
QUADUINO - AN ARDUINO-BASED EDUCATIONAL
QUADRUPLEX-COMPUTER-SYSTEM

Bastian Luettig, Constantin Frey, Johannes Reinhart, Michel Bunza, Jan Freyhardt, Jiajun Li, Benedict Roth,
Johannes Wuebbeling, Bjoern Annighoefer University of Stuttgart, Institute of Aircraft Systems, Pfaffenwaldring 27,

Stuttgart, GERMANY

Abstract

Redundant avionics computers are essential for aircraft safety, but practical education on their behavior is limited. We
introduce Quaduino, an educational tool developed at the Institute of Aircraft Systems of the University of Stuttgart.
Quaduino comprises four Arduino ATmega2560 microcontrollers, forming a redundant computer, and additional
instrumentation for in-depth assessment. Our software ensures separation of platform management and control
function, leveraging Arduino’s ecosystem. A web interface enables real-time data observation, enhancing students’
understanding of redundant systems. Quaduino demonstrates challenges such as asynchrony, faults, and commu-
nication. This tool empowers students to grasp redundant avionics principles and was successfully introduced into a
laboratory course.

Keywords
Redundant avionics; safety-critical systems; Quaduino; Arduino ATmega2560; educational tool; redundant

computer; instrumentation; prototyping; synchronization; teaching device

1. MOTIVATION

Avionics safety is key to ensure public trust in commer-
cial air transportation. During the previous decades, air-
craft became more electric and more digital than ever
before [1]. Current research projects advocate for a fur-
ther increase in these trends: intelligent wings [2], adap-
tive cabins [3], machine learning and AI for image recog-
nition, as well as more digital operations. Proven tools,
books, and lectures exist for the development of the non-
redundant function. For the redundant implementation,
those books and lectures are rare and tools are basically
non-existent.
The Institute of Aircraft Systems / University of Stuttgart
dedicates the research and courses towards the chal-
lenges of redundant implementation. Two common
pure redundancy strategies are featured within separate
lectures and laboratory courses: all-active and active-
standby. For this research, we focus on an all-active
strategy with its most prominent implementations: du-
plex, triplex and quadruplex architectures, as shown in
Fig 1.
In the lecture, we intend to show all theoretical effects
within such a redundant system to the students. During
lab courses, students should work on the systems them-
selves, develop different redundancy mechanisms and
observe how the actual hardware reacts to the imple-
mentation. This includes the correct redundant opera-
tion, consistent failures in the computer system and even
byzantine failures. Hardware similar to avionics is hard
to buy and actual commercial redundant avionics hard-
ware is basically impossible to obtain. Hence we devel-

oped our own equipment. We chose to build a new lab-
oratory based on commercial-off-the-shelf components
and open source all materials.
Within this paper, you will find the fundamentals for op-
eration in all-active systems, the Quaduino concept in
terms of teaching, hardware and software. Then we will
introduce the actual implementation, our current verifi-
cation state and conclude the paper with summary and
outlook.

sf1ss1

sf2ss1

sf3ss1

sf4ss1

FIG 1. Diagram of the four computing lanes (sf) with each
one single sensor (ss) and cross-lane-connections.
The four lanes exhibit output consensus.

2. FUNDAMENTALS

In an all-active strategy, multiple single computer lanes
operate together and form a redundant computer

1

Deutscher Luft- und Raumfahrtkongress 2023
DocumentID: 610350

doi: 10.25967/610350CC BY 4.0

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.25967/610350

system. Each computing lane computes the same
functions and the lanes compare each others outputs.
All computer lanes contribute to both, integrity and
reliability of the redundant computer, i.e., if the com-
puters detect a discrepancy from one computing lane,
they will passivate the faulty lane (integrity). If a lane
fails, the others still perform the function (reliability). To
ensure the integrity comparison works correctly, i.e.,
not too early and not too late, the system designer
must implement a mechanism to detect erroneous
outputs reliably during the mission. There are two
options: (a) use wide monitoring limits or (b) enforce
computer-replica-determinism.
Most commercial applications implement option (a),
as this allows to leave the redundant lanes asyn-
chronous and improve independence - at the cost of
false-positives [4].
For option (b), we need to ensure computer-replica-
determinism, which strictly speaking means, that if you
input the same values (xin) in the same order to redun-
dant units, all redundant units will produce the same
commands (xout). We define: Given vectors with signals
in all redundant units, they show exact agreement (A=),
if they are identical:

