [35], the Jacquard
dataset [36], and the GraspNet 1 Billion dataset [37]. These
datasets come in various formats, requiring a comprehen-
sive data pre-processing pipeline to standardise them into
a unified format for effective model training. In the case of
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the Cornell Grasp dataset, each image is accompanied by
a separate background file. Similarly, the Jacquard dataset
includes an object mask for each image, which separates
the object from its background. The custom-generated
dataset, which was created using a similar method as
the Jacquard dataset, includes these objects masks as
well. These features were used to allow the user to either
include or exclude the background in the pre-processing
pipeline for these datasets. However, the GraspNet 1 Billion
dataset is different, as it includes multiple objects within
each scene. Focusing on single-object grasping, the seg-
mentation masks provided within the dataset were used to
generate new segmented images for each object. Multiple
images are generated from each original image, with each
new image containing a single object with the background
subtracted. Figure 10 provides illustrative examples from
all four datasets used in this study.

(a) (b)

(c) (d)

(e) (f)

Figure 10. Examples of images from various datasets: Cornell
Grasp Dataset [35] (a,b), Jacquard Dataset [36] (c,d),
and GraspNet 1 Billion [37] (e,f). Some images are dis-
played with their original background, while others are
shown after background substraction. Each image is ac-
companied by its labelled grasps

To ensure a consistent annotation across the different
datasets, the five-parameter grasp representation intro-

duced in Section 3.1.3 was implemented, standardising the
representation of grasp rectangles throughout the datasets
and ensuring interoperability and comparability between
them. Furthermore, the pre-processing pipeline is designed
to be versatile, offering the possibility to convert original
RGB images into different colour spaces, such as YUV
and HSV, thereby enabling a comprehensive evaluation of
different input modalities. To enhance the robustness of
the deep learning models to input data variations, a wide
range of data augmentation techniques was employed
across all datasets. These techniques include, but are not
limited to, geometric transformations like rotation, scaling,
and translation, as well as colour transformations such as
brightness and contrast variation, as shown in Figure 11.
For the synthetic data, Gaussian noise was added to the
depth images in order to emulate real-world conditions.
This increased the diversity and complexity of the data,
resulting in more effective models with better generalisation
capabilities.

(a) (b)

(c) (d)

Figure 11. Examples of data augmentation techniques applied to
images from Jacquard Dataset [36], displaying pairs of
both the original (a,c) and augmented versions (b,d)

3.3.2. Training and Validation

To address the challenges associated with the robotic
grasping tasks in planetary exploration missions, this paper
proposes a two-phase training strategy that combines
pre-training on public grasping datasets with finetuning on
a custom-generated dataset. By leveraging the power of
transfer learning through this hybrid training approach, the
model is able to learn to grasp a wide range of objects,
while adapting to the specific conditions of extraterrestrial
environments. The training procedure starts by splitting
the dataset into training and validation subsets to allow
for best model selection based on the validation perfor-
mance, thereby enhancing the network’s generalisation
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performance and preventing overfitting. In the first training
phase, the model is pre-trained on publicly available grasp-
ing datasets, which include a wide range of objects with
various shapes, sizes, and textures. This phase provides
the model with a robust foundational understanding of the
grasping task, which helps minimise the amount of labelled
data required for subsequent finetuning. The pre-training
stage is further divided into two subphases to optimise both
model performance and computational efficiency. During
the first subphase, only the final layer responsible for grasp
prediction is trained, while the convolutional layers of the
pre-trained ResNet, responsible for feature extraction from
RGB images, are frozen. By freezing these layers, the
pre-trained weights are preserved along with the generalis-
able features that these layers have learned from extensive
training on the ImageNet dataset. Next, the entire CNN
is trained end-to-end, starting from the best-performing
model obtained in the previous step, in order to further
enhance its performance. Finally, the model is finetuned on
the custom-generated dataset during the second training
phase, resulting in a model that is able to adapt to the
specific challenges of robotic grasping in space exploration
missions. In the following, details regarding the training
process and the different components of the neural network
will be provided.
Network architecture: the neural network used in this
study is based on the ResNet-50 model, which is well-
known for its state-of-the-art performance in image classi-
fication tasks, as discussed in Section 2.1.3. With fewer
trainable parameters than other CNNs with similar perfor-
mance, ResNet provides a balance between accuracy and
computational efficiency, making it an ideal choice for this
study. As shown in Figure 13, the ResNet-50 model in the
architecture used in this paper serves as the backbone
for feature extraction. Initially trained on the extensive
ImageNet dataset, ResNet offers robust feature extraction
capabilities that are highly transferable across various
tasks. To adapt ResNet-50 for the specific use-case of
robotic grasping, the last fully-connected layers, originally
designed for object classification tasks, were replaced with
new layers designed for grasp prediction, which take the
extracted features as input and output optimal grasping
parameters.

