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Abstract
In an effort to improve the accuracy of numerical investigations of air-blast atomization in jet engines, the poten-
tial of the new Meshless-Finite-Mass method (MFM) is being investigated. Since this method is not yet equipped
to handle engineering applications, MFM is extended to include surface tension effects. The surface tension
model is validated against droplet oscillation benchmarks. Subsequently, this novel method is compared to an
established method, the Smoothed Particle Hydrodynamics in a new, simplified primary atomization benchmark
case, where a significant improvement is observed.
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NOMENCLATURE

Symbols

A⃗ effective face area m2

a numerical speed of sound m/s

c̃ inter-particle density averaged color

c color function

d number of dimensions kg

total specific energy J/kg

EEE matrix for the moving least squares gradi-
ent estimator

FFF flux tensor

f⃗ acceleration vector m/s

f arbitrary scalar field

γ polytropic exponent

h smoothing length m

III identity tensor

κ curvature 1/m

m mass kg

n⃗ interface normal vector m

ω kernel normalization term

p pressure N/m2

ψ volume fraction

ρ density kg/m3

σ surface tension N/m

t physical time

τττ shear stress tensor

U⃗ state vector

u⃗ velocity m/s

V volume m3

W kernel function

x⃗ coordinates m

Indices

0 reference value

i associated with particle i

j associated with particle j

surf surface tension

visc viscous

Abbreviations

CFD Computational Fluid Dynamics

CSF Continuum Surface Force

MFM Meshless Finite Mass

MLS Moving Least Squares

SPH Smoothed Particle Hydrodynamics
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1. INTRODUCTION

It is to be expected that for the foreseeable future the
majority of jet engines will continue to be operated us-
ing liquid fuel in the form of either kerosene or sus-
tainable aviation fuels. Therefore, liquid fuel atomiza-
tion is a key process in the continuing research ef-
fort aiming to lower the emissions of pollutants like
NOx and soot. The fuel atomization process in jet en-
gines is realized through air-blast atomizers in which
a thin film of fuel is disintegrated through the shear
stress imposed by the surrounding air flow. This pro-
cess can be divided into primary atomization and sec-
ondary atomization domains, the former being the fo-
cus of the present study. In the primary atomization
domain close to the atomization edge the flow is not
only characterized by high pressures and tempera-
tures but also by a very dense spray consisting of non-
spherical liquid fragments. These conditions make
experimental investigation highly expensive and com-
plex, if not impossible. Consequently, numerical anal-
ysis is the method of choice.
However, the numerical investigation of primary atom-
ization is also uniquely challenging, most importantly
due to the extremely broad range of length scales with
the domain size determined by the nozzle geometry
in the order of centimeters and the smallest resulting
droplets in the order of a few micrometers. Fur-
thermore, the disintegration of the liquid film entails
extreme deformation of the interface between liquid
and gaseous phase, posing numerical challenges for
the employed methods. Consequently, while mesh-
based Eulerian approaches are predominantly used
in most technical applications of computational fluid
dynamics (CFD), particle-based Lagrangian methods
offer some advantages regarding the investigation
of primary atomization. The phase interfaces and
its deformation are inherently captured due to the
Lagrangian nature as the particles are advected
with the flow. Furthermore, these methods exhibit a
superior performance in highly parallelized simula-
tions, facilitating the utilization of a higher number of
cores, thereby reducing the wall-clock time of massive
high-fidelity simulations [1].
Smoothed Particle Hydrodynamics (SPH) is an estab-
lished tool in this realm and has been numerously em-
ployed [1–4]. This method was originally developed
for astrophysical applications [5, 6] but has long been
employed in an engineering context [7]. However, in
comparison to mesh-based methods, SPH is less ma-
ture and therefore requires further research efforts for
further method development. Crucial to the investiga-
tion of air-blast atomization, SPH exhibits excessive
numerical dissipation in turbulent flows [8].
Similar to the emergence of SPH, a new Lagrangian
methods has been gaining popularity in the as-
trophysics community, the Meshless-Finite-Mass
method (MFM) [9]. This new method can be clas-
sified as a Lagrangian Finite-Volume method and
promises to improve on SPH, critically alleviating the
excessive numerical dissipation in turbulent applica-

