
A SYSTEMATIC AND AGILE APPROACH TO DEVELOPING DO-178C
COMPLIANT MODEL-BASED SAFETY-CRITICAL SOFTWARE

P. Panchal*, L. Hein*, S. Myschik*, F. Holzapfel§
*Institute for Aeronautical Engineering, University of the Bundeswehr Munich, 85521 Neubiberg, Germany

§ Institute of Flight System Dynamics, Technical University of Munich, 85748 Garching, Germany

Abstract
This paper presents a holistic safety-critical software development process according to DO-178C/DO-331
standards, which is being used at the Institute of Aeronautical Engineering at the University of the Bundeswehr
Munich. A software development process for embedded systems is comprised of several steps, including
requirements gathering and analysis, design, implementation, testing, integration, and maintenance of the
components. When it comes to safety-critical applications, due to the safety standards and certification
requirements, the cumbersomeness of these processes increases significantly. This is because the
certification requirements demand that the system must fulfill certain objectives before it can come into use.
Similarly, in the case of aerospace software applications, such as flight controllers or motor controllers, a set
of objectives defined by the standards DO-178C must be fulfilled according to the criticality level detailed in
the DAL (Design Assurance Level). To assist the development process, a systematic model-based toolchain
is developed and implemented. This approach is presented in this research along with its application for battery
controllers. The toolchain ensures required traceability of the artifacts and requirements-based verification and
validation of the software.

1. INTRODUCTION

The aviation industry mandates compliance to the
standards as a requirement to enter the software industry.
To be compliant means to prioritize the safety of the
passengers and crew of the aircraft while maintaining its
efficiency. Aerospace industries thriving to cope up with the
technology must ensure safety, incorporate flexibility in
development, and integrate new features. However, these
tasks contradict themselves, since the strict methodologies
that are to be followed according to the standards restrict
the development processes. New features mean increased
lines of code, complexity, and criticality.

Hence, there is a significant need for developing integrated
toolchains that can ensure flexibility of development like
incorporating change in requirements along with ensuring
traceability. On the other hand, this increases the cost of
the project due to the number of tools and experienced
engineers needed [1]. Especially for small-scale industries
and startups without established processes, a toolchain
helps in overcoming difficulties of maintaining artifacts and
consistency throughout the development process. This
information is usually the intellectual property of large-scale
companies and is not readily available to the public
hindering the development pace of small-scale industries.

Software development in the aviation industry often follows
the generic V-Model process where the software
requirements are derived from the system requirements
and are then further implemented by the software logic
followed by its tremendous testing. This structured
approach then creates an infeasibility of incorporating
changes at a later stage of development as it requires
complete retesting and redevelopment of the software,
resulting in increased time and cost. This problem is known
as a ‘big-freeze’ problem [2].

In the context of the project ELAPSED [3], a novel electric
propulsion system is being developed consisting of a
battery based on a multilevel battery management system
with a capacity of 17 kWh [4–6] for an electrically powered
glider at the University of the Bundeswehr Munich. This
battery then powers an electric motor with a power output
of approximately 70 to 80 kW. For this propulsion system,
a safety-critical battery controller and a motor controller is
being developed. The toolchain developed in this research
is applied for the development of the battery controller
software currently and will be applied to develop the motor
controller in the future. The software development for the
battery and the motor controller of these components must
adhere to the DO-178C/DO-331 [7, 8] standards when
seeking certification. At the current development stage, only
battery controller development is concerned, and the motor
controller represents the future work of the project.

The paper is organized into the following chapters: Chapter
2 presents the overview of the complete toolchain
developed in this research. It explains each stage of the
development process with the required tools and
application examples wherever necessary. Finally, chapter
3 and 4 shows the future work and a strong conclusion in
the end respectively.

2. SOFTWARE DEVELOPMENT TOOLCHAIN

This section will explain the complete software
development toolchain with the required tools and relevant
examples.

2.1. Overview

Adopting the well-known V-Model in software development
enhances software safety through verification and

Deutscher Luft- und Raumfahrtkongress 2023
DocumentID: 610224

doi: 10.25967/6102241©2024

https://doi.org/10.25967/610224

itself, so a hyperlink ensures the bidirectional linkage. The
low-level requirements of the functional software which is
the design model in Simulink is linked to the high-level
requirements in Polarion using a tool called SimPol [22].
The traceability between the model, code and its test case
are ensured within the Simulink environment. The
application code is linked to the requirements via the test
cases defined in VectorCAST. To ensure an agile workflow,
Git is used as a version control software and a structured
workflow is followed. A continuous integration server based
on Jenkins [23] is setup and used for automated testing and
providing closed-loop requirements verification. The
following sub chapters contain detailed explanations of the

development stages.

