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Abstract
For the future exploration of our solar system, missions to Small Solar System Bodies (SSSBs), such as asteroids
or comets, are a promising and scientifically important area. The current missions exploring SSSBs require ex-
tensive human monitoring and processing to ensure safe operations. By incorporating more onboard autonomy,
spacecrafts can explore SSSBs more efficiently and increase scientific output. The Astrone project posed a
novel concept of a low-altitude hovering vehicle directly on the surface of an SSSB. This paper presents the AI
Mapping, as a part of the extension of the Astrone project’s navigation concept with additional AI-based algo-
rithms. The AI Mapping consists of two parts. First, an overview of the AI-based Light imaging, detection, and
ranging (LiDAR)/Camera data fusion will be given. With this method, a resolution increase of low-resolution
flash-LiDAR data by a factor 8×8 was achieved. Second, the obtained high-resolution data was used in addition
to the corresponding wide-angle monocular 2D grayscale images of the irregular and unstructured surface of
the SSSB to pre-identify possible landing sites. The Convolutional Neural Network (CNN)-based approach was
trained and tested with our artificially generated data set. Different versions of the Deeplabv3+ with certain
ResNet and ResNet-RS backbone nets were compared. The results show that hazardous areas such as rocks,
boulders, and craters on the surface could be detected successfully. With this method, it was possible to achieve
an Intersection over Union (IoU) of 67.45 for the semantic segmentation task.
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NOMENCLATURE

Abbreviations

AI Artificial Intelligence

CNN Convolutional Neural Network

DEM Digital Elevation Map

DN Discrimantor Network

GAN Generative Adversarial Network

GNC Guidance Navigation and Control

GN Generator Network

GPU Graphics Processing Unit

IoU Intersection over Union

LiDAR Light imaging, detection and ranging

SCB Small Celestial Body

SfS Shape from Shading

SSSB Small Solar System Body

1. INTRODUCTION

For the future exploration of our solar system, missions
to SSSBs, such as asteroids or comets, are a promising
and scientifically important area.
Exploring asteroids or comets can provide valuable
insights into the genesis and progression of our solar
system while also enabling us to identify lucrative
resources for upcoming space missions. However, con-
ducting exploration missions to SSSBs presents several
challenges. Besides the small, varying gravity or the
unstructured, irregular surface and landform, the
long distances to Earth, particularly the impossible
real-time communication between ground control and
the exploring spacecraft, is one major problem. Cur-
rent missions to the close vicinity of Small Celestial
Bodies (SCBs) require plenty of human monitoring
and processing to ensure a safe flight during the space
exploration mission. Thus, the exploration of SSSBs
is intrinsically tied to the achievement of autonomy
within mission operations. As missions become more
complex, either due to an increase in the number
of probes or the exploration of multiple targets,
the importance of autonomy is further underscored.
Therefore, a spacecraft’s capability to execute tasks
and make decisions with minimal human interven-
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tion is envisioned. To achieve this, the spacecraft’s
trajectory with respect to Earth has been tracked
precisely through radiometric absolute navigation and
optical relative navigation [1–4]. Landmark-based
navigation has also aided in spacecraft localization
and orientation by utilizing identifiable features on
the SSSB’s surface. Despite the success of these
technologies, their reliance on continuous human
monitoring and processing remains a limitation. A
spacecraft capable of fully autonomous exploration
would land and survey the entire area independently.

The recently finished Astrone [5] project pro-
posed a novel concept of a low-altitude hovering
vehicle directly on the surface of an SSSB like
67P/Churyumov–Gerasimenko that enables advanced
surface mobility. To support the resulting Guidance,
Navigation, and Control (GNC) System, we propose
Artificial Intelligence (AI)-based Mapping to improve
the navigation concept performance in the context
of the current Astrone KI [6] project. This paper
presents an overview of a GAN-based solution to pro-
vide a high-resolution depth image of the asteroid’s or
comet’s surface by data fusion of low-resolution flash-
LiDAR data and the corresponding high-resolution
monocular grayscale 2D camera image. The availabil-
ity of high-resolution data enables AI-based landing
site detection to pre-identify suitable landing sites
from even greater distances.

