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Abstract
This paper discusses the benefits of using ensembles of neural networks for safety-critical tasks in an aircraft. The
advantages of increased performance, uncertainty assessment of predictions and redundancy are highlighted. This is
done using the example of an AI-based system to detect other aircraft. The system uses a stereo vision approach with
two cameras to determine the distance to other aircraft. It is shown how by averaging predictions over an ensemble
of five object detectors the detection rate and the accuracy of distance predictions can be improved over a single
neural network.
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1. INTRODUCTION

Fully autonomous flights are a long-standing goal of the
aviation industry. In recent years, the significant progress
in Artificial Intelligence (AI) has brought us one step
closer to this goal. For example, Machine Learning (ML)
algorithms utilizing deep neural networks have brought
significant advances to the field of computer vision. This
becomes particularly evident in tasks like object classifi-
cation and object detection [1], which are essential for
enabling autonomous mobility. However, to safely inte-
grate AI into newly developed aircraft systems, a variety
of new AI-related challenges must be addressed, such
as constitution of training data and securing the learn-
ing process [2]. Current standards for aircraft software
development, such as ED-12C/DO-178C [3], do not ad-
dress these challenges and therefore cannot be used to
develop AI-based systems. Therefore, the creation of
new standards adapted to AI development is necessary.
Amongst others, the European Union Aviation Safety
Agency (EASA) is currently working towards the certi-
fication of ML-based systems for safety-critical tasks in
aerospace. As a deliverable of EASA’s AI roadmap [4]
a concept paper titled "First usable guidance for Level
1 & 2 machine learning applications" was published in
early 2023 [5]. This guidance document contains a set
of anticipated objectives that must be fulfilled for certifi-
cation. One objective stated in the guideline is to ensure
that ML models can effectively generalize on operational
input data. Generalization refers to the ability of an ML
component to perform its task for inputs that were not
previously encountered in the training data. Currently,
however, the generalization ability and accuracy of single
neural networks are far below the performance required
to be reliably used for safety-critical tasks in aviation.
This holds especially true for perception tasks like object

classification and object detection, where the vast input
space of images cannot be fully covered by the avail-
able training data. Another objective from the EASA
guideline is the provision of indications on uncertainty
and reliability by AI-based components regarding their
outputs [5]. In order to be able to prevent hazardous sit-
uations introduced for example by false detections, trust-
worthy uncertainty assessment is indispensable for each
prediction. Consequently, improved performance and the
ability to estimate own uncertainty are necessary prereq-
uisites for employing ML in safety-critical systems.
A common design pattern for systems based on ML are
so-called ensembles [6]. The concept behind ensembles
is to combine the predictions of multiple ML models to
attain better predictions than what a single model could
achieve, by means of "collective intelligence". It was
firstly shown in [7] that creating ensembles of neural net-
works can improve the generalization ability of the sys-
tem. Since then, neural network ensembles have been
successfully applied in various fields such as healthcare
[8], finance [9], and meteorology [10]. To use ensembles
effectively, it is important to have a high degree of di-
versity between the individual models [11]. Diversity in
ensembles can, for example, mitigate the consequences
of overfitting [12]. Overfitting refers to a common prob-
lem in ML where models are to strongly adapted to the
training data and therefore perform poorly when faced
with unseen data, i.e. they generalize poorly. The us-
age of neural network ensembles for flight systems could
have at least the following three benefits: First, ensem-
ble techniques have proven to be capable of achieving
improved performance when compared to single neural
networks. Second, ensembles can provide a measure of
uncertainty for each prediction. Third, neural network
ensembles increase the dependability and robustness of
the function.
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In this paper the application of neural network ensem-
bles is analyzed for an advanced air mobility use case.
An ensemble of object detectors based on Yolov7 [13]
evaluates images provided by two cameras to estimate
the distance to an aircraft in order to identify a potential
hazard, i.e. a shortfall below the permissible minimum
distance. The distance-estimation system is analyzed on
a set of test images created using the open-source flight
simulator FlightGear [14]. The distance predictions are
analyzed for their accuracy and uncertainty.
This paper is organized as follows: In Section 2 back-
ground information is provided about object detection,
ensembles and uncertainty in ML. The following Section
3 describes the ensemble-based distance-estimation sys-
tem and provides an explanation of the test experiment.
Section 4 displays the test results regarding accuracy and
uncertainty. Section 5 is discussing the results as well as
further advantages and challenges of ensembles in regard
to redundancy before the paper is concluded by Section
6 which provides a summary and an outlook on further
research.