tions. As the use of MFM so far has been limited to
the astrophysics community, the method lacks some
necessary features for engineering applications. Most
crucial is the addition of a surface tension model in
order to facilitate multi-phase simulations. By virtue of
the similarity between SPH and MFM though, models
developed for the former can be transferred to the
latter. Therefore, as a first step, the commonly used
SPH surface tension model developed by Adami et
al. [10] is implemented into the open source MFM
code GIZMO [9]. Additionally, a new MFM-native
surface tension formulation is developed. Both for-
mulations are evaluated through an oscillating droplet
benchmark.
The validation of an MFM implementation incorpo-
rating surface tension effects enables for the first
time a comparison with SPH in industrially relevant
multi-phase flow applications. The enormous com-
putational cost as well as the lack of other necessary
features such as appropriate boundary conditions
preclude a comparison of complete, high-fidelity
primary atomization simulations [1–4]. Therefore, an
analogon is needed. The Kelvin-Helmholtz instability
is an ideal candidate for this, as it is one of the primary
instabilities in air-blast atomization, as well as a com-
monly used benchmark case [9, 11–13]. In order to
comply with the limitations of the present MFM code,
a numerical setup similar to the one described by
Lecoanet et al. [11] is combined with a physical con-
figuration akin to the liquid atomization as described
by Chaussonnet et al. [3]. As a reference point, the
MFM simulations are compared to results obtained
with turboSPH, the same SPH code that was used
for previous primary atomization simulations [1–4]
and was specifically designed for application in this
field. A comparison of the resulting flow fields and
discussion of the influence of spatial resolution finally
enables an early but qualified analysis of the potential
of MFM in a primary atomization context.

2. NUMERICAL METHODS

In this section the fundamental principles behind the
employed numerical methods will be outlined. A more
rigorous derivation can be found in the appropriate lit-
erature, e.g. [14] and [9] for SPH and MFM, respec-
tively.

2.1. Smoothed Particle Hydrodynamics

In SPH, each particle i is associated with a finite frac-
tion of the fluid with a constant mass mi and is ad-
vected with the fluid velocity ui. Using a smoothing
kernel W , the value fi of an arbitrary scalar field f(x⃗)
at the position x⃗i of particle i can be approximated
through weighted summation over its neighbors j as

(1) ⟨f⟩i = ⟨f(x⃗i)⟩ =
∑
j

f(x⃗j)VjW (x⃗i − x⃗j, h) .
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The gradient of f can be approximated accordingly us-
ing the kernel gradient ∇⃗W , which can be derived an-
alytically:

(2) ⟨∇⃗f⟩i =
∑
j

f(x⃗j)Vj∇⃗W (x⃗i − x⃗j, h) .

In Equations (1) and (2), h denotes the smoothing
length, the characteristic length scale of the smooth-
ing kernel. The particle volume Vi is computed from
the constant particle mass mi and the density ρi.
The density is approximated using the multi-phase
formulation by [15]:

(3) ⟨ρ⟩i = mi
∑
j

VjW (x⃗i − x⃗j, h) .

The momentum equation is formulated as

⟨du⃗
dt

⟩i =
∑
j

(pi + pj)

ρiρj
mj∇⃗W (x⃗i − x⃗j, h)

+f⃗visc,i + f⃗surf,i .

(4)

The viscous term is modelled using the approach by
Szewc [16] and surface tension forces are discussed
in depth in section 3. In order to close the set of equa-
tions, the pressure p is linked to the density ρ through
the barotropic, weakly-compressible equation of state
[17]:

(5) p− p0 =
ρ0a

2

γ

[(
ρ

ρ0

)γ

− 1

]
,

Here, a is numerical speed of sound, γ the polytropic
exponent and the index 0 denotes the reference values
of pressure and density.

2.2. Meshless-Finite-Mass

MFM is a Lagrangian member of a class of Arbitrary
Langrangian-Eulerian (ALE) mesh-free methods de-
veloped by Hopkins [9,18], based on the work of Lan-
son and Vila [19, 20]. It is implemented in the open
source code GIZMO, which is a highly modified ver-
sion of Gadget [21]. It can be derived from the set of
transport equations for mass, momentum and energy
in an ALE frame of reference:

(6) ∂U⃗

∂t
+ ∇⃗ · (FFF − u⃗frame ⊗ U⃗) = 0⃗ ,

wherein u⃗frame is the frame velocity of the individual
particles. The state vector U⃗ and the flux tensor FFF are
given by

(7) U⃗ =

 ρ

ρu⃗

ρe

 ,

(8) FFF =

 ρu⃗

ρu⃗⊗ u⃗+ pIII − τττ

(ρe+ p)u⃗

 .