To summarize, the main contributions of this paper
are as follows:
• overview of the AI-based flash-LiDAR / camera data

fusion to enable the AI-based landing site detection
[7],

• overview of the generated training and validation
data for the AI-based landing site detection,

• CNN architecture, training setup, and validation re-
sults for a first landing site AI-based landing site
detection.

2. RELATED WORK

In recent space missions, there has been a gradual
integration of technology aimed at expanding the
boundaries of autonomy. Hayabusa-2 [8], launched
in 2014, utilized upgraded navigation tools and
advanced characterization techniques such as radio-
metric tracking and autonomous descent. Similarly,
the OSIRIS-REx mission [9], launched in 2016,
utilized vision-based navigation for close-range op-
erations and radiometric tracking while integrating
advanced exposure techniques and landmark tracking.
Most recently, DART3 [10] launched successfully in
2021 and achieved kinetic impact deflection using a
fully autonomous navigation system and avionics.
As we approach the limits of human intervention or
ground-based control in SSSB missions, advancing the
frontiers of autonomy in upcoming missions becomes
increasingly imperative. Autonomy becomes crucial
to ensure optimal performance, especially when oper-

ating at considerable distances where communication
delays pose significant challenges. Envisioned scenar-
ios include multiple spacecraft independently landing
and exploring asteroid fields with minimal human
intervention. To compensate for that, AI-based
machine-learning approaches can be used.

Improved sensor capabilities also play a crucial role, al-
lowing spacecraft to acquire precise and reliable data
for autonomous operations. According to the previous
Astrone project’s exploration concept, we acquire data
from a monocular grayscale camera and a flash-LiDAR
sensor from an aerial position of the close SSSB’s sur-
face [6]. A flash-LiDAR-aided inertial navigation sys-
tem has been developed and successfully tested in a
simulated SSSB environment by Liu et al. (2021)
[11]. But the relatively low-resolution 128×128 flash-
LiDAR data is mainly the limiting factor for tasks
like 3D terrain reconstruction. Therefore, this low-
resolution data was fused by AI-based data fusion with
the available high-resolution 1024×1024 2D grayscale
image to increase the resolution of the flash-LiDAR
data [7]. With that approach, only one single monoc-
ular grayscale 2D image could be used for the data
fusion. Multiple images of the same scene taken un-
der different illumination conditions to minimize slope
determination are not required. This is essential for
the Astrone exploration concept and one reason why
Shape-from-Shading (SfS) based approaches [12, 13]
with the necessity to take multiple images of the as-
teroid’s or comet’s surface under different illumination
conditions are unsuitable following the Astrone explo-
ration concept. The obtained high-resolution data can
now be used for AI preprocessing tasks like semantic
segmentation, volume center point prediction [14], and
AI-based landing site detection.

3. CONCEPT OF AI-BASED MAPPING

The current Astrone navigation concept is shown in
Fig. 1. The enhanced navigation concept of Astrone
KI includes additional AI-based algorithms. Both AI-
based and non-AI algorithms are used collaboratively
as part of local navigation on the SSSB’s surface and
shown in Fig. 2. The AI pre-processing step was in-
troduced by Suwinski et al. (2023) [14]. This paper
focuses on the AI Mapping block. The current As-
trone navigation solution provides a 3D surface map
(extended DEM). However, the resolution of the map
and, therefore, the detection range is limited by the
resolution of the flash-LiDAR data. To eliminate this
limitation, we use an AI-based approach for the com-
plex task to increase the resolution by data fusion with
the corresponding 2D monocular grayscale 2D camera
image. A GAN approach was applied to early-fuse [15]
these data and generate a high-resolution output. For
the asteroid exploration mission, the results of the AI-
based map generation from camera and flash-LiDAR
data will enable long-distance hazards/landing site de-
tection.
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FIG 1. Astrone project’s navigation concept [5, 6].