2. BACKGROUND

2.1. Object Detection

Compared to classical image classification, object de-
tection algorithms not only identify the classes of ob-
jects present in the image, but also estimate their posi-
tions in pixels. The positions are represented by so-called
bounding-boxes that fit tightly around each identified ob-
ject (see Figure 1). This additional spatial information
can be used, for example, to track the movement of iden-
tified objects. When using object detection there are
two aspects to consider; firstly, that the network cor-
rectly identifies and classifies the object, and secondly,
that size and position of the bounding box adequately
represent the actual object. During training and testing,
a detection is considered correct (true positive) only if
the classification of the object is correct and the Inter-
section over Union (IoU) between the detected box and
the ground truth box which comes annotated with the
data is above a certain threshold. The IoU between two
bounding boxes A and B is defined as follows:

IoU(A,B) =
A ∩B

A ∪B
=

Area of Intersection
Area of Union

This paper encourages the usage of the IoU value of
all bounding boxes from the different ensemble mem-
bers that belong to a particular object as described in
Section 4. In object detection two types of errors are
usually distinguished: False positives, i.e., detected ob-
jects that are not actually present, and false negatives,
i.e., actual objects that have been missed by the detec-
tor. Furthermore, neural networks are often evaluated
using two metrics: precision and recall. Precision is the
number of true positives divided by all positives, i.e., how
many detections made by the model are actually existent
objects. Recall is the number of true positives divided by

the total number of ground truth objects, i.e., how many
of the existing objects were correctly detected. Depend-
ing on the application, a high precision or a high recall
may be more desirable.
In recent years, a variety of object detectors have been
proposed. Object detectors are commonly categorized
into two classes: two-stage and one-stage detectors [15].
Two-stage detectors first propose a set of regions in an
image where objects might be present. In the second
stage, these regions are analyzed and bounding boxes are
proposed. With one-stage detectors the region proposal
stage is omitted and bounding boxes are predicted di-
rectly. Two-stage detectors have slightly higher accuracy,
but they are also slower. Therefore, one-stage detectors
are often preferred when it comes to applications that
require real-time detections. One-Stage detectors based
on the You only look once (Yolo) algorithm are among
the most popular. Our distance-estimation system uses
the Yolov7 object detector [13] to identify aircraft and
generate bounding boxes.

FIG 1. Detection of an object of the class "airplane" repre-
sented by a bounding box.

2.2. Ensemble Learning

The concept of ensembles in ML showed first major
progress in the early 1990s and has since seen a steady
increase in relevance in research [12]. Today, there
are many different approaches to implementing neu-
ral network ensembles. One of the most well-known
approaches to ensemble learning is the bootstrap aggre-
gation method, also known as bagging. The concept of
bagging was originally introduced in 1996 [16]. The idea
of bagging is to train multiple models on different data
sets sampled from an original data set and aggregate
the individual prediction results. For the creation of the
different training data sets the bootstrapping strategy
is used. Bootstrapping is a process in which individual
training samples are randomly selected from the original
data set to create a new data set. Each individual data
sample can be selected again for the same bootstrap
data set. This means that individual samples from
the original data set may appear more than once or
not at all in a new data set. Usually each bootstrap
data set contains the same amount of samples as the
original data set. Figure 2 visualizes the approach. Each
sampled data set is used to train an ML model. During
inference, the predictions of all models are aggregated