Here, u⃗ denotes the velocity, e the total specific energy,
p the pressure, τττ the shear stress tensor and III the
identity tensor. Note that the energy equation is not
solved in this study as only isothermal flows are con-
sidered. As MFM is a Lagrangian method, the frame
velocity u⃗frame is set to the fluid velocity u⃗.
Like in SPH, the kernel function W with its smoothing
length h is used to discretize the domain. For every
point x⃗ a volume fraction Ψi associated with a particle
i is determined by

(9) ψi(x⃗) =
1

ω(x⃗)
W (x⃗− x⃗i, h) ,

(10) ω(x⃗) =
∑
j

W (x⃗− x⃗j, h) .

The ’effective’ volume of a particle i is then

(11) Vi =

∫
ψi(x⃗)dx⃗ .

However, unlike in SPH, gradients are not approxi-
mated using the kernel gradient, but rather through a
second-order accurate, locally centered least-squares
matrix gradient estimator. In combination, this is used
to rewrite (6) in a Galerkin-type approach as

(12) d

dt
(ViU⃗i) +

∑
j

F̃̃F̃F ij · A⃗ij = 0⃗ .

It is important to note that Aij is not a geometric face
area but rather an ’effective face area’ that is moving
with a frame velocity such that mass is conserved on
both sides of the face. The flux F̃̃F̃F ij at the interface is
the solution of a Riemann problem between particles
i and j. This Riemann problem is solved employing
an HLLC Riemann solver [22].

3. SURFACE TENSION MODEL

Most surface tension models for SPH can be grouped
into one of two categories: Pseudo-molecular models
[23] or Continuum Surface Force (CSF) models [24].
In the context of primary atomization, CSF models,
specifically the formulation by Adami et al. [10] have
proven to be more reliable in handling the high inter-
face density ratios and deformation.
In a CSF model, the distinct phases are distinguished
through the color function c. The discontinuous sur-
face tension force is replaced by a continuous force
acting on all particles in the vicinity of the interface,
i.e. all particle for which the norm of the gradient of the
color function ∥∇⃗c∥ is non-zero. The surface tension
term in (4) in the case of a constant surface tension σ
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is consequently expressed as

(13) f⃗surf,i =
1

ρi
σκi∇⃗ci .

Mathematically, the curvature κ is defined with the di-
vergence of the interface normal vector n⃗ as

(14) κ = −
(
∇⃗ · n⃗

)
,

and in turn, the normal vector is given by

(15) n⃗ =
∇⃗c
∥∇⃗c∥

The formulation by Adami et al. [10] and the new for-
mulation that will be outlined in the following differ in
the manner in which the color gradient and curvature
are computed.

3.1. Kernel gradient formulation

In the SPH-type surface tension formulation by Adami
et al. [10] the color function is defined for each combi-
nation of particles k and l as

(16) ckl =


1, if particles k and l are not of

the same phase,
0, if particles k and l are of the

same phase.

In order to handle high interface ratios, the color is
substituted by the inter-particle density averaged color
value, thereby ensuring matching accelerations of par-
ticles with high mass disparity:

(17) c̃ij =
ρj

ρi + ρj
ci

i +
ρi

ρi + ρj
ci

j .

Using the shortened notation for the kernel gradient
∇⃗Wij = ∇⃗W (x⃗i− x⃗j, h), the color gradient is computed
through

(18) ∇⃗ci =
1

Vi

∑
j

[V 2
i + V 2

j ]c̃ij∇⃗Wij .

Combining (15), (18) and the number of dimensions
d a reproducing divergence approximation for the cur-
vature κ is derived:

(19) κi = −d
∑

j(
⃗̂ni − ⃗̂nj) · ∇⃗WijVj∑

j∥∇⃗Wij∥Vj
.