Figure 12. Illustration of the modified ResNet architecture

Loss function: due to the complex nature of the grasp pre-
diction task, the design of the loss function is crucial to the
effective training of the neural network. In this work, the Eu-
clidean loss function is used to measure the difference be-
tween predicted and actual values for each component of
the grasping output. Rather than computing the loss on en-

tire vectors, each component of the grasp is considered sep-
arately, enabling the model to learn to predict each variable
independently. This component-wise approach is particu-
larly important due to the inherently different nature of the
variables involved. While x, y, w, and h correspond to spa-
tial dimensions, θ represents angular orientation. The Eu-
clidean loss functions ensures that larger deviations from the
target values have a large impact on the total loss. However,
this approach presents a significant challenge for the treat-
ment of the angle component θ, which exhibits small abso-
lute variations. The model may neglect its importance while
trying to minimise errors in other parameters with larger ab-
solute deviations. To address this issue, a scaling factor is
introduced within the loss function to adjust the contribution
of the angular component to the total loss, ensuring that the
model pays sufficient attention to accurately predicting the
grasp angle, despite the small absolute values.
Activation function: in this study, the architecture of a
standard ResNet model was modified by replacing its last
layer, which required a reevaluation of the activation func-
tion choice for this layer. Various activation functions were
considered for this last layer, including bounded ones like
Tanh and Softmax. Despite their popularity, these functions
proved to be suboptimal, as they led to vanishing gradient
issues during backpropagation, which severely limited the
model’s learning ability. Based on these findings, a linear
activation function was selected for the last layer, which
helped maintain a stable gradient flow during backprop-
agation, thereby improving the model’s learning capacity.
Additionally, the linear activation function is inherently well-
suited for regression tasks, as it allows for a continuous
range of output values. However, using a linear activation
function results in unbounded output values, presenting a
significant challenge for the robotic grasping task, as the
output values are inherently limited by physical and sensor
constraints. In particular, the centre point coordinates (x, y)
and dimensions (w, h) of the grasping rectangle must be
constrained to pixel values that lie within a specific range
determined by the camera’s resolution. Furthermore, the
orientation angle θ should be limited to the range of −π/2 to
π/2 in order to ensure a physically realistic and interpretable
output. To address this issue, a post-processing step in in-
troduced, consisting in a clipping operation on the network’s
output. This clipping step constrains the network’s output
to a pre-defined acceptable range, thereby guaranteeing its
relevance applicability for the robotic grasping task.
Learning rate schedule: achieving optimal model perfor-
mance is a challenging task that depends on various factors,
including the learning rate, which controls the magnitude
of updates applied to the model’s weights during training.
Setting the learning rate too high can cause the model
to overshoot the optimal solution, leading to oscillations
and potential divergence. On the other hand, a learning
rate set too low could cause the model to converge slowly,
which would compromise efficiency and lead to subopti-
mal solutions. Rather than maintaining a fixed learning
rate throughout the training process, a more advanced
approach involves using dynamic learning rate schedul-
ing. This strategy adjusts the learning rate in response to
the model’s performance metrics during training, thereby
providing a more flexible and effective training process.
This research uses an adaptive learning rate scheduling
strategy known as "ReduceLROnPlateau" to enhance the
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performance of the deep learning model. This strategy
continually monitors a pre-defined metric, in this case, the
training loss, over multiple training epochs. If the algorithm
detects no improvement in the monitored training loss for
a specified number of epochs, it automatically reduces the
learning rate. This allows the model to adjust its learn-
ing rate based on the training progress by taking smaller
and more refined steps toward an optimal solution. This
adaptability is particularly crucial for complex tasks such as
robotic grasping, where the loss function landscape may
contain local minima. A fixed learning rate can cause the
model to become trapped in these local minima, poten-
tially missing better solutions. The "ReduceLROnPlateau"
strategy addresses this issue by dynamically lowering the
learning rate, offering a mechanism to escape from these
local minima and steer the model towards a more globally
optimal solution.
Regularisation techniques: the training process was
initiated with a focus on optimising the model’s complexity
to ensure that the network architecture was deep enough to
accurately capture the patterns in the training data. A model
that is too simplistic may not have the necessary capabilities
to achieve efficient and reliable grasping, while a model
with excessive complexity can become prone to overfitting.
As discussed in Section 2.1.2, overfitting occurs when the
model performs exceptionally well on the training data but
poorly on new, unseen data. To address these challenges,
the model was first allowed to intentionally overfit the train-
ing data as a diagnostic measure to ensure that it was deep
enough to learn the inherent complexities of the robotic
grasping problem. Once the optimal depth was selected,
various regularisation techniques, including dropout, weight
decay, and early stopping, were evaluated to mitigate over-
fitting and improve the model’s generalisation performance.
After rigorous testing, the best generalisation performance
was achieved through a combination of dropout and early
stopping. While dropout deactivates a subset of neurons
randomly during each training iteration to prevent the model
from relying too heavily on specific features, early stopping,
on the other hand, operates by continuously monitoring
the model’s performance on the validation dataset during
training. Once the performance on the validation set stops
improving or starts to decline, training is stopped and
the model state with the best validation performance is
retained, regardless of its performance on the training set.
When combined, these two techniques provide a powerful
regularisation strategy, resulting in a generalisable model
that can perform robustly across a diverse set of data.
Evaluation metrics: to evaluate the performance of a
neural network, various metrics are used to assess the
accuracy of the model in predicting the five-parameter
grasping rectangle. Commonly used in object detection
tasks, the Intersection over Union (IoU) metric measures
the similarity between the predicted grasping rectangle and
its corresponding ground truth. The IoU is computed by
dividing the area of the overlap between the two rectangles
by the area of their union. An IoU value of 1 indicates a
perfect overlap, where the predicted rectangle completely
matches the ground truth, while an IoU value of 0 means
that there is no overlap between the predicted rectangle and
the ground truth, indicating that the prediction is completely
inaccurate. In the computer vision community, an IoU value
above 0.5 is generally considered a successful detection.