∀i, j : xi = xj

We shorten this to:

x|A=

(the lanes show exact agreement for this vector).
Strict computer-replica-determinism will be defined as:

xin|A=
⇒ xout|A=

(1)

For two computers, this is an option, but for more redun-
dant computer lanes, we cannot guarantee this anymore
with reasonable effort and modify in a way that similar
values (A∆) lead to similar outputs. First, we need to
separate analog and discrete values. Analog values are
signals represented by larger data types, discrete values
are smaller data types, e.g. boolean or short integers.
With this change, equation 1 becomes:(

xin,analog

xin,discrete

)∣∣∣∣∣
A=

⇒

(
xout,analog

xout,discrete

)∣∣∣∣∣
A=

(2)

We define delta-agreement A∆ as the analogue values
may differ slightly:

∀i, j : xanalog,i ≈ xanalog,j

We shorten this to:

xanalog

∣∣
A∆

The less strict computer-replica-determinism shows as
follows

(
xin,analog

∣∣
A∆

xin,discrete

∣∣
A=

)
⇒

(
xout,analog

∣∣
A∆

xout,discrete

∣∣
A=

)
(3)

We separated this into analog and discrete values, be-
cause we can implement communication protocols that
ensure reliable broadcast [5] properties for discrete val-
ues. For analog values this could overload the underly-
ing bus system. For those (in terms of bits) larger val-
ues, we implement a simple broadcast. This will ensure
A∆ for any single failure within a quadruplex system.
For each scenario which does not exhibit an asymmetric
communication fault, those values fulfill A=.
To fulfill the above equation, the system needs to en-
sure consensus. Which means, it needs to fulfill consen-
sus conditions: (1) synchrony, (2) agreement, and (3)
integrity [6,7]. Which translates to: the single computers
have to synchronize as close as possible, acquire and
produce similar values, and produce correct values.
Despite not being favored in its pure form anymore by
aircraft manufacturers, the basic concepts are still being
used as part of active-standby configurations [8] [9].

3. CONCEPT

The Quaduino is designed with a distinct pedagogical
purpose in mind, leading to a set of requirements that
diverge significantly from those associated with conven-
tional avionics hardware.

3.1. Teaching Goals

When implementing consensus in such a redundant
system, the engineer faces typical challenges. The
Quaduino concept aims at increasing the visibility of
those challenges and possible solutions. The corre-
sponding lecture teaches the general requirements and
concepts to implement consensus, failure handling,
scheduling, and operation.
With the Quaduino, the students will:
1) observe typical challenges in redundant operation;
2) implement concepts to solve the challenges;
3) observe the redundant system handling these chal-

lenges;
4) gain a deeper knowledge and experience with redun-

dant systems;
5) experience the effect of failures.
Furthermore, we will utilize the concept to teach single-
computer operation.
Therefore, the students also will:
1) learn how to program an embedded systems;
2) learn to work with hardware debugging tools to ob-

serve memory and registers;
3) learn to operate embedded systems;
4) see how computers store program and data in mem-

ory.
5) understand basic machine instructions and learn how

function calls are realized

2

Deutscher Luft- und Raumfahrtkongress 2023

CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

3.2. Hardware Considerations

We want to decrease the distance between students
and avionics hardware, therefore we selected widely
available commercial-off-the-shelf components. A stu-
dent should have the opportunity of building an own
Quaduino. Hence we want to achieve a price of 200C
per build.
We considered multiple ecosystems including Rasp-
berry Pi, STM32, Arduino, ESP8266/32. In order
to show and implement a redundant computer, the
ecosystem should fulfill these requirements:
The computers and ecosystems for the single lanes
1) can communicate on dedicated channels;
2) have Ethernet support;
3) each supports at least four avionics-typical sensors,

e.g., distance, acceleration, stick-input;
4) each supports at least two servo motors;
5) support low-level languages like C, C++, or Rust;
6) are as simple as possible;
7) are readily available for less than 50C.
Next to hardware, basic software is essential.