3.2. Moving least squares formulation

In contrast to SPH, where gradients are evaluated us-
ing the kernel gradient, MFM employs a moving least
squares (MLS) gradient estimator. As the key ele-
ments in the SPH surface tension model are the com-
putation of the color gradient and divergence of the
normal vector, it appears logical to apply the same gra-
dient estimator to these terms. Consequently, in this

new surface tension formulation the color gradient is
given by

(20) ∇ci = EEE−1
i

∑
j

2 c̃ijψj(x⃗i) (x⃗j − x⃗i) ,

with the components Eαβ
i of the matrix EEEi:

(21) Eαβ
i =

∑
j

(x⃗j − x⃗i)
α
(x⃗j − x⃗i)

β
ψj(x⃗i) .

The Jacobian matrix of the normal vector is computed
likewise:

(22) ∇⊗ ⃗̂n = (∇n̂x ∇n̂y ∇n̂z)
T
,

(23) ∇n̂α = EEE−1
i

∑
j

(
n̂αj − n̂αi

)
ψj(x⃗i) (x⃗j − x⃗i) .

With (14), the curvature is evaluated for each particle
through the trace of the Jacobian.

4. VALIDATION OF THE SURFACE TENSION
MODEL

4.1. Implementation of the SPH formulation in
MFM

The kernel gradient surface tension model is validated
against a subset of the droplet benchmark from the
original publication by Adami et al. [10]. First, the
deformation of an initially square droplet with the
edge length ld = 0.6 in a square domain with the edge
length L = 2 under surface tension σ = 1 is predicted.
The density of both fluids is set to ρ0 = 1 with a
dynamic viscosity µ = 0.05. All variables are denoted
in code units as the scale is arbitrary. The domain
is discretized using 3600 particles and a Wendland
C4 kernel [25] with 32 neighbors, approximately
equivalent to a ratio of smoothing length to particle
spacing of h/dx = 1.5 [26]. The artificial speed of
sound, background pressure and polytropic ratio are
set to a = 20, p0 = 100 and γ = 1, respectively. The
particle arrangement and droplet shape are depicted
in Fig. 1 for the initial state and once the equilibrium
state is reached at teq = 0.4. Evidently, the model
correctly predicts the circular equilibrium shape while
maintaining a good particle order.
In the second validation case, a circular droplet with a
radius rd = 0.2 is placed in a square domain with the
edge length L = 1. The domain is discretized using
14400 particles, and again the Wendland C4 kernel
with h/dx = 1.5 is used. The droplet density and vis-
cosity are once again set to ρd = 1 and µd = 0.05, the
density and viscosity ratio between the two fluids how-
ever are Φ = ρd/ρ∞ = 1000 and λ = µd/µ∞ = 100.
The background pressure is again set to p0 = 100,
and the polytropic ratio of the droplet and surrounding
fluid to γd = 7 and γ∞ = 1, respectively. The artificial
speeds of sound are ad = 30 and a∞ = 359, follow-
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(a) t = 0 (b) t = teq

FIG 1. Droplet shape in the square droplet deformation
case using the kernel gradient surface tension
model.

ing the impedance matching technique as described
by Chaussonnet et al. [3]. The oscillation is induced
by a prescribed initial droplet velocity field with U0 = 1
and r0 = 0.05:

(24) Ux = U0
x

r0

(
1− y2

r0r

)
exp

(
− r

r0

)
,

(25) Uy = −U0
y

r0

(
1− x2

r0r

)
exp

(
− r

r0

)
.

The relation between surface tension σ and oscillation
period T is shown in Figure 2, along with the analytical
solution

(26) Tth = 2π

√
r3dρd
6σ

.

The numerical results show excellent agreement with

FIG 2. Oscillation period T in the oscillating droplet
case using the kernel gradient surface tension
model for varied surface tension values σ.

the analytical solution. As result of the validation, it
is confirmed that surface tension model, which was
originally developed for SPH integrates well into MFM.

4.2. New MLS formulation

To explore the novel surface tension formulation using
the MLS gradient estimator, the square droplet defor-

mation case is computed using 14400 particles. In
addition to the configuration described in the previ-
ous section, a second case is computed with the fluid
parameters from the circular droplet oscillation of the
previous case and the surface tension σ = 1. Figure
3 shows snapshots of the particle distributions from
both simulations. While the droplet shape appears to

(a) Φ = 1, t = 0.4 (b) Φ = 1000, t = 0.1

FIG 3. Droplet shape in the square droplet deformation
case the MLS surface tension model with differ-
ent density ratios Φ at the physical time t.

be plausible for Φ = 1, the snapshot from the sim-
ulation with Φ = 1000 shows that the corner parti-
cles indicated by the black circles have been pinched
off from the droplet. This reveals a crucial weakness
of the MLS approach. Even though the curvature at
the discontinuity at the corner of the droplet is theo-
retically infinite, the numerical solution obtained from
the initial particle distribution using the MLS estima-
tor is zero. For the higher density ratio this numerical
error is evidently impactful enough to cause the un-
physical detachment of the corner particles from the
droplet. Here, the smoothing in the kernel gradient
model appears to increase the robustness of the sur-
face tension calculation. As robustness is crucial, this
approach is used for all further simulations.