2.2. System Requirements and Design Process

The requirements are stored in Polarion tool which is also
used for other tasks like change control, problem reporting,
creating baselines and for writing plans. Fig. 2 shows a
snapshot of software high-level requirements and
Fig. 3 shows a snapshot of plans for safety aspects of
certification. In this manner, all the other development and
verification plans are stored.
Fig. 4 shows a part of software configuration index created
in Polarion that houses all the plans and connects them

Fig. 2. Software High-Level Requirements in Polarion

Fig. 3. PSAC report in Polarion

Fig. 4. Software Configuration Index in Polarion

Deutscher Luft- und Raumfahrtkongress 2023

3©2024

using hyperlinks. The system requirements are based on
CS-22 requirements and are presented in [24, 25]. The
software and hardware high-level requirements have their
own ‘work-item’ type in Polarion which helps in creating
links between them. The traceability of requirements is
explained in the later chapter.

2.3. Software Design Process

A tool dBricks is used for managing the interfaces used in
the component. It provides an interface to Simulink which
can import the data buses defined in dBricks to the Simulink
environment by creating a data dictionary that can be easily
referenced. Fig. 5 shows a snapshot of dBricks tool
containing a signal ‘can_att_euler’ that can be imported
in Simulink as ‘bus’.

The system requirements as described in ARP4754A [26]
are further churned down to item level. Item level
requirements can be software, hardware or even both. In
the case of embedded products, both the software and
hardware requirements are to be well documented. This
research emphasizes more on the software part and hence
the hardware development is less focused on.

As mentioned earlier, the software is divided into functional
and application parts. Low-level software requirements for
the functional part are represented by the design models in
Simulink which offers a direct route to generate code using
the Embedded Coder.

The design models explain not only the functionality of the
software but also the data structures and how different
functions are related to each other. As the models merely
explain the control laws, a simulation of the low-level
requirements is possible followed by verification and
validation. The DO-331 [8] offers several possible use-
cases of models in software development and in the
concerned research, the design models are used as low-
level requirements which are derived from the high-level
requirements (see table MB. 1-1 of [8]). Specification
models are not used, and the high-level requirements are
represented in textual form.

Design models that represent functional low-level
requirements provide several advantages like automatic
code generation, deterministic code, readable code,
traceable code, configurable in terms of coding guidelines,

verification of models against modeling and coding
guidelines, requirements verification, and object code
verification against requirements [27].

A process-oriented build tool, Mrails, is used to design the
models in Simulink providing significant advantages in
terms of efficiency. Advantages of this model-based
process-oriented build tool is mentioned in several research
papers - [10–15]. In a nutshell, the tool provides a
development framework in MATLAB/Simulink with several
automated tasks for designing and code generation. It also
provides process-oriented features like custom library
blocks, design and traceability review checklists and
custom Model Advisor checks. The tool also provides an
HTML based status report that houses all the results of the
design and code verification tasks. These automated jobs
are shown in Fig. 8.

Application software in this research is not developed using
model-based technology and hence the low-level
requirements are stored in textual form in Polarion. The
application software is designed in the Eclipse IDE,
specifically like STM32CubeIDE [28] and NXP S32DS [29].

2.4. Code Generation

The model-based functional code is then integrated into the
application code written manually as shown in Fig. 7.

Fig. 6. Automated model and code development jobs

provided by the process-oriented build tool

Fig. 5. Snapshot of a signal data type stored in dBricks

Deutscher Luft- und Raumfahrtkongress 2023

4©2024

creates a surrogate item in Polarion, which contains
hyperlinks to the Simulink model and the Git repository. Bi-
directional traceability between the automated code
generated by Embedded Coder and the design model is
ensured by Simulink itself. For hand-written code, the
VectorCAST tool is used to link the test cases for the source
code to their low-level requirements in Polarion.

The test cases for functional parts are created and
executed using MATLAB Tests, which leverage the same
infrastructure for maintaining traceability to low-level
requirements. The MATLAB test cases are also linked to
the software high-level requirements using the 'verifies'
linkage type, again by creating a surrogate item using
SimPol. The functional part of the battery management
system is integrated and tested in real-time using Simulink
Real-Time and a Speedgoat machine, also utilizing
MATLAB Tests. The trace is then established using SimPol
and surrogates between the system integration testing and
software high-level requirements in Polarion.

3. FUTURE WORK

The software development toolchain presented in this
paper is currently being applied to develop the battery
controller for the project ELAPSED and will also be used to
develop the motor controller in future. The development of
the battery controller is under progress and hence not all
the results have been achieved. After the completion of the
battery controller software, the toolchain will be further
concretized, and the advantages can be seen more
evidently. Future work of this research also includes
creating templates of projects in tools like Jenkins,
VectorCAST, Polarion, and dBricks. This will help as a
starting point for developing new software.