However, the robotic grasping community sets a more
relaxed threshold of 0.25 due to the challenges posed by
the inherent complexity of the grasping task, as well as
the limited data availability in the field, which allows for a
more realistic evaluation of model performance [38,41,42].
In standard object detection tasks, the bounding boxes
are axis-aligned and not rotated. However, the robotic
grasping task requires predicting an oriented rectangle,
which involves predicting a rotation angle represented by
θ. To evaluate the model’s accuracy in predicting this
rotation angle, the orientation error metric is used, which is
calculated as the absolute difference between the predicted
rotation angle and its corresponding ground truth value. For
a prediction to be considered accurate, the orientation error
must fall within a 30-degree margin [38, 41, 42]. To assess
the model’s ability to accurately predict the dimensions
and orientation of the grasping rectangle, the Intersection
over Union (IoU) and orientation error metrics are used as
continuous performance indicators during both the training
and validation phases. Additionally, Mean Squared Error
(MSE) and Root Mean Squared Error (RMSE) are used to
evaluate the overall model’s performance during the training
phase, providing a quantitative assessment of the prediction
error. While the Mean Squared Error (MSE) is calculated by
averaging the squared differences between predicted and
actual values, Root Mean Squared Error (RMSE), which
is the square root of MSE, provides an average measure
of the deviation between the predicted and actual values,
presented in the same unit as the original data, making it
more interpretable.