5. KELVIN-HELMHOLTZ INSTABILITY BENCH-
MARK

Upon demonstrating that by integrating the SPH sur-
face tension model into MFM, surface tension effects
can be correctly predicted, the next step is a first as-
sessment of the potential improvement that can be
gained through the use of MFM in technically relevant
multi-phase flows.
Comprehensive primary atomization simulations
require an enormous amount of computational re-
sources. Furthermore, suitable boundary conditions
are of the utmost importance. As GIZMO lacks the
latter and the former is impractical for this funda-
mental comparison, a simplified primary atomization
benchmark is proposed. The Kelvin-Helmholtz insta-
bility is identified as the ideal candidate for this, as it
is both a common benchmark case as well as one of
the primary instabilities in air-blast atomization. In the
original publication [9], Hopkins was able to show, that
MFM was superior in an academic Kelvin-Helmholtz
benchmark case [12] compared to two considered

https://creativecommons.org/licenses/by-nc/4.0/


FIG 4. Sketch of the initial velocity distribution U in the
2D Kelvin-Helmholtz instability case.

SPH schemes. Even though SPH can be employed
to reproduce converged reference solutions in sim-
plified benchmarks [13], it is uncertain how this will
translate to the instabilities occurring during primary
atomization. Hence, a modified Kelvin-Helmholtz
benchmark is described in the following. This bench-
mark is subsequently used to evaluate GIZMO with
the added surface tension model and compare it to
the proprietary SPH code turboSPH in both two- and
three-dimensional simulations.

5.1. Setup

The physical configuration is based on the work by
Chaussonnet et al. [3] and the associated reference
experiment [27]. The numerical configuration is sim-
ilar to common benchmarks [11, 12]. A liquid jet with
the diameter dl = 2mm is placed laterally at the center
of a square or respectively cubic domain with the edge
length L = 4mm. The domain is discretized using Nd

particles on a Cartesian lattice and the Wendland C4
kernel with smoothing length h. The fluid properties
are given by ρl = 1233 kg/m3 and µl = 0.2Pas for the
liquid, ρg = 13.25 kg/m3 and µl = 18.61µPas for the
gas, and the surface tension σ = 63.6mN/m. The
parameters in the equation of state for both fluids are
p0 = 275 kPa, al = 150m/s, γl = 7, ag = 1450.9m/s
and γg = 1.
In the reference study [3], the mean gas velocity is
Ug = 58m/s and the velocity of the liquid jet is Ul =
0.55m/s. Here, the initial velocity in main flow direction
as sketched in the upper half of Fig. 4 is given by:
(27)

Ux(r) =

{
Ubulk(r) + ulam(r) 0 ≤ r < dl/2 ,

Ubulk(r) r ≥ dl/2 ,

(28) Ubulk(r) = (Ug + Uframe) tanh

(
r − dl/2

α

)
,

(29) Ulam(r) = 2Ul

(
1− 4r2

d2l

)
,

with α = 5 × 10−5 m. In 2D, the radial coordinate is
r = |y|, and in 3D r =

√
y2 + z2. The frame velocity

Uframe = − 1
2Ug is added to limit the necessary artificial

speed of sound and thereby increase the time step
size.
The instability is seeded through an initial superim-
posed sinusoidal velocity perturbation Uy, which in 2D
simulations as visualized in the lower half of Fig. 4 is
given by

(30) U2D
y (x, r) =

2∑
k=0

A sin

(
2π

λk
x

)
exp

(
−2π

λk

∣∣∣∣(r − dl
2

)∣∣∣∣) ,

with the amplitude A = 0.01Ug.
In 3D simulations, a dependency on the tangential co-
ordinate φ is added:

(31) U3D
y (x, r, φ) =

2∑
k=0

sin

(
2π

λk
φ

)

·
2∑

k=0

A sin

(
2π

λk
x

)
exp

(
−2π

λk

∣∣∣∣(r − dl
2

)∣∣∣∣) .