2

Deutscher Luft- und Raumfahrtkongress 2023 

©2024



to obtain a more robust prediction. Depending on the
problem type (regression or classification), predictions
are aggregated by averaging or voting. It is possible to
weight predictions differently or to filter out individual
predictions. In addition, different voting strategies can
be applied, depending on whether precision or recall is
more important for the particular application. For an
object detection system, high precision would mean that
more detections would belong to actual objects and that
we would receive fewer false alarms. However, it is also
more likely that the system will miss actual objects which
can lead to dangerous situations. On the other hand,
a high recall ensures that more objects are detected,
but at the cost of more false alarms. The aggregation
leads to less variance in the predictions and therefore
improves the performance of the system. Examples for
other common ensemble methods are boosting [17] and
stacking [18]. In the experiment described in this paper,
the bagging approach was used to create an ensemble
for our system and obtain distance predictions.

FIG 2. Example for bootstrapping data sets. From a small
data set of five samples three data sets were created
by applying bootstrapping.

2.3. Uncertainty

For an AI-based system to be sufficiently trustworthy to
be used for a safety-critical task, it must be able to ex-
press how certain a prediction is. If the uncertainty is
high, it is then possible to switch to a non-AI compo-
nent. Modelling uncertainty in AI is a highly active re-
search topic [19]. In ML, a general distinction is made
between two types of uncertainty: aleatory uncertainty
and epistemic uncertainty [20]. Aleatoric uncertainty is
the inherent uncertainty in the data and cannot be re-
duced by adding more data to the training. Aleatoric
uncertainty can be further divided into homoscedastic
and heteroscedastic uncertainty. Homoscedastic uncer-
tainty is constant and independent of the input data.
Heteroscedastic uncertainty, on the other hand, depends
on the input and can therefore be different for each sam-
ple. In object detection aleatoric uncertainty can oc-
cur, for example, in the form of image noise or motion
blur, but also due to occlusion or lighting. On the other
hand, epistemic uncertainty describes the uncertainty of
the model. Epistemic uncertainty can arise, for exam-
ple, from overfitting or an insufficient amount of training
data. Unlike aleatoric uncertainty, epistemic uncertainty

can be improved by adding new training data. There are
different techniques to model the different types of uncer-
tainty. A popular approach to estimate uncertainty are
Bayesian Neural Networks (BNN). In BNNs weights are
represented by distributions instead of fixed scalars. On
each pass through the network a random sample value
is picked from each weight distribution, leading to differ-
ent outputs. The distribution of results helps to estimate
uncertainty and reduce overfitting predictions. The pos-
terior distribution of a BNN represents the epistemic un-
certainty of the model [20]. However, calculation of the
posterior distribution is not possible in general [21]. For
this reasons techniques to approximate BNNs were cre-
ated. In [22] it was shown that neural network ensembles
can be used as an alternative to BNNs to estimate uncer-
tainty. The authors see the advantage of using ensembles
for uncertainty estimation in the ease of implementation
and strong performance compared to other methods. In
our experiment, the use of an ensemble also allows us to
estimate the uncertainty for each prediction. The total
number of positives, the distribution of the result values,
and the IoU between the bounding boxes are considered
together to assess uncertainty.

3. APPROACH

To investigate the utility of neural network ensembles
for a potential use case in aviation, experiments were
conducted with an exemplar distance-estimation system.
The system is based on object detection and stereo vision
with two cameras. The usage of two individual cameras
positioned at a fixed distance from each other facing in
the same direction makes it possible to calculate the dis-
tance to an object. The two cameras both simultaneously
take images from the same scene. The Yolov7 object
detector [13] is then used to generate bounding boxes
around objects on both images. The disparity between
the centers of corresponding bounding boxes in both im-
ages is used to calculate the distance to that object using
the formulas from [23]. In the experiments, the distance
between the cameras was set to 10 meters, the field of
view of the cameras was 73.6°, and the image width was
960 pixels. It should be noted that with this method
of distance calculation, the distance increases exponen-
tially, inversely to the pixel disparity between the bound-
ing boxes (see Figure 3). This means that for distant
objects, where pixel disparity between bounding boxes is
low, the number of possible distance prediction results is
small and the calculations become less accurate. Increas-
ing the distance between the two cameras or increasing
the number of pixels per degree of view can improve the
applicability of the system at longer distances. However,
care must always be taken to ensure that objects are
fully visible on both camera images, otherwise false re-
sults will be obtained due to incorrect center points of
the bounding boxes. The system is tested in a virtual
environment provided by the open source flight simulator
FlightGear [14].
FlightGear offers the possibility to easily create own sce-
narios, so that models of other aircraft can be placed
at any desired position. Furthermore, it has a large li-