Figure 13. Illustration of the IoU and Orientation Error evaluation
metrics

Workflow automation: in the field of machine learning,
managing complex workflows can often be tedious, error-
prone, and time-consuming due to their repetitive tasks,
ranging from data pre-processing to post-processing analy-
sis. To address these issues, a comprehensive framework
that automates these tasks has been developed, leveraging
a wide range of tools and techniques, with the aim of
accelerating the research process and minimising potential
errors. A key component of this framework is the use of
user-friendly YAML files for configuration management.
These files consolidate essential model configuration pa-
rameters, such as the choice of optimiser, dataset, and
learning rate schedules, into a unified location. Bash scripts
are used to further automate the workflow, managing
various stages of the machine learning pipeline, including
data pre-processing, model training, and post-processing
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analysis. This centralised approach eliminates the need
for manual configuration in each training session, reducing
the associated error risks. In addition, PyTorch is used for
training parallelisation. This built-in feature automatically
distributes the computational workload across available
resources, such as multiple cores on CPUs or GPUs,
resulting in significant computational efficiency, especially
for complex models. Throughout the training process,
key performance metrics such as the loss function and
accuracy values are recorded and saved in CSV format for
post-processing analysis. For real-time monitoring, Ten-
sorBoard was integrated into the framework to provide live
updates on the various key performance metrics, thereby
facilitating the comparison of the network performance
across multiple training runs.

3.3.3. Hyperparameter Tuning

As mentioned in Section 2.1.2, hyperparameters refer to
a wide range of parameters that influence the learning
process and must be specified by the user prior to training.
Choosing the right configuration has a significant impact on
factors such as the network’s convergence rate, generali-
sation ability, and predictive accuracy. However, due to the
complex interactions among the various hyperparameters,
manual exploration to identify the optimal combination is
both impractical and resource-intensive. To address this
challenge, a variety of techniques have been developed to
automate the hyperparameter tuning process by efficiently
exploring the configuration space. Grid search exhaustively
searches the space by evaluating the network’s perfor-
mance across a pre-defined set of hyperparameter values,
while random search adapts a probabilistic approach by
randomly selecting hyperparameter sets and evaluating the
network’s performance based on these selections. Relying
on trial-and-error, both methods are still time-consuming
and resource-intensive. A more sophisticated approach is
Bayesian optimisation, which enhances the tuning process
through probabilistic modelling. This method employs a
Gaussian process to model the network’s performance,
which is then used to direct the search towards promising
regions within the configuration space. By iteratively updat-
ing the model based on evaluations, Bayesian optimisation
effectively uses the posterior distribution to suggest the
next set of hyperparameters, thereby making efficient use
of computational resources. In this study, a Bayesian
approach for hyperparameter optimisation is implemented
using the Optuna framework [56], which offers a variety
of sampling algorithms and pruning strategies that can be
combined to accelerate the optimisation process. While
the sampler is responsible for suggesting hyperparameter
sets, the pruner assesses the trial’s progress and decides
whether to continue or terminate the trial. Optuna’s pruning
strategy aligns with the concept of early stopping, allowing
unpromising trials to end early, thereby directing compu-
tational efforts towards more promising configurations.
This strategic allocation of resources significantly reduces
the number of trials needed to achieve convergence to-
wards high-performing configurations, saving both time and
computational resources.