In addition, the AI-driven analysis solution to pre-
identify suitable landing sites contains a CNN that
processes the improved high-resolution flash-LiDAR
data and grayscale 2D image in the camera frame.
The CNN’s input image resolution was assumed to
be 256×256 instead of the computationally expensive
1024×1024 resolution we receive from our AI-based
map generation. The unstructured and irregular sur-
face of an asteroid or comet poses a challenge. There-
fore, the main focus was to adapt suitable CNNs for se-
mantic segmentation tasks. Open source available la-
beled datasets for supervised training of CNNs with re-
alistic and usable 2D image and depth image data from
asteroids or comets are rare. The synthetic dataset
presented by Suwinski et al. (2023) [14] through the
approach of Schmipf et al. (2022) [16] was used, in-
spired by the Rosetta orbiter mission’s generated im-
ages of the 67P/Churyumov-Gerasimenko comet’s sur-
face [17].

FIG 2. Astrone KI project’s navigation concept including
AI-algorithms.

3.1. AI-based LiDAR / Camera data fusion

The approach employs an advanced GAN architecture
to create high-resolution data from low-resolution
flash-LiDAR data by data fusion with a monocular
grayscale 2D camera image. The GAN architecture
was introduced by Goodfellow et al. (2014) [18]. Dur-
ing training, a generative network learns to produce
data, while a Discriminator Network (DN) is trained
to differentiate between generated and actual ground
truth data. After training, only the generator part of
the GAN is used to predict the output. This architec-
ture has demonstrated its effectiveness in tasks like
monocular depth estimation in recent works [19–21].

Our GAN consists of a Generator Network (GN) based
on an advanced U-Net [22] architecture and a DN. The

FIG 3. Qualitative input and output of the AI-based
LiDAR/Camera data fusion for one tile of the
complete input (128×128 depth and 1024×1024
grayscale image).

U-Net3+ [23] was applied as an advanced version of
the original U-Net using full-scale skip connections as
the GN. The network receives the flash-LiDAR data
as depth images. The GN generates new data based
on its input (low-resolution and camera data). Dur-
ing the training process, the GN was primarily taught
to reconstruct low-frequency information. The chal-
lenge was to extract the high-frequency information
of the irregular and unstructured surface. The CNN-
based PatchGAN [24] was utilized as DN. This DN
classifies its input as real (ground truth) or fake (GN’s
output). The PatchGAN DN does this for a 70×70
patch instead of classifying its input as one complete
part. Structures at the scale of these patches are pe-
nalized. In this case, the DN has the task of restrict-
ing the model’s high-frequency structures. Further,
this approach enables possibilities to judge the valid-
ity of the GN’s output concerning local regions. For
processing, sparse depth images were created from the
low-resolution data where missing values are set to 0.
This was done to match the resolution of the input
grayscale 2D image. Due to hardware limitations dur-
ing training, the 2D image and sparse depth image
with the dimension 1024×1024 had to be separated into
256×256 tiles to feed them into the GN. Each tile was
processed individually by the GN. With this method,
it was possible to increase the 128×128 low-resolution
LiDAR data by 8×8 to a resolution of 1024×1024. For
better visualization, Fig. 3 shows the input and output
of the GN for one 256×256 tile with the corresponding
32×32 low-resolution input depth data.

3.2. AI-based landing site detection

We applied different versions of the CNN Deeplabv3+
[25] for comparable semantic segmentation tasks to
the Astrone KI navigation concept. The tests in [14]
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showed that the Deeplabv3+ outperforms other test
candidates in the comparable Artificial Lunar Land-
scape Dataset.

The Deeplabv3+ can utilize different CNNs as a back-
bone net. The backbone net or encoder part extracts
hierarchical features across various scales. This strat-
egy enables the model to capture both global and lo-
cal contextual information from the input pixel data.
An Atrous Spatial Pyramid Pooling (ASPP) module is
integrated into Deeplabv3+ to enhance segmentation
accuracy. The ASPP module facilitates the model in
perceiving fine-grained and larger scales, contributing
to improved segmentation accuracy. The ASPP mod-
ule achieves this by employing atrous dilated convolu-
tions with multiple rates. These convolutions capture
context information at different receptive field sizes.
The primary focus of our feature extraction backbone
networks is on ResNet [26] and ResNet-RS-based [27]
architectures. These architectures include identity
mapping based on residual connections. Compared
to the original ResNet the ResNet-RS extends this
approach by enhancements such as random skip
connections and residual connections to aggregate
current feature maps with a randomly selected
subset of previous feature maps. The integration
of random skip connections serves to augment the
learning capabilities of the CNN and diversify the
learned representations. Specifically, the ResNet50,
ResNet50-RS, ResNet101, ResNet101-RS, ResNet152,
and ResNet152-RS variations were chosen as the
backbone net for the Deeplabv3+. A binary seg-
mentation problem was created for the model to
pre-identify suitable landing sites. Only one class of
the two possibilities can be assigned to one pixel of
the network’s output for this binary problem.