4. CONCLUSIONS

The research presents a complete software development
toolchain used at the Institute for Aeronautical Engineering
in the University of the Bundeswehr Munich. This toolchain
is used for developing safety-critical software like flight
controller, battery, and motor controller. The research is
funded by the project ELAPSED in which a novel propulsion
system is being developed with a multilevel battery system.
Hence, the toolchain is used to develop the battery and
motor controller for the propulsion system.

The paper presents the required tools and emphasizes the
software development process and its different stages. The
process starts with the requirements management which is
managed in Polarion tool. The functional part of the
software is developed using a model-based approach. The
low-level functional software requirements are represented
using the design models and the low-level application
software requirements are represented in textual form.

MATLAB/Simulink is used for developing model-based
software and automatic code generation followed by its
verification whereas Eclipse IDE is used for the
development of application software. Polyspace and
VectorCAST are used for unit and static tests. Real-time
testing is performed using Simulink real-time environment
with TechSAT real-time system. Interfaces are managed
separately using a tool, dBricks, which can create models
for interfaces, integrate into Simulink and provides input-

output mapping for real-time simulations.

Bidirectional traceability of most of the artifacts are handled
within these tools. For traceability between software low-
level requirements and high-level requirements is ensured
using additional tools like SimPol and VectorCAST. The
entire software testing process is based on requirements-
based testing as it is mandatory by DO-178C. This holistic
software development process not only provides
consistency during the development but can also
accommodate changes in requirements with the help of
agile tools like Git and Jenkins.

This research is funded by dtec.bw – Digitization and
Technology Research Center of the Bundeswehr [3].

5. REFERENCES

[1] L. Rierson, Developing safety-critical software: A
practical guide for aviation software and DO-178C
compliance / Leanna Rierson. Place of publication
not identified: CRC Press, 2013.

[2] J. Cleland-Huang, A. Agrawal, M. Vierhauser, and C.
Mayr-Dorn, “Visualizing Change in Agile Safety-
Critical Systems,” IEEE Softw., vol. 38, no. 3, pp. 43–
51, 2021, doi: 10.1109/MS.2020.3000104.

[3] dtec.bw. “Electric Aircraft Propulsion – die Zukunft der
Flugzeugantriebe.” https://dtecbw.de/home/
forschung/unibw-m/projekt-elapsed

[4] Manuel Kuder, Julian Schneider, Anton Kersten,
Torbjörn Thiringer, Richard Eckerle, Thomas Weyh,
“Battery Modular Multilevel Management (BM3)
Converter applied at Battery Cell Level for Electric
Vehicles and Energy Storages,” 2020.

[5] N. Sorokina et al., “Inverter and Battery Drive Cycle
Efficiency Comparisons of Multilevel and Two-Level
Traction Inverters for Battery Electric Vehicles,” in
2021 IEEE International Conference on Environment
and Electrical Engineering and 2021 IEEE Industrial
and Commercial Power Systems Europe (EEEIC /
I&CPS Europe), Bari, Italy, 2021, pp. 1–8, doi:
10.1109/EEEIC/ICPSEurope51590.2021.9584705.

[6] J. Buberger et al., “Charging Strategy for Battery
Electric Vehicles with a Battery Modular Multilevel
Management (BM3) Converter System using a PR
controller,” in 2021 23rd European Conference on
Power Electronics and Applications (EPE'21 ECCE
Europe), Ghent, Belgium, uuuu-uuuu, P.1-P.10, doi:
10.23919/EPE21ECCEEurope50061.2021.9570669.

[7] DO-178C - Software Considerations in Airborne
Systems and Equipment Certification, RTCA, 2011.
[Online]. Available: https://my.rtca.org/productdetails
?id=a1B36000001IcmqEAC

[8] DO-331 - Model-Based Development and Verification
Supplement to DO-178C and DO-278A, RTCA, 2011.
[Online]. Available: https://my.rtca.org/nc__store?
search=331

[9] Siemens, Polarion PLM Automation.
https://polarion.plm.automation.siemens.com/:
Siemens. [Online]. Available: https://
polarion.plm.automation.siemens.com/

[10] M. Hochstrasser, S. Myschik, and F. Holzapfel, “A
Process-oriented Build Tool for Safety-critical Model-
based Software Development,” in Proceedings of the
6th International Conference on Model-Driven
Engineering and Software Development, Funchal,

Deutscher Luft- und Raumfahrtkongress 2023

8©2024

Madeira, Portugal, 2018, pp. 191–202, doi:
10.5220/0006605301910202.