3.3.4. Results & Discussion

During training, significant computational challenges were
encountered. In particular, the pre-training process using
large-scale public grasping datasets required a powerful
and flexible computational infrastructure capable of handling
large amounts of data. To overcome the limitations of the
in-house cluster several cloud computing service providers
were evaluated, leading to the selection of Linode [57],
which offered the computational resources and flexibility
required for conducting multiple training experiments si-
multaneously, thereby accelerating the model selection
process. Although financial constraints prevented the full
utilisation of all Linode features, resource allocation was
optimised through strategic decision-making. Prioritising
key hyperparameters and configurations that were believed
to significantly impact the model’s performance allowed
for more targeted experiments, thereby enabling the most
effective use of the limited resources available.
After evaluating various pre-training experiments, the high-
est validation accuracy was achieved by incorporating
background information into the training dataset. This
finding aligns with the use of the ResNet model. Originally
pre-trained on the ImageNet dataset, the ResNet model
appeared to be inherently equipped to handle and extract
relevant features from RGB images containing background
information, making it perform less well on images without
background. Among the datasets with background informa-
tion, the Cornell Grasp Dataset consistently outperformed
the Jacquard dataset, making it the most appropriate
dataset for pre-training the model. In terms of architecture,
several fully connected layer configurations were tested for
grasp prediction. A single layer with 1024 units emerged
as the most effective configuration, achieving a balance
between the model’s capacity to learn the complexities of
the training data and its ability to generalise to new and
unseen data. To prevent overfitting, dropout was integrated
into the model. After testing several dropout probabilities,
a rate of 0.2 was found to be the most effective, preventing
overfitting while allowing the model to learn adequately from
the training data. After identifying the optimal configuration
for pre-training, the remainder of this section will provide a
detailed overview of the model’s performance.
During the pre-training phase, the deep learning model’s
performance was evaluated using various evaluation met-
rics, including Mean Squared Error (MSE), Root Mean
Squared Error (RMSE), Intersection over Union (IoU),
and orientation error, to assess the model’s capacity for
accurately learning grasp configurations from a dataset
containing a wide range of objects. For a comprehensive
understanding of the model’s learning progress, these
metrics were plotted over multiple epochs and smoothed for
better visualisation.
Figures 14 (a) and (b) show the average values of Mean
Squared Error (MSE) and Root Mean Squared Error
(RMSE) over training epochs, respectively. Both metrics
demonstrate a consistent decreasing trend as the training
progresses, indicating that the model’s grasp predictions
are increasingly aligning with the ground truth values.
This trend also underlines that the model is able to learn
effectively and improve its performance over time during
training.
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(a)

(b)

Figure 14. Illustration of the averageMean Squared Error (MSE) (a)
and Root Mean Squared Error (RMSE) (b) values during
the pre-training phase, plotted over training epochs

Figures 15 (a) and (b) display the average values of Intersec-
tion over Union (IoU) and orientation error across epochs,
respectively. Figure 15a demonstrates an increasing trend
in the average IoU values, indicating a growing overlap be-
tween the predicted and the ground truth grasping rectan-
gles. It is worth noting that the average IoU value surpasses
the critical threshold of 0.25 relatively early in the training
phase and continues to increase until it steadily converges
towards a promising 0.4 by the end of training. Similarly, Fig-
ure 15b illustrates a decreasing trend in the orientation er-
ror metric, highlighting the model’s improving ability to accu-
rately predict the orientation angles of the grasp rectangles.
Notably, the model surpasses the orientation error threshold
of 30 degrees early in the training process and converges to
an impressively low orientation error of less than 20 degrees
by the end of training.
These observed trends in the selected evaluation metrics
demonstrate that the model is able to improve its perfor-
mance in predicting grasping rectangles over time and
confirm its ability to effectively learn complex grasp configu-
rations from RGB images. Although average values provide
a general overview of a model’s performance, examining
the distribution of the evaluation metrics such as IoU and
orientation error across images at different epochs provides
a richer and more comprehensive understanding of the
model’s learning dynamics.

(a)

(b)

Figure 15. Illustration of the average Intersection over Union (IoU)
(a) and Orientation Error (b) values during the pre-
training phase, plotted over training epochs