3.3. Software Considerations

The Arduino ecosystem primarily relies on the Arduino
IDE and utilizes C/C++ programming languages.
To bridge the gap between students and software, our
aim is to provide users with maximum access to every
facet of the system. Unlike a typical avionics system,
which operates on a cyclic schedule with each cycle
lasting approximately 10ms, our approach prioritizes the
need for students to observe changes within a redun-
dant computer system. Consequently, we deliberately
introduce measures to slow down the system and allow
to opt for slower microcontrollers.
Key software requirements for our system encompass:
1) Implementation in a low-level programming lan-

guage.
2) Adherence to a cyclic scheduling approach.
3) Adoption of a software architecture suitable for edu-

cational purposes.
4) Provision of the capability to analyze inner variables

in real-time during system operation.

4. DEMONSTRATOR IMPLEMENTATION

In the process of implementing our demonstrators, we
followed a systematic approach. Initially, we developed
the single-lane architecture, subsequently integrating
these components into a redundant computer system,
and ultimately, we implemented fundamental software
functionalities.

4.1. Single Computer Architecture

The choice to opt for the single computer architecture
stemmed from several factors. Firstly, the Raspberry Pi,
while initially considered, was ruled out due to a prevail-
ing shortage and its inherent complexity and cost.
On the other hand, the STM32, although relatively new
to the market, presented itself as a viable option.

Meanwhile, the ESP8266 and ESP32 exhibited intrigu-
ing features, including WiFi connectivity and competitive
pricing. However, they lacked the required dedicated
cross-lane communication capabilities, which were piv-
otal for our project.
Within the Arduino ecosystem, the Arduino Mega2560
emerged as the most suitable choice, offering an AT-
mega2560 microcontroller with a clock speed of 16
MHz [10], 256 kB of flash memory, and 8 kB of RAM.
To enhance its capabilities, we incorporated a W5500
Ethernet module [11] for Ethernet support, and four
RS485 modules [12] to facilitate dedicated cross-lane
communication. Fig. 2 shows the single computer
architecture with the designated pin assignment.

FIG 2. Single computer lane, consists of one Arduino
Mega 2560, four RS485 MAX modules, and one
W5500 Ethernet module

4.2. Redundant Computer Architecture

Matching the educational concept, we combined four
single computers to one redundant computer. To
achieve consensus across the computers, they need
communication channels. The Arduino Mega 2560R3
features four serial interfaces. In order to limit the direct
connection across computers, we implemented the
cross communication using RS485 serial interfaces.
The RS485 busses that run from the sending lane to

3

Deutscher Luft- und Raumfahrtkongress 2023

CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

each other lane for receiving. The modules must be
configured to either send or receive. This is done via the
RE/DE pins, if both are set HIGH, the module sends.
If both are LOW, the module can receive data. Each
RS485 module connects to one of the Serial interfaces
1-3, the sender module to Serial0.
To ensure correct failure indication, each computer lane
must know which neighbor sends on which interface.
Hence we implemented pin programming that tells the
program what their individual ID is.
Given all these components, we came to around 250C
per redundant computer. With clone boards, the target
price can easily be achieved.

FIG 3. Redundant computer, consists 4 single computers
stacked on-top each other, includes MPLAB SNAP
debugger

We prototyped the hardware and then needed the basic
software.

4.3. Software Architecture

The initial proof of concept showcases the successful
implementation of cross-lane synchronization, a critical
feature enabling synchronous execution within the re-
dundant computer system.
At its core, the onboard software comprises several com-
ponents, each playing a pivotal role in ensuring the reli-
ability and functionality of the system. Fig. 4 depicts the
Quaduino software architecture, borrows [13] and imple-
ments the following services:
Pin Programming: To ensure, that each lane knows its
own ID, we implemented a service that reads 2 discrete
pins to compute an ID. Additionally, we implemented a
function that maps 0-2 to the actual neighbor lane ID.
Synchronization Service: The synchronization service
implements an event-synchronization mechanism that
allows precise coordination among the four redundant
lanes. It ensures that all lanes execute their tasks