3

Deutscher Luft- und Raumfahrtkongress 2023 

©2024



FIG 3. This Graph displays the relationship between the cal-
culated distance and the disparity in pixels between
the two images for the parameters used in the ex-
periment: Distance between the two cameras of 10
meters, field of view of the cameras of 73.6° and
image width of 960 pixels.

brary of aircraft models available to use and also pro-
vides different environmental settings. To evaluate the
performance of our ensemble, a set of test data scenes
was created using FlightGear. For this, analogous to the
distance-estimation system, two cameras were defined in
FlightGear with the same parameters to capture images
of predefined scenes. All scenes consist of a single aircraft
viewed from different angles and distances under differ-
ent environmental conditions. In the scenes three models
of different-sized aircraft were used (373-300, 787-8 and
A340-600). The images of the aircraft models were taken
from four different angles, each differing by 90 degrees,
i.e., from the front, from the rear, from the left, and from
the right, and from five different distances for each angle.
This was done under three different daytime settings as
well as in a winter setting (see Figure 4). The result is
a test set consisting of 240 annotated pairs of images (5
distances * 4 angles * 4 day times * 3 aircraft models).
Table 1 provides an overview of the distances used in the
data set. Each sample from the test data set consists of
the two camera images annotated with the distance to
the object as ground truth. The ground truth distance
was calculated from the earth coordinates of the aircraft
model and the distance-estimation system. It should be
noted that the test cases are purely designed to demon-
strate the advantage and not to replicate a real-world
scenario. The authors are well aware that for real-world
application of such a system the necessary operational
distance would have to be identified and parameters and
cameras must be chosen accordingly.
To create the different object detection models, we used
the bootstrapping method as the first step of bagging
as described in Section 2. The base data set for train-
ing consisted of 4500 images from the OpenImages data
set [24]. All images used were labelled as "Airplane" and
without the attributes "Truncated", "GroupOf", "Depic-
tion" and "Inside". We used Yolov7 to train five models
on different bootstrap data sets of 4500 training images.

# Samples Distance in m Perspective
12 82 Rear
24 111 Left/Right
12 112 Front
12 131 Rear
12 161 Front
12 180 Rear
12 210 Front
24 222 Left/Right
12 228 Rear
12 258 Front
12 277 Rear
12 307 Front
24 333 Left/Right
24 444 Left/Right
24 556 Left/Right

TAB 1. Overview of samples

All 5 models were trained for 150 epochs each with a
batch size of 24 and an image size of 640x640. To as-
sess the performance of the ensemble, each test sample
was evaluated by each of the five object detection mod-
els, such that 5 distance estimates per test sample were
available in case none of the detectors missed the de-
tection. For comparison, another model was trained on
the entire base training data set without applying any
ensemble techniques. The same test data set was evalu-
ated by this single network to obtain results that can be
used for comparison between the ensemble and a single
neural network. The confidence-threshold for yolov7 was
set to 0.7 and the IoU-threshold to 0.7 for all tests.