Figure 16 illustrates the distribution of orientation errors for
images across various IoU thresholds, with the aim to eval-
uate the model’s ability to learn the orientation θ, with a fo-
cus on instances where the model demonstrates high IoU
accuracy. Consisting of three subfigures, Figure 16 show
the evolution of the model’s performance over three differ-
ent training epochs: at the beginning, middle, and end of
training. Each subfigure contains two sections. The top
section displays violin plots, which are an effective way to
visualise the distribution of orientation errors at various In-
tersection over Union (IoU) thresholds. These violin plots
contain rich statistical information. The width of the violin
at different points indicates data density at those error lev-
els. The black line within each plot outlines the interquar-
tile range (IQR), providing a concise summary of the data’s
variability. Markers on this line represent the first (Q1), sec-
ond (median), and third quartiles (Q3), which are essential
for understanding the data’s central tendency and spread
around the median. The lower section displays bar plots that
show the proportion of images that satisfy or exceed differ-
ent IoU thresholds. At the beginning of training, Figure 16a
indicates that only a small proportion of images achieved
high IoU thresholds. Furthermore, the distribution of orien-
tation errors was significantly wider at this stage, particularly
for lower IoU thresholds, indicating a higher variability



(a)

(b)

(c)

Figure 16. Illustration of the distribution of Orientation Error across
various IoU thresholds during the pre-training phase,
captured at the beginning (a), middle (b), and end (c)
of training. Each subfigure is divided into two sections:
the upper part features violin plots that visualise the dis-
tribution of the orientation errors at different IoU thresh-
olds, while the lower part presents bar plots illustrating
the proportion of images that meet or exceed these IoU
thresholds

(a)

(b)

(c)

Figure 17. Illustration of the training accuracy across various com-
binations of Intersection over Union (IoU) and orientation
error thresholds during the pre-training phase, captured
at the beginning (a), middle (b), and end (c) of training



in the model’s orientation predictions when the overlap
with the ground truth was not significant. In other words,
the model struggled to accurately predict the orientation of
the grasping rectangles that were not well aligned with the
ground truth. As the training progressed, a clear improve-
ment in the model’s performance was observed. Notably,
Figure 16b shows that the proportion of images meeting
various IoU thresholds increased significantly, with over
40% of the images achieving an IoU greater than 0.25.
Additionally, the distribution of orientation errors became
more concentrated across all IoU thresholds, with a distinct
clustering around lower error values, particularly for higher
IoU thresholds, indicating an increased precision in the
model’s orientation predictions. Towards the end of the
training, Figure 16c demonstrates further improvements of
the model’s performance, with the orientation error distri-
bution maintaining its narrowing trend, with even denser
clustering around minimal errors, particularly for higher IoU
thresholds. Additionally, the bar plots revealed a further
increase in the percentage of images satisfying high IoU
thresholds, with approximately 80% exceeding an IoU of
0.25, and nearly 40% exceeding an IoU of 0.5. At this
stage, the third quartile (Q3) for orientation errors across all
categories was smaller than 30 degrees, implying that 75%
of all data had an orientation error less than 30 degrees.
Furthermore, the median orientation error was less than 20
degrees across all IoU thresholds, highlighting the model’s
improved accuracy in predicting the orientation θ of the
grasping rectangles.
In order to further evaluate the model’s performance, its
training accuracy is examined across different IoU and
orientation error thresholds. Figure 17 displays three
heatmaps representing different stages of the training
process. Each heatmap provides a visual representation of
the model’s accuracy for various threshold combinations of
the two primary evaluation metrics: Intersection over Union
(IoU) and orientation error. The heatmap’s colour intensity
represents the percentage of predictions that satisfy both
the IoU and orientation error thresholds. Warmer colours
indicate a higher proportion of predictions meeting the
criteria, reflecting superior model performance, while cooler
shades indicate the opposite. A specific cell is highlighted
in each heatmap, corresponding to predictions that have an
IoU greater than 0.25 and an orientation error less than 30
degree, which are the threshold values commonly used in
the robotic grasping community to identify successful grasp
predictions. Comparing the different heatmaps in Figure 17
reveals that the model gradually improves its performance
in terms of IoU accuracy and orientation prediction as the
training progresses. At the end of the training, the model
achieves an accuracy of 76% under the standard thresholds
of an IoU greater than 0.25 and an orientation error less
than 30 degrees. It’s worth noting that the model’s perfor-
mance is even better when evaluated under more relaxed
thresholds, with an accuracy of 91% for an IoU greater than
0.15 and an orientation error below 45 degrees.
In order to assess the generalisation ability of the deep
learning model, the model’s performance on the validation
set was evaluated using the same set of evaluation metrics.
The validation performance of the deep learning model is
visually represented by the heatmap in Figure 18, which dis-
plays the proportion of successful grasps across a range of
IoU and orientation error thresholds. The validation results

show that the model achieves an accuracy of 70% under the
conventional IoU and orientation error thresholds of 0.25
and 30 degrees, respectively. This performance improves
up to 80% under more relaxed thresholds, highlighting its
ability to generalise well across novel objects.