synchronously. This service achieves synchronization
by transmitting synchronization messages and resetting
the internal clock when a common event is reached.
It is part of the platform management (plama) for the
redundant computer (core).
Timing Service: To guarantee timely execution and pro-
vide support for synchronization, we introduced a layer
that translates the hardware clock within each Arduino
into the logical time of the redundant computer. This ser-
vice ensures that all actions occur in accordance with the
synchronized clock.
Scheduler/Dispatcher: The scheduler or dispatcher
constitutes the backbone of the software. It orchestrates
the execution, guaranteeing that the computer performs
services in the correct order and at the precise time.
This coordination is essential for the system’s correct
operation.
Database: An array of database entries facilitates seam-
less communication between services and permits the
exchange of critical debugging data with the laboratory
computer. This database acts as a central hub for data
management.
RS485 Communication Service: To set the modules
to be sender or receiver, our software driver needs to
set the RE/DE pins accordingly. Furthermore, the ser-
vice needs to implement a message protocol that dis-
tinguishes among the different types, adds a message
buffer and assigns the correct lane IDs to the received
messages.
Ethernet Communication Service: To streamline com-
munication with the laboratory computer, the system in-
tegrates a specialized Ethernet communication service.
This service ensures efficient data transfer between the
Quaduino and the laboratory computer, enabling real-
time monitoring and control, which are essential for edu-
cational purposes. The eventual concept is similar to the
SPY function [14].
Collectively, these software components collaborate to
construct a user-friendly and highly functional redundant
computer system. Not only do they demonstrate the suc-
cessful implementation of cross-lane synchronization,
but they also provide a solid foundation for the Quaduino
project’s future extensions and enhancements. This
software architecture marks a significant milestone in
the development of our educational system.

4.4. Development Environment

In our search for the ideal development environment
for the Quaduino project, we evaluated the tools avail-
able within the Arduino ecosystem. While the Arduino
Integrated Development Environment (IDE) had proven
its accessibility and suitability in initial prototyping and
smaller-scale ventures, we encountered constraints as
our project’s complexity expanded, particularly when
handling multiple files and modules within a project.
In response to these limitations and to facilitate the
project’s scalability, we transitioned to PlatformIO and
Cmake. This shift proved instrumental, as PlatformIO
offered us a robust and adaptable framework that
seamlessly integrates Arduino-compatible libraries

4

Deutscher Luft- und Raumfahrtkongress 2023

CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

Quaduino
Software

OSperipherals laws plama

core

xsynchro

Ethernet database scheduler pinprog time

11 1 1

1

1

1 1 1 1 1

FIG 4. Quaduino Software Architecture with its main domains OS (fundamental services), peripherals (drivers for sen-
sors/actuators), laws (actual application), plama (platform management, handles redundancy management)

while accommodating intricate projects encompassing
multiple modules.
One of PlatformIO’s standout advantages lies in its ability
to streamline the development process, providing a uni-
fied and efficient platform for managing dependencies,
libraries, and build configurations. This feature became
particularly beneficial within the Quaduino project, where
diverse sensors, communication modules, and periph-
eral devices demanded seamless integration.
To cater to the preferences and needs of our students,
we’ve adopted a flexible approach. Recognizing that the
choice of an Integrated Development Environment (IDE)
can be a matter of personal preference, we encourage
students to select any IDE that supports the C++ pro-
gramming language. This flexibility empowers students
to customize their development environment according
to their individual preferences and also equips them with
skills applicable to a broader spectrum of programming
challenges beyond the Quaduino project.

4.5. Software Loading

The choice of development tools for programming and
debugging is important for a smooth user experience.
PlatformIO, our selected development environment,
emerges as a versatile and practical choice for the
Quaduino project. It creates one common binary file,
which is loaded onto all four lanes of the system. This
approach ensures that each lane executes identical
software. The loading of these binaries onto the Arduino
boards is facilitated through the use of the Atmel AVR
programmer AVRdude via USB connections.
However, our teaching goals and plans for future labo-
ratory courses needed a method for inspecting each in-
dividual lane’s inner workings, including registers, data
and program memory.
To meet this requirement, we integrated the MPLAB
SNAP JTAG debugger (see Fig. 5) into our system
architecture. This specialized hardware debugger not
only provides debugging capabilities but also offers an

interface for connecting with individual Arduinos, with
each board identifiable by its unique serial number.