FIG 4. The four different daytime settings used in the
demonstration. Noon in summer (top left), noon in
winter (top right), evening in summer (bottom left)
and morning in summer (bottom right)

4. RESULTS

The top diagram in Figure 5 displays the distance predic-
tions of all five ensemble members in comparison to the
ground truth distance. The ability of the system to de-
termine the distance is clearly visible. For test cases with
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FIG 5. Top: Predictions of the five ensemble networks versus ground truth distance for all 240 test cases. Bottom: Average
value of the five ensemble members predictions versus ground truth distance for all 240 test cases

short ground truth distance the predictions tend to be
very close. For the test cases with higher ground truth
distances, the deviations are significantly higher, which
is not surprising due to the relation shown in the Fig-
ure 3. However, individual outlier predictions can also be
found in the test cases with a short distance. The reason
for this are inaccurate bounding boxes by the object de-
tector. Overall, the predictions for the test cases where
the aircraft was seen from the side were more accurate
than those from the front or rear. It is also noteworthy
that the predictions of the five models always tended to
be slightly different. Often there were four or even five
different estimates provided for one and the same test
case. For large distances, this led to prediction differ-
ences of over 100 meters between ensemble members. In
the bottom diagram of Figure 5 the average values of
the five detectors are compared with the ground truth.
If a network failed a detection, it was excluded from the
average calculation of that test case. Here, the outliers
were largely mitigated.
Overall, the ensemble was able to provide a prediction
for 236 of the 240 test cases, meaning that at least one
network in the ensemble detected the aircraft on both
camera images so that a distance calculation could be
performed. The four samples for which all five ensemble
members could not identify the aircraft were all images
of the 373-300, the smallest aircraft in the test set,
taken from the front in winter conditions. This indicates
an issue with the training data set which can possibly

be resolved by adding appropriate images. On the other
hand, the single network could not detect the aircraft in
21 test cases. This clearly shows a better recall of the
ensemble, that has failed in significantly fewer tests and
thus offers a higher level of safety.
However, if the average is simply taken as the result,
it may happen that individual bad or wrong predictions
strongly influence the result and worsen the overall
prediction. Therefore, it makes sense to implement a
method that detects outliers and excludes them from
the calculation. Methods such as the interquartile range
(IQR) method could help here. With a higher number of
ensemble members the outlier detection becomes more
reliable. We applied a simple approach to our ensemble
prediction results, where the highest and lowest values
are ignored in the average calculation if all five networks
provided a prediction (averaging without extremes).
If for a test sample one or more ensemble members
could not give a prediction due to lack of detection, the
average was calculated normally. This method resulted
in an improvement, albeit slight, in predictions regarding
the average deviation from ground truth (see Table
2). With more sophisticated averaging methods and
more ensemble members, further improvements can be
expected. Additionally, the average deviation between
the median of the ensemble predictions and the ground
truth was calculated. The value was slightly higher than
that of the two averaging methods. In general, the
difference in average deviation was rather small between
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the three methods considered. However, compared to
the single network, all three methods showed an accuracy
advantage of about 20%. These benefits become even
larger if the test cases where the single network failed are
omitted from the average calculation for the ensemble
methods. In this case, for the "averaging w/o extremes"
method, the average deviation is only 7.8479 m.

Avg. Deviation from
Ground Truth in m

Ensemble Avg. 8.6902
Ensemble Avg. w/o Extremes 8.6107
Ensemble Median 8.7559
Single Network 10.8181

TAB 2. Average deviation of all test cases from ground truth
distance for four different approaches ignoring failed
detections

The general benefit of employing ensembles for this
distance determination method, reliant on object detec-
tion, becomes clearly evident upon examining the results
for the most distant test cases showcased in Figure
6. Among the total of 24 test samples, the ensemble
approach "averaging w/o extremes" provided predictions
closer to the ground truth for 18 test samples, whereas
the single network’s predictions were closer for only
three test samples. Since an image represents real space
in pixels, the number of possible positions for object
detection is limited at any time. The usage of multiple
detectors allows the fusion of individual results and
therefore a more fine-grained distance estimation. The
results provided by the ensemble may be closer to ground
truth than is possible with a single neural network.