Figure 18. Illustration of the validation accuracy across various
combinations of Intersection over Union (IoU) and ori-
entation error thresholds during the pre-training phase

For a better visualisation of the model’s performance, visual
comparisons between predicted and ground truth grasping
rectangles throughout the training and validation phases
are shown in Figure 19. Ground truth grasps are shown
in green, while predicted grasps are shown in yellow. The
blue lines indicate the projection of the gripper finger pads
onto the image plane.
After pre-training the deep learning model to establish a
foundational understanding of robotic grasping for novel
objects, the model was finetuned on a targeted, custom-
generated dataset, which is described in Section 3.2. The
aim of this additional training phase was to optimise the
model’s performance for specific objects and conditions
relevant to space exploration missions. Due to the limited
size of the custom dataset used for finetuning, plotting
distributions of evaluation metrics, as was done for pre-
training, may not provide enough statistical power to draw
conclusions about model performance. Instead, the follow-
ing will focus on visualisation methods that are better suited
to smaller datasets.
Figure 20 present the average values of MSE, RMSE, IoU,
and orientation error over the training epochs of the finetun-
ing process. The results indicate that the model achieved
similar performance on the custom dataset, showing consis-
tent improvement over time, thereby validating the model’s
learning efficacy. Notably, the evaluation metrics showed
quicker convergence during the finetuning phase, reaching
better values in fewer epochs. This outcome suggests that
the pre-training was effective and successfully provided a
favourable initialisation for the finetuning stage, allowing the
model to effectively build upon its pre-trained grasp predic-
tion skills. However, an increase in variability of performance
metrics across epochs was observed. This is due to smaller
batch sizes resulting from the smaller dataset. While this in-
troduced more fluctuation in the learning curves, the overall
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Figure 19. Examples of predicted grasps (in red), along with
ground-truth grasps (in green), during the pre-training
phase

trend in all key metrics remained positive. This stochastic
nature also appears to be beneficial for escaping local min-
ima, thereby aiding the model in achieving a more gener-
alised solution for robotic grasping tasks, as can be seen in
the following.
Figure 21 illustrate heatmaps representing the model’s
performance at various training stages after finetuning.
Similar to the pre-training phase, the results show that the
performance of the finetuned model improves as training
progresses. By the end of the training, the model reaches
an accuracy level of 80% under standard thresholds. Under
more relaxed criteria, the model performs even better,
achieving an accuracy level of 90%.
Figure 22 displays the validation performance of the fine-
tuned model, illustrating its accuracy across a wide range
of IoU and orientation error thresholds. The results in Fig-
ure 22 indicate an enhanced performance of the finetuned
model during the validation stage, achieving an impressive
accuracy level of 86% under the community-standard IoU
and orientation error thresholds. Furthermore, the model
maintains an accuracy level of over 50% even under stricter

(a)

(b)

(c)

(d)

Figure 20. Illustration of the average Mean Squared Error (MSE)
(a), Root Mean Squared Error (RMSE) (b), Intersection
over Union (IoU) (c) and Orientation Error (d) values dur-
ing the finetuning phase, plotted over training epochs
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(b)

(c)

Figure 21. Illustration of the training accuracy across various combi-
nations of Intersection over Union (IoU) and Orientation
Error thresholds during the finetuning phase, captured
at the beginning (a), middle (b), and end (c) of training

criteria, such as an IoU threshold of up to 0.4 and an orienta-
tion error below 15 degrees. These results suggest that the
model can generalise effectively to new data, thereby con-
firming the effectiveness of the finetuning process, which
benefits from the advantageous starting point provided by
pre-training, leading to improved overall performance in
grasp prediction.