All versions of the network output a probability distri-
bution based on a sigmoid function. The sigmoid func-
tion is typical for binary segmentation or classification
tasks. The tensor x ∈ RH×W×C represents the input
(camera and depth image), where H is the height, W
is the width, and C is the number of input channels.
With x, the CNN receives the original grayscale 2D
image data. For better training results, every input
depth image was rescaled by min/max normalization
according to Eq. 1.

(1) xscaled =
xunscaled −min(xunscaled)

max(xunscaled)−min(xunscaled)

It should be noted that the received high-resolution
depth image from our AI-based LiDAR / Camera data
fusion is already scaled to relative floating-point values
f ∈ [0, 1]. For better visualization, the notation of Pa-
pernot et al. (2016) was used, where F1, ..Fn denotes
the different layers of a CNN [28]. The complete CNN
with its last sigmoid function is represented by F(x).
The output matrix y is described by F(x) in Eq. 2
and has the shape of x ∈ RH×W . It depends on the

output of the network’s last layer activation function
Z(x).

F = sigmoid ◦ Fn ◦ Fn−1 ◦ ... ◦ F1

F(x) = sigmoid(Z(x)) =: y
(2)

3.3. Dataset details

For training the GAN of our AI-based LiDAR/Camera
data fusion, we created a dataset comparable to
the current Astrone KI project conditions. With
CamSim [29] developed by Astos Solutions, a Dig-
ital Elevation Map (DEM) inspired by the comet
67P/Churyumov-Gerasimenko’s surface, with a reso-
lution of 0.05 m/pixel was generated. Subsequently,
the open-source 3D computer graphics software
Blender [30] was used to render the grayscale 2D
images and the corresponding flash-LiDAR data in
the form of depth images.

(a) Camera image (b) Camera image with shad-
ows (sun azimuth of 45◦)

(c) Corresponding qualitative
depth image

(d) Corresponding ground
truth image

FIG 4. Generated grayscale 2D image, corresponding qual-
itative depth image, and ground truth for the AI-
based landing site detection.

An artificially generated dataset was used to train and
validate the AI-based landing zone detection. This
dataset was introduced by Suwinski et al. (2023) [14].
Therefore, the focus will be solely on the process of
generating data for the landing site. The generation of
the simulated surface’s DEM is based on the approach
by Schimpf et al. (2022) [16]. Also, this approach
generates the necessary ground truth data or labels
for landing-site estimation. Slope, roughness, rocks,
boulders, and craters are concerned to determine if
an area is suitable for landing. The processing was
optimized for our purposes. The actual camera images
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with resulting shadows of a sun azimuth of ±45◦ in
15◦ steps and corresponding depth images were then
rendered with Blender. Fig. 4 shows the input and
ground truth data for the supervised learning training
of the CNNs. Red areas are suitable landing spots.
Within the scope of the Astrone KI project, we will
use CamSim in the future for the total data generation
process for all AI-based solutions. Instead of just using
a DEM from CamSim, it will generate the required
image data right away.

4. EXPERIMENTS AND RESULTS

4.1. Overview and metrics

This paper provides only an overview of the AI-based
LiDAR/camera data fusion [7]. Therefore, we focus
on the validation of the landing site detection.
All CNN versions have been trained for 25 Epochs
with 3060 iterations each. The batch size was set
to 25, and Adam optimizer with a learning rate
of l = 5 ∗ 10−5, β1 = 0.9, and β2 = 0.999 were
used. To counter overfitting L2-regularization with
λ = 10−6 was applied. Furthermore, for every CNN
configuration, the binary cross-entropy was used as a
loss function. All networks were trained with 76.500
and tested with 8.500 samples. An NVIDIA RTX
3090 GPU and a Ryzen 9 5950x CPU were utilized
for training and testing.