FIG 6. Comparison of the prediction results of the ensemble
and the single network for the test samples with a
556 m ground truth distance

However, the ensemble also performed better on test
samples with shorter distances, where the intervals be-
tween the possible predictions of the single network are
smaller. This is exemplified, as depicted in Figure 7. For
the test samples with 222 m distance the ensemble ap-
proach "average w/o extremes" achieved the closer result
in 20 out of 24 cases.
To estimate the uncertainty of the prediction based on
the ensemble, it is intuitive to first look at the number
of detectors that identified each object. The bounding

FIG 7. Comparison of the prediction results of the ensemble
and the single network for the test samples with a
222 m ground truth distance

boxes of each detector can be matched and assigned to
objects based on their IoU, and a voting strategy can be
applied to distinguish between valid and invalid detec-
tions, similar to [25]. Furthermore, uncertainty is typi-
cally evaluated through the examination of the variance
within the predictions. However, for object detection
tasks it might also be useful to consider the IoU value
between bounding boxes during uncertainty estimation.
IoU is usually calculated to determine the similarity be-
tween two bounding boxes, but can also be calculated
for multiple bounding boxes. For this purpose, the inter-
section area covered by all bounding boxes is divided by
the area of the polygon resulting from the union of all
bounding boxes. Figure 8 displays the relationship be-
tween the ground truth distance of the test sample and
the IoU between all bounding boxes of the results, aver-
aged between the left and the right image. False negative
predictions by single ensemble members were ignored for
the IoU calculation. Test cases with only one or zero
detections are also excluded, since the IoU here is 1 or
undefined, respectively, by definition. A trend can be
seen that for longer distances the IoU decreases. This is
mainly due to the fact that the objects appear smaller at
a greater distance and thus small pixel differences in the
bounding boxes are more significant.

FIG 8. IoU values in relation to the ground truth distance
of the test samples. The colors distinguish between
test sample with images from a front/rear view and
from a side view.

Figure 9 shows the IoU of each test sample in relation
to the deviation between ground truth and the ensemble
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prediction average. It becomes visible that a lower IoU
value does not necessarily mean a bad prediction. This
is because the detection bounding boxes by the different
networks may spread apart from each other leading to a
low IoU while having a low deviation from ground truth
after averaging. Anyway, since an uncertain prediction
is not necessarily an inaccurate prediction, this does not
say that IoU cannot be used as a criterion to assess un-
certainty. A high IoU value between the bounding boxes
indicates that the ensemble is jointly certain that the ob-
ject is at that position. Therefore we propose looking at
the IoU in order to estimate the uncertainty in an en-
semble. The prerequisite for this is, of course, that the
ensemble had shown both good precision and recall in the
tests. However, how the IoU between all ensemble pre-
dictions can be integrated systematically and effectively
into the uncertainty assessment should be investigated in
future work.

FIG 9. IoU values in relation to the deviation from ground
truth distance in m of the test samples.

5. DISCUSSION

5.1. Performance

Although the rather simple ensembling approach of bag-
ging was chosen, advantages of the ensemble could be
shown. In terms of performance, the number of failed
tests, i.e. undetected threats, was significantly reduced
compared to the single network ( 4 compared to 21). Av-
eraging the individual prediction results generally yielded
more accurate results, especially test for test cases with
longer distances. The networks trained on real-world im-
ages from the OpenImages data set performed overall
well on the self-crafted FlightGear test set. However, the
tests were designed to be simple (only one clearly distinct
object in each pair of images) and did not include nega-
tive test cases, i.e. test cases where no object is present.
Since ensembles also increase the probability of false pos-
itives of individual networks, such test cases should also
be considered in future research. It would also be in-
teresting to see how the ensemble would perform with
video sequences instead of frames, as videos better rep-
resent real-world use of the system. Videos would also
allow tracking information to be included in the uncer-
tainty assessment. For our ensemble, the number of five
networks was chosen rather arbitrarily. Finding the opti-

mal number of networks in an ensemble is not straight-
forward and depends on the task and the availability of
computing resources and high-quality training data. The
number of networks must be high enough to ensure suffi-
cient diversity, but as the number increases, the computa-
tional cost increases linearly, while beyond a certain point
there is only marginal improvement or even performance
degradation. Therefore, remaining accuracy deficiencies
cannot be simply compensated by adding more ensemble
members, but other strategies must be applied. Further-
more, the experiment used an ensemble of homogeneous
detectors, as all five used the Yolov7 algorithm and archi-
tecture. For more diversity, it would be worth consider-
ing using different object detectors. For example, if time
requirements permit, one-stage and two-stage detectors
could be combined. Such an ensemble could benefit from
the advantages of both detector types.