FIG 5. MPLAB SNAP debugger, can connect to ICSP and
JTAG interface or Arduino Mega 2560

This integration effectively solves a significant challenge:
the need for individual flashing of each lane. This chal-
lenge arose as a consequence of the laboratory’s PC
boot-up process, which assigned ports to connected Ar-
duinos in a random sequence, making conventional USB
connections impractical. As a solution, we transitioned to
using the MPLAB debugger for flashing new software.
To enable the JTAG interface, each Arduino must un-
dergo configuration, i.e., setting the fuses accordingly.
This temporarily renders the previous method of soft-
ware loading via USB unusable, until the fuses are reset.
To program the Arduinos, we initially connect the MPLAB
debugger to the ICSP interface, set the new fuse values
and can then connect the debugger to the JTAG inter-
face.
In summary, we have made the deliberate choice to rely
solely on the new JTAG debugger for both debugging
and software loading tasks, aligning with our project’s
teaching goals and ensuring efficient deployment in a
laboratory setting.

4.6. Debugging via JTAG

The JTAG debugger allows programming the microcon-
troller’s flash and EEPROM storage for uploading com-

5

Deutscher Luft- und Raumfahrtkongress 2023

CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

piled programs, setting fuse and lock bits, halting and
resuming its core as well as reading and overwriting reg-
isters and RAM. It is supported by the MPLAB-X IDE,
which allows setting breakpoints at specific lines in code,
and provides a graphical user interface for interacting
with the debugging system, such as halting the micro-
controller or manipulating memory. The Atmega2560’s
JTAG interface and on-chip debugging capabilities must
be specifically enabled by setting the JTAGEN and OC-
DEN fuses.
Besides programming the microcontroller, the de-
bugging capability of the Quaduino setup is used for
interactive hands-on exercises for students: They first
learn basic machine instructions by reading the micro-
controller’s instruction set manual and by translating
a minimalistic C-code snippet manually. After that,
they are tasked to let a C-compiler translate the code
and compare their solution with the contents of the
microcontroller’s program memory. For learning how
data is stored in memory, students compile and upload
a program with static data. After the variables have
been initialized, they download a snapshot of the RAM
using the debugger. Students also learn the principles
of the call stack, by writing programs with function calls
and by inspecting the stack. For this, they read the
stack-pointer register at different times during program
execution and look at the corresponding RAM content.
These exercises are supposed to convey the operating
principles of a digital computer and make students
aware of the challenges and pitfalls when developing
safety critical digital systems: Many details, such as
endianness, execution timing and memory organization,
which are usually abstracted away by a programming
language or operating system, become visible.

5. LABORATORY SETUP

The Quaduino itself is part of the laboratory setup that
accompanies a PC running Debian, a relay-board, an
oscilloscope, a networking switch, and another Arduino.
The PCs hosts all necessary tools, the IDE and connec-
tion to git repositories. The users work directly on these
PCs - either locally or via VNC.
The entire setup rests in and on an acrylic glass case.
The Quaduino tower is screwed to the top plate and the
other components on the lower plate. This way, the stu-
dents can see and observe each component, have easy
access to all wires and peripherals, can perform custom
experiments and use the oscilloscope to view specific
signals.

5.1. Web Interface

The students need to access the internal values for se-
lect database entries, e.g., sensor values, failure indica-
tions, synchronization information, and debugging data.
We can use the Ethernet service to transmit this data to
a server on the laboratory computer.
For visualization, we developed a simple interface (see
Fig. 6) that displays the four computing lanes, shows if
they are on-line and displays the internal values.

FIG 6. Web-Interface for the Qaduino that displays the on-
line status for each computing lane and internal val-
ues

5.2. Peripherals

With the vast Arduino ecosystem, we can directly in-
corporate different sensors and actuators in our system.
We can use the respective libraries, which facilitates the
driver development immensely and use PlatformIO to
keep track of package updates.
Initially, we tested mainly potentiometers as sensors.
We needed to write a short wrapper that allows correct
addressing, initialization and receiving values from the
sensor.
Initially, we included LEDs as actuators - as they are
easy to control and allow to show different information.
We further included RGB LEDs and servo motors SG90.
Eventually, we will implement a model of the space shut-
tle orbital vehicle as demonstration scenario, hence we
will use servos for the elevon, add time-of-flight sensors
to measure the distance between shuttle and base and
control the elevon using a pilot stick - or by students at
home using the keyboard.

5.3. Control Arduino

For instrumentation purpose, we added another Arduino
Mega including an Ethernet Shield to the laboratory
setup. It connects to each computing lane via five
analogue outputs and five analogue inputs. This allows
transmission and reception of signals from and to the
computer lanes. Additionally, it can receive data via Eth-
ernet from the laboratory computer. It will additionally
control the motor for the shuttle z-axis.