Figure 22. Illustration of the validation accuracy across various
combinations of Intersection over Union (IoU) and Ori-
entation Error thresholds during the finetuning phase

For a better visualisation of the model’s performance, Fig-
ure 23 presents visual comparisons between predicted and
ground truth grasping rectangles throughout the training and
validation phases.

(a) (b)

(c) (d)

Figure 23. Examples of predicted grasps (in red), along with
ground-truth grasps (in green), during the finetuning
phase



4. CONCLUSION AND FUTURE WORK

This study aimed to enhance the autonomous capabilities of
robotic systems for future space exploration missions, with
an emphasis on robotic applications for planetary rovers.
Focusing on autonomous robotic grasping, an end-to-end
grasp estimation system using state-of-the-art deep learn-
ing techniques was developed.
The developed system highlighted the potential of deep
learning methods in enabling planetary rovers to au-
tonomously manipulate previously unknown objects based
solely on visual information, minimising the need for pre-
programmed instructions or real-time human interaction.
This enhanced autonomy could not only improve the op-
erational efficiency of planetary rovers but also enables
more advanced missions, involving complex tasks such as
sample retrieval, maintenance, and servicing activities.
To generate a dataset with objects relevant to space ex-
ploration missions, a custom 3D simulation environment
was designed to emulate extraterrestrial terrains and condi-
tions. The dataset generation framework demonstrated its
potential for creating large, scalable, and mission-relevant
datasets. Although limited in size due to computational
limitations, a preliminary dataset was created using the
developed framework, which serves as a proof of concept
and foundation for future, more comprehensive datasets
containing a wider range of objects and more challenging
terrains.
Training deep learning models requires significant compu-
tational resources for efficient training and hyperparameter
tuning. While initially faced with computational limitations,
cloud computing solutions were used to accelerate the
model selection process by providing scalable, on-demand
computational resources. Leveraging the power of transfer
learning, publicly available datasets were used to pre-train
existing state-of-the-art deep learning models, which were
adapted to the task of robotic grasping. The pre-trained
model with the best performance was then finetuned using
a custom-generated dataset. Within used reduced datasets
for both pre-training and finetuning, a promising success
rate of 85% could still be achieved in grasping novel objects
based only on RGB-D visual information. This result not
only represents a significant step toward enabling future
rovers to operate with a high degree of autonomy, without
the need for pre-existing knowledge of target objects but
also lays a solid foundation for future research, where larger
datasets can further enhance the model’s accuracy.
This study highlights the importance of computational
resources in conducting large-scale research in robotic
grasping. Future work can therefore explore cost-effective
computational solutions that can offer the required re-
sources to fully unlock the potential of the developed
framework by generating more comprehensive datasets
and training more complex deep learning models to poten-
tially improve the model’s performance.
Our research suggests several avenues for future work.
One immediate extension is to incorporate more complex
terrains, which will enhance the realism of the training
environment, making the model more adaptable to actual
space missions. Another direction is to expand the dataset
to include a broader range of objects relevant to space
exploration, which will not only diversify the training data,

but also make the model more robust to different types of
grasping scenarios.
The simulation environment developed in this study for
dataset generation has implications beyond its intended
purpose, as it can also be used for testing and evaluating
previously trained deep learning models. Moreover, it
enables the use of more sophisticated learning algorithms,
such as reinforcement learning methods, which have shown
promising results in terrestrial robotic grasping tasks. Since
reinforcement learning models require an environment
to interact with during training, the developed simulation
environment is an invaluable asset for future research in
this direction.
While the simulation environment provides a valuable con-
trolled experimental setup, it is essential to recognise the
potential challenges associated with transferring the devel-
oped algorithms to real-world scenarios. Future work will
therefore involve empirical validation of the deep learning
models in more realistic settings by incorporating hardware-
in-the-loop testing to bridge the gap between simulated and
real conditions.
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