[11] M. Hochstrasser, S. Myschik, and F. Holzapfel,
“Application of a Process-Oriented Build Tool for
Flight Controller Development Along a DO-178C/DO-
331 Process,” in Model-Driven Engineering and
Software Development (Communications in
Computer and Information Science), S. Hammoudi, L.
F. Pires, and B. Selic, Eds., Cham: Springer
International Publishing, 2019, pp. 380–405.

[12] P. Panchal, S. Myschik, K. Dmitriev, P. Bhardwaj, and
F. Holzapfel, Eds., Handling Complex System
Architectures with a DO-178C/DO-331 Process-
Oriented Build Tool. 2022, 2022.

[13] P. Panchal, S. Myschik, K. Dmitriev, and F. Holzapfel,
“Application of a Process-Oriented Build Tool to an
INDI-Based Flight Control Algorithm,” in AIAA
AVIATION 2022 Forum, Chicago, IL & Virtual, 2022,
doi: 10.2514/6.2022-4092.

[14] P. Panchal, N. Sorokina, S. Myschik, K. Dmitriev, and
F. Holzapfel, “Application of a Process-Oriented Build
Tool to the Development of a BM3 Slave Controller
Software Module,” 2021. doi: 10.25967/570308.
[Online]. Available: https://doi.org/10.25967/570308

[15] P. Panchal, N. Sorokina, M. Kuder, S. Myschik, K.
Dmitriev, and F. Holzapfel, “Application of a Process-
Oriented Build Tool for Verification and Validation of
a Battery Slave Controller for a Battery Modular
Multilevel Management System Along the DO-
178C/DO-331 Process,” in Proceedings of the 11th
International Conference on Model-Based Software
and Systems Engineering, Lisbon, Portugal, 2023,
pp. 184–193, doi: 10.5220/0011696100003402.

[16] MathWorks ‐ Entwickler von MATLAB und Simulink.
Accessed: Nov. 8, 2022. [Online]. Available: https://
de.mathworks.com/?s_tid=gn_logo

[17] The Eclipse Foundation. “Eclipse Desktop & Web
IDEs.” https://www.eclipse.org/ide/ (accessed Mar.
30, 2023).

[18] MathWorks, Polyspace. MathWorks. [Online].
Available: https://www.mathworks.com/products/
polyspace.html

[19] Vector. “VectorCAST.” https://www.vector.com/int/en/
products/products-a-z/software/vectorcast/
(accessed Mar. 30, 2023).

[20] P. Panchal, W. Bliemetsrieder, N. Sorokina, and S.
Myschik, “Real-Time Verification of A Battery Slave
Controller Developed Using a DO-178C/DO-331
Based Process-Oriented Build Tool,” in AIAA
AVIATION 2023 Forum, San Diego, CA and Online,
2023, doi: 10.2514/6.2023-3992.

[21] Lauterbach. “Microprocessor Development Tools.”
https://www.lauterbach.com/frames.html?home.html
(accessed Mar. 30, 2023).

[22] FSD, SimPol - Simulink® – Polarion® Connector.
https://www.fsd.lrg.tum.de/software/simpol/: TUM.
[Online]. Available: https://www.fsd.lrg.tum.de/
software/simpol/

[23] CloudBees. “Jenkins - Build great things at any scale.”
https://www.jenkins.io/ (accessed Mar. 30, 2023).

[24] L. Hein and S. Myschik, “Simulation of an Electric
Powered Aircraft for Flight & Mission Performance
Evaluation,” in AIAA AVIATION 2022 Forum,
06272022, doi: 10.2514/6.2022-3572.

[25] L. Hein, P. Panchal, and S. Myschik, Eds.,
Certification Compliant Performance Analysis and
Requirements Management of an Electrically

Powered General Aviation Aircraft, 2023.
[26] S. A. ARP4754A, Guidelines for Development of Civil

Aircraft and Systems. 2010. RAS.
[27] Ulrich Eisemann, “Applying Model-Based Techniques

for Aerospace Projects in Accordance with DO-178C,
DO-331, and DO-333,” in 2019. [Online]. Available:
https://api.semanticscholar.org/CorpusID:201691706

[28] STMicroelectronics, STM32CubeIDE - Integrated
Development Environment for STM32 -
STMicroelectronics. [Online]. Available: https://
www.st.com/en/development-tools/
stm32cubeide.html

[29] NXP, S32 Design Studio IDE. [Online]. Available:
www.nxp.com/design/software/development-
software/s32-design-studio-ide:S32-DESIGN-
STUDIO-IDE

Deutscher Luft- und Raumfahrtkongress 2023

9©2024