5.3.1. Virtual Sensors

For select use cases, adding multiple sensors for the
same value becomes infeasible. We want to include a
pilot’s stick into the system, which connects to USB. It is
impossible to connect an USB device to the Arduino it-
self and furthermore we would still have only one sensor
value for each axis. To solve this, we introduce virtual
sensors, that the additional Arduino (Control Arduino)
distributes via pulse-width modulated signal onto each
single lane. The Control Arduino receives the signals via
Ethernet from the laboratory computer. This in turn is
fed using the web interface, that can read data from the
USB joystick. The web interface offers a tool to alter the
signal individually for each computing lane and thus to

6

Deutscher Luft- und Raumfahrtkongress 2023

CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

simulate multiple sensors for the same physical value.
The signals can have fixed or relative offsets.
From the Quaduino point of view, a virtual sensor acts
identical to an actual sensor. The data is read as pulse
and hence needs a driver.

5.3.2. Measuring Asynchrony

In order to detect the remaining asynchrony after suc-
cessfully executing the synchronization service, we
needed a global time. The Control Arduino receives
signals from each computing lane upon successful syn-
chronization and stores the time, the signals occurred. It
then computes the median reception time and computes
the deviations from each lane to the median value.

6. VERIFICATION

During this year’s lab course "Systementwurf II", we in-
corporated the Quaduino platform. The students had
to implement the synchronization within the redundant
computer, the initial code included all parts except for
the actual synchronization service.

6.1. Tasks

The primary task was the implementation of the synchro-
nization service. This service encompasses the setting
of states, broadcasting of messages, and the establish-
ment of a common time base.
The students received the algorithm in pseudo code
form. It consists of a pre-sync and a sync-phase, which
end upon time-out or receiving messages.
The validation and verification of the implemented func-
tion were carried out using six test scenarios. These
tests were conducted on a laboratory setup. Each sce-
nario had a clearly defined expected system response.
During the tests, the actual system response was ob-
served and compared to the expected response. The
results obtained were then analyzed and classified.
The six test scenarios include:
1) No Synchronization: This scenario analyzes the be-

havior of the system without any synchronization.
2) Lane is off-line: Here, the system behavior is checked

when a lane is inactive.
3) Lane exhibits consistent errors in Quadruplex con-

figuration: In this scenario, the behavior is analyzed
when a lane consistently delivers erroneous results.

4) Lane exhibits inconsistent errors in Quadruplex con-
figuration: Here, the behavior is examined when a
lane produces inconsistent errors towards its neigh-
bors.

5) Lane exhibits inconsistent errors in Triplex configu-
ration: This scenario examines the behavior of the
system when one lane is already off-line and another
lane exhibits inconsistent errors.

6) Pre-sync phase is too short: This test investigates the
impact of an overly short pre-synchronization phase
on the overall system.

Through the application of these test scenarios, a com-
prehensive assessment and verification of the student’s
implementation of the synchronization service were

achieved. Fig. 7 shows the remaining asynchrony in
each lane after the successful synchronization service.

6.2. Lessons Learned and Bugs

During the course, three student’s groups used a total of
four laboratory setups and came across some bugs that
we investigated together.
The Ethernet Module proved to have spurious faults
during operation whenever a single lane went off-line
and was to be restarted. Whenever a computing lane
is off, it does not receive 9V power from the relayboard,
but it still connects via the RS485 modules on the wires A
and B. Turns out, the wires have a pull-up and pull-down
resistor towards the 5V and GND pins of the Arduino.
This way, the off-line single lane still receives some 5V
from the other lanes. Fig. 8 shows the result from a volt-
age measurement experiment: all four lanes are on-line,
then lane 1 is shut off via the relay board and turned back
on again after 40 seconds. We expected lane 1 to return
to 0V and the other lanes remaining at 5V. However,
lane 1 does not return to 0V, it remains at 1.5V. Fur-
thermore, Lane 3 shows spurious voltage drops to this
level.
This in turn leads to the Ethernet Module not restart-
ing correctly without the reset pin being triggered cor-
rectly. This posed an issue, as we left the reset pin open
- which works fine in a single setup. To solve this issue,
we added a dedicated reset wire that we trigger during
boot-up of the single lane.
The Fuses can render the Arduino unusable and even
change the internal clock speed. Initially we set the
fuses using the MPLAB IDE, which sometimes lead
to the wrong values. To solve this, we use avrdude to
change the fuses to a fixed value.
The synchrony of the redundant computer was de-
stroyed whenever a single-lane went off-line. This
happened due to the RS485 timeout setting, which was
initially at 1000ms. This lead to individual lanes running
into the timeout whenever they received an incomplete
message from the off-line lane and thus leading to an
unsuccessful synchronization. This was easily solved
by adjusting the timeout setting.
Software loading is broken whenever an incomplete
software load runs on the Arduino. This happens when-
ever two Arduinos claim the sending property for the
RS485 module. This error can currently only be fixed by
removing the receiving RS485 modules and loading the
software again.