5.2. Redundancy

An important concept in safety is redundancy of compo-
nents, so that in the event of a failure, a backup compo-
nent can continue to perform the function. The safety
provided by redundancy can be further enhanced by us-
ing dissimilar versions of that component in order to re-
duce the risk of common cause errors. In software devel-
opment, this principle is called n-Version Programming.
ED-12C/DO-178C [3] refers to this method as Multiple-
Version Dissimilar Software. Neural network ensembles
use multiple-version dissimilarity by default. By far the
most common errors in neural networks are false predic-
tions caused by the models weights. By combining differ-
ent models that make errors on different subsets of the
input space, errors of individual networks can often be
compensated for [7]. This could also be observed during
the studies on our distance-estimation system. In only
four test cases could none of the five networks detect
the potential threat. The average number of failed de-
tections for all ensemble members was 20.6 on all test
cases. The detector with the fewest failed detections
missed to identify the aircraft in both images for 10 test
cases. However, there still were many similarities among
the members in our ensemble. By using different object
detectors and independent data sets for training, the di-
versity in the ensemble could be increased. In general
though, despite being an active research topic, there is
no general consensus of how diversity should be measured
and how diversity can most effectively be utilized in en-
sembles. Another argument in favor of using redundancy
through ensembles is increased security against the most
common attacks on neural networks. In poisoning at-
tacks, malicious data is introduced into a training data
set by an attacker. Manipulating all members of an en-
semble simultaneously is difficult when distinct training
data sets are used. In addition, the use of an ensem-
ble can increase the resilience to the effects of a single
manipulated member. Also, the independence of errors
should lead to greater robustness against adversarial at-
tacks [26], where an attacker causes small perturbations
to the input data in order to cause false predictions. The
individual members of the ensemble can also run on inde-
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pendent hardware, which further increases dependability.
In this case a hardware fault of one instance will not
result in a failure of the entire ensemble unless the ag-
gregation unit is affected. It is also possible to identify
faulty ensemble members by monitoring predictions and
detecting frequent strong deviations from the average.
Affected networks can then be given smaller weights in
the decision-making process or be ignored completely.
While this paper has highlighted advantages of ensem-
bles, there are also drawbacks of their usage. An ob-
vious disadvantage of using ensembles is the higher ef-
fort for training and implementation and larger demand
of computational power. To achieve the highest diver-
sity, it would be necessary to create a separate indepen-
dent training data set for each individual neural network
such that no identical data samples appear in multiple
sets. In practice, creating a single data set taking into
account all quality features can already present a chal-
lenging and laborious task. Techniques, such as boot-
strapping, can help to some extent but result in less in-
dependence between networks. For example, incorrectly
annotated data in the training set can then affect mul-
tiple trained networks. Neural network verification and
explainability which are essential for certification accord-
ing to EASA’s AI guideline [5] would also have to be
applied to all individual models. This would significantly
increase the complexity of system certification. Also the
temporal aspect in ensembles must be considered. In
a real-time application, care would have to be taken to
ensure appropriate synchronization of all networks.

6. CONCLUSION

This paper is intended to motivate research on using en-
sembles for safety-critical perception tasks in aviation by
highlighting desirable properties. It was demonstrated
how an ensemble of five object detectors improved the
performance of a conceptual distance-estimation system
over a single detector. FlightGear was used to create
a test set of different scenes for which the ensemble
was used to determine the distance to an aircraft model.
Compared to the single detector network, a smaller devia-
tion from the ground truth value was observed on average
for the ensemble. Furthermore, the ability of ensembles
to estimate uncertainty in its predictions and the advan-
tages of the inherent redundancy were highlighted. In
our opinion the improved performance, the uncertainty
estimation and the redundancy of ensembles are essen-
tial to achieve the best possible performance for AI-based
systems in safety-critical computer vision tasks.
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