The induced wave lengths are λk with the smallest
wave length λ0 = L/4:

(32) λk = 2kλ0 .

5.2. 2D Jet

The fluid distributions resulting from the growing
Kelvin-Helmholtz instability in 2D are shown in Fig.
5 for 3 separate instances in time. The baseline
MFM computation with N1 = 200 and h1 = 1.5dx
is shown in Fig. 5a. At t = 0.3ms, the jet surface
exhibits one dominant primary wave and a minor
secondary wave. As the instability continues to grow,
the dominance of the primary wave is amplified and
at t = 0.6ms, solitary particles are stripped from
its crest. Progressing from this, thin fluid ligaments
protruding from the wave crest evolve. At t = 2.0ms,
these ligaments have been stretched to a point where
they have started to disintegrate into solitary particles
as well as some larger fragments.
Fig. 5b shows a comparative MFM simulation with
N2 = 300. As a consequence of this higher spatial
resolution, the growth of the instability is moderately
increased with an apparent ligament development ev-
ident at t = 0.6ms. Subsequently, the fluid distribu-
tion continues to evolve qualitatively very similar to the
baseline result with the final distribution at t = 2.0ms
exhibiting analogous ligaments. However, the disinte-
gration results in a higher number of substantive fluid
structures and less solitary particles compared to the
baseline. This is an indication of convergence in pri-
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FIG 5. Fluid distribution in the 2D Kelvin-Helmholtz in-
stability benchmark for computations with MFM
and SPH using varied number of particles N2 and
smoothing length h at 3 different times t.

mary atomization [28], illustrating MFM’s favourable
convergence properties independent of the kernel ra-
dius.
The results from analogous SPH calculations are dis-
played in Fig. 5c and 5d. To start, the perturbations
on the jet surface appear to be increased but more
chaotic, and the secondary wave is more significant.
After the initial stages, the evolution of fluid ligaments
is impeded, resulting in shorter, more deformed struc-
tures compared to MFM. These observed differences
are not significantly effected by the increased number
of particles from 40, 000 in 5c to 90, 000 in 5d, although
the ligaments that do evolve are moderately more del-
icate in the latter simulation.

As formal convergence in SPH is, contrarily to MFM,
dependent on the ratio of smoothing length to particle
spacing, two additional computations with the higher
number of particles are performed and displayed in
Figs. 5e and 5f with h2 = 2dx and h3 = 3dx, re-
spectively. In both simulations, an accelerated growth
of the instability with less chaotic perturbation can be
observed at t = 0.3ms. For h3 the fluid distribution
at t = 0.6ms is, while still palpably different, more
similar to the MFM simulation with N2. This obser-
vation holds true for h2, though to a lesser extent. The
effect of the modified kernel is more pronounced at
t = 2.0ms. Here, the strongest similarity between
MFM and SPH can be observed between Fig. 5b and
5e, even though the ligaments are still less delicate
in the SPH results. The distribution in 5f on the other
hand bears almost no resemblance to either MFM or
SPH results obtained with h1 or h2.
In the pursuit of an explanation for the large differ-
ences between MFM and SPH results, an investiga-
tion into the behaviour of the gas phase is conducive.
This is visualized in Fig. 6 through the y-velocity com-
ponent uy in the same simulations at the same time
steps as in Fig. 5. Again, there is a strong similarity
between the two MFM simulations in Fig. 6a and 6b
with slightly decreased noise for N2. In comparison,
the two SPH simulations with h1 in Fig. 6c and 6d are
characterized by a substantially higher level of noise,
with again only a slight decrease with the higher num-
ber of particles. As a result of this noise, more turbu-
lent kinetic energy is dissipated, resulting in a much
lower magnitude of uy at the final time t = 2ms com-
pared to MFM. With increasing smoothing length in
the simulations depicted in Fig. 6e and 6f, the noise
is decreased and consequently the magnitude of uy
increased.
With this observation, the shorter and less delicate
fluid structures in the later stages of the first three SPH
simulations can be explained by the higher dissipa-
tion of energy and less distinct vortices of the gaseous
flow compared to the MFM results. The peculiar be-
haviour in Fig. 5f might be caused by a decreased
effective resolution due to the larger smoothing length
h3. As of now, the increased initial instability growth in
SPH compared to MFM, particularly of the secondary
instability, remains unexplained. Again this might be
caused by the higher level of noise in the SPH simu-
lations. Consequently, the physical validity of the in-
creased growth is questionable.