6.3. Aftermath

Each group succeeded in their task within the expected
time frame.
One Quaduino tower was destroyed, because a wrong
power adapter was connected. This lead to random be-
havior of the single lanes.
Generally, students perceived the new laboratory well
and especially mentioned positively the numerous chal-
lenges with embedded hardware.

7

Deutscher Luft- und Raumfahrtkongress 2023

CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

FIG 7. Plot of remaining asynchrony in micro-seconds over cycles in for lanes 1-4 after successful synchronization over
cycles, cycle time is 1 s

 0

 1

 2

 3

 4

 5

 6

 0 10 20 30 40 50 60 70

Vo
lta

ge
 [V

]

Time [s]

Lane 1
Lane 2
Lane 3
Lane 4

FIG 8. Plot that shows the voltage level of neighboring
lanes upon lane 1 being off-line, i.e., without 9V
from the relay board

7. SUMMARY AND OUTLOOK

We implemented an Arduino-based quadruplex-
computer-system used for teaching computer basics
and redundancy mechanisms deployed in safety-critical
aircraft. The use of COTS hardware components to-
gether with established software tools resulted in an
easy to use and affordable setup. We have so far
implemented parts of the embedded software including
drivers for several peripherals, a scheduler/dispatcher
and a synchronization mechanism as well as a graphical
user interface for interacting with the setup. A first use
of the setup in a students lecture was successful
Currently, we extend the software with the platform man-
agement parts for sensors, laws and actuators. The lab-
oratory is intended as hybrid workplace, which means
students can either work remotely or in the avionics lab.
Therefore we currently implement the infrastructure for
VNC connections and data handling using gitlab. Each
laboratory setup will then feature two webcams which al-
low for live observation of the servos and LEDs.
Eventually, we will utilize this concept in the three funda-
mental lectures on avionics - either in the lectures and

exercises as demonstration, as actual training ground,
and in the lab course.
For the near future, we will improve the laboratory by
extending with a full one degree-of-freedom space shut-
tle orbital vehicle including all necessary sensors, actu-
ators, external controls, and software. It will move its
elevons and moves up and down - depending on the
elevon angle. Furthermore, we aim at implementing the
industry standard ARINC653 API [15].
For a distant future, we can utilize the four Arduinos
in different architectures, e.g., using verifiable comput-
ing [16], the setups track all internal information in a
centralized database and thus produce data for use in
machine learning applications. This could then be used
for health determination [17] or during initial deployment
to find faulty solder points.

Acknowledgement

Results were enabled by the project HYMASY funded
by the „Stiftung Innovation in der Hochschullehre“ in the
scope of the program "Freiraum 2022".

Contact address:

bastian.luettig@ils.uni-stuttgart.de
quaduino.org

References

[1] Ian Moir, Allan Seabridge, and Malcolm Jukes.
Civil Avionics Systems. John Wiley & Sons, 2013.
Google-Books-ID: 8XFwAAAAQBAJ. ISBN: 978-1-
118-53672-8.

[2] Mario Werthwein, Darbaz Darwesh, and Bjo-
ern Annighoefer. Using electronic data sheets
for an automatic detection of peripheral de-
vices in a smart wing’s digital infrastructure.
In 2022 IEEE/AIAA 41st Digital Avionics Sys-
tems Conference (DASC), pages 1–10, 2022.
DOI: 10.1109/DASC55683.2022.9925884.

[3] Bjoern Annighoefer, Marc Riedlinger, Oliver Mar-
quardt, Reza Ahmadi, Bernd Schulz, Matthias
Brunner, and Reinhard Reichel. The adap-

8

Deutscher Luft- und Raumfahrtkongress 2023

CC BY 4.0

mailto:bastian.luettig@ils.uni-stuttgart.de
https://quaduino.org
https://doi.org/10.1109/DASC55683.2022.9925884
https://creativecommons.org/licenses/by/4.0/

tive avionics platform. IEEE Aerospace and
Electronic Systems Magazine, 34(3):6–17, 2019.
DOI: 10.1109/MAES.2019.2900903.

[4] Vivi Yang. Releases final report of china airlines
flight CI202 occurrence investigation. Publisher:
Taiwan Transportation Safety Board.

[5] Vassos Hadzilacos and Sam Toueg. A modu-
lar approach to fault-tolerant broadcasts and re-
lated problems. Technical report, Cornell University,
USA, 1994.

[6] Stefan Poledna. Enforcing replica determinism,
pages 61–88. Springer US, Boston, MA. 1996.

[7] Simon Goerke, Rolf Riebeling, Florian Kraus,
and Reinhard Reichel. Flexible platform ap-
proach for fly-by-wire systems. In 2013 IEEE/AIAA
32nd Digital Avionics Systems Conference (DASC),
pages 2C5–1–2C5–16, 2013. ISSN: 2155-7209.
DOI: 10.1109/DASC.2013.6712542.

[8] Y. C. Yeh. Triple-triple redundant 777 primary flight
computer. In 1996 IEEE Aerospace Applications
Conference. Proceedings, volume 1, pages 293–
307 vol.1, 1996. DOI: 10.1109/AERO.1996.495891.

[9] Marc Fervel, Arnaud Lecanu, Antoine Maussion,
and Jean-Jacques Aubert. Aircraft control sys-
tem with integrated modular architecture. patentus
8600584B2, Airbus Operations SAS, 2013. Library
Catalog: Google Patents.

[10] Mega 2560 rev3 | arduino documentation.

[11] WIZnet Co., Ltd. W5500 datasheet.

[12] V Maxim Integrated Products, Inc.
Datasheet for MAX481/MAX483/MAX485/
MAX487–MAX491/MAX1487 low-power, slew-
rate-limited RS-485/RS-422 transceivers.

[13] Bastian Luettig, Bjoern Annighoefer, and Rein-
hard Reichel. A service provisioning layer en-
abling simplex-minded function development on
integrated modular avionics hardware. In 2018
IEEE/AIAA 37th Digital Avionics Systems Confer-
ence (DASC), pages 1–9, 2018. ISSN: 2155-7209.
DOI: 10.1109/DASC.2018.8569364.

[14] Matthias Lehmann. Testumgebung für komplexe,
verteilte Avionikplattforminstanzen, 2012.

[15] Aeronautical Radio, Incorporated. Arinc 653:
Avionics application standard software interface
PART 1 – REQUIRED SERVICES. Technical re-
port, Aeronautical Radio, Incorporated, 2019.

[16] Johannes Reinhart, Bastian Luettig, Nicolas Hu-
ber, Julian Liedtke, and Bjoern Annighoefer. Veri-
fiable computing in avionics for assuring computer-
integrity without replication. In 2023 IEEE/AIAA
42nd Digital Avionics Systems Conference (DASC),
pages 1–10, 2023.

[17] Bastian Luettig and Bjoern Annighoefer. Using au-
toencoders to identify aged, faulty and unknown
peripherals in the adaptive ima system. In 2023
IEEE/AIAA 42nd Digital Avionics Systems Confer-
ence (DASC), pages 1–9, 2023.

9

Deutscher Luft- und Raumfahrtkongress 2023

CC BY 4.0

https://doi.org/10.1109/MAES.2019.2900903
https://doi.org/10.1109/DASC.2013.6712542
https://doi.org/10.1109/AERO.1996.495891
https://doi.org/10.1109/DASC.2018.8569364
https://creativecommons.org/licenses/by/4.0/

	Motivation
	Fundamentals
	Concept
	Teaching Goals
	Hardware Considerations
	Software Considerations

	Demonstrator Implementation
	Single Computer Architecture
	Redundant Computer Architecture
	Software Architecture
	Development Environment
	Software Loading
	Debugging via JTAG

	Laboratory Setup
	Web Interface
	Peripherals
	Control Arduino
	Virtual Sensors
	Measuring Asynchrony

	Verification
	Tasks
	Lessons Learned and Bugs
	Aftermath

	Summary and Outlook