5.3. 3D Jet

In addition to the 2D simulations, the benchmark is
computed in three dimensions using both SPH and
MFMwithN3

1 particles and aWendland C4 kernel with
the smoothing length h1. The resulting deformed liq-
uid jets are displayed in Fig. 7. The different charac-
teristics of MFM and SPH in this benchmark as ob-
served in 2D persist in 3D. Initially, at t = 0.3ms, the
SPH result exhibit an accelerated and more chaotic
growth of the instability. At t = 0.6ms, it can be ob-

https://creativecommons.org/licenses/by-nc/4.0/


served that while the jet is still less perturbed for MFM,
there is a thin membrane protruding from the crest of
the dominant wave. Even though clusters with less
than 10 liquid particles are excluded from display to
increase visibility, the beginning of the disintegration
is evident. In comparison, the fluid structures result-
ing from SPH are much less delicate.
Subsequently, the level of chaos increases while the
general differences between SPH and MFM persist.
The MFM result exhibits elongated membranes and
ligaments that disintegrate at the edges at t = 1.0ms.
In SPH in comparison, the waves continue to grow
further in radial direction, while the development of
elongated structures parallel to the bulk flow is much

FIG 6. Velocity component in y-direction in the 2D
Kelvin-Helmholtz benchmark case for computa-
tions with MFM and SPH using varied number of
particles N2 and smoothing length h at 3 differ-
ent times t.

(a) t = 0.3ms

(b) t = 0.6ms

(c) t = 1.0ms

(d) t = 2.0ms

FIG 7. 3D liquid jet computed using MFM and SPH with
N3

1 particles and smoothing length h1.

less pronounced. At the end of the simulation at t =
2.0ms, both cases show a substantial number of larger
droplets stripped off from the bulk jet. In MFM, these
droplets are results of the disintegration of ligaments
which in turn are formed from membranes. In the case
of the SPH simulation, fewer droplets are formed from
shorter ligaments and the development of membranes
is almost non-existent. Overall, these 3D simulations
confirm the observations made in 2D.
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6. CONCLUSION

In this work, a surface tension model was integrated
and validated in a Meshless-Finite-Mass code. It
was demonstrated that through the inclusion of SPH
models, MFM might be a viable alternative for the
numerical analysis of engineering applications. Fur-
thermore, this facilitated a first-time comparison of
MFM and SPH in technically relevant multi-phase
flows.
For further analysis, a Kelvin-Helmholtz configuration
resembling primary atomization was proposed. The
difference in the behaviour of the two methods in this
benchmark case is apparent. The MFM results exhibit
an enhanced evolution of long, thin fluid structures and
reduced small scale noise in the velocity field. While
MFM reacts predictably and favourably to an increase
of the number of particles, the assessment of the spa-
tial resolution of the SPH simulations is ambiguous. A
conclusive evaluation of which combination of particle
number and kernel size performed best is not possi-
ble.
Even though these differences are evident, their clas-
sification is troublesome. Due to the simplified nature
of the setup with its periodic boundaries, the instabil-
ity growth deviates significantly from the behaviour es-
tablished in literature [3, 27]. Therefore, a critical ex-
amination of the applicability to realistic problems is
necessary. First, the observations of the early stages
of the instability growth cannot simply be transferred
to more complex multi-phase problems, in which in-
stabilities are not artificially seeded but rather induced
through chaotic perturbation of the interface. Second,
while MFM leads to an enhanced development of very
delicate fluid structures, the significance to reality is
uncertain. It is to be expected, that membranes as
they can be seen on the left hand side in Figs. 7c
and 7d would disintegrate at a much earlier state com-
pared to the structures present in the SPH result.
Even considering these uncertainties, this work clearly
shows that in multi-phase applications where SPH is
used due to its inherent ability to capture complex in-
terface deformation, MFM has the potential to improve
accuracy of numerical analysis if turbulence is a factor.

Contact address:

markus.wicker@kit.edu
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