To evaluate the performance of each CNN version, the
following metrics were used, which are described in
Eq. 3. These metrics produce quantitative results by
comparing the ground truth y with the network’s pre-
dicted output ŷ. Higher values for the precision mean
the model makes many true positive (TP ) and fewer
false positive (FP ) classifications. A higher recall
indicates that the network makes more true positive
(TP ) and fewer false negative (FN) predictions. The
F1-score takes both precision and recall into account.
Higher values are better here, too. The higher values
of the IoU describe a better similarity between ground
truth and the prediction.
It is important to note that the average values of these
metrics are calculated based on the number of test
samples n. Further, a scaling factor 100 was applied
to precision, recall, and IoU for better visualization.

precision =
100

n
·

n∑
k=1

TPk

TPk + FPk
(3a)

recall =
100

n
·

n∑
k=1

TPk

TPk + FNk
(3b)

F1 = 2 · precision · recall
precision+ recall

(3c)

IoU =
100

n
·

n∑
k=1

|yk,true ∩ yk,pred|
|yk,true ∪ yk,pred|

(3d)

4.2. Validation and Testing

The test portion of our artificially generated dataset
was used for validation and testing purposes. For
all experiments, we trained and tested with different
illumination conditions. The change of the sun az-
imuth between ±45◦ within 15◦ steps created varying
amounts of shadows on the surface visible in the
generated grayscale 2D images. To assess the per-
formance of Deeplabv3+, we tested it with different
configurations that varied in their backbone net.
The original ResNet was compared with ResNet-RS.
Deep neural networks are often prone to overfitting,
especially when working with an artificially generated
dataset. Therefore, the number of layers were limited
to 50, 101, and 152 for both backbone net architec-
tures. In addition, limiting the number of layers helps
to balance the computational effort since deeper net-
works require more computational power for inference.

TAB 1. Validation of semantic segmentation on the artifi-
cially generated dataset with 2D image input data,
with backbone nets in brackets

CNN Prec. Rec. F1 IoU
Deeplabv3+
(ResNet50)

98.85 91.81 95.20 61.26

Deeplabv3+
(ResNet101)

98.42 91.20 94.65 58.93

Deeplabv3+
(ResNet152)

98.87 91.58 95.09 60.28

Deeplabv3+
(ResNet50-RS)

98.60 92.34 95.36 65.23

Deeplabv3+
(ResNet101-RS)

98.48 92.30 95.28 64.09

Deeplabv3+
(ResNet152-RS)

98.23 92.64 95.35 64.12

TAB 2. Validation of semantic segmentation on the artifi-
cially generated dataset with 2D image input data
corresponding depth image input data, with back-
bone nets in brackets

CNN Prec. Rec. F1 IoU
Deeplabv3+
(ResNet50)

98.46 92.2 95.22 62.50

Deeplabv3+
(ResNet101)

97.99 92.80 95.33 64.46

Deeplabv3+
(ResNet152)

98.96 91.83 95.28 61.73

Deeplabv3+
(ResNet50-RS)

99.14 92.63 95.78 67.45

Deeplabv3+
(ResNet101-RS)

98.54 92.93 95.66 66.81

Deeplabv3+
(ResNet152-RS)

98.33 92.62 95.39 64.15
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(a) ResNet50 (b) ResNet101

(c) ResNet152 (d) ResNet50-RS (best)

(e) ResNet101-RS (f) ResNet152-RS

FIG 5. Visualized landing site predictions for different
backbone nets with a grayscale 2D image (Fig. 4a)
and corresponding depth (Fig. 4c) image as input.
Red-marked areas are classified as suitable for land-
ing.

In a first experiment, we trained all configurations
with just a grayscale 2D image as input, with no addi-
tional depth information, and tested the Deeplabv3+
variants’ ability to detect suitable landing sites. Tab.
1 shows the results of this testing. According to these
results, the performance of the CNN variant does
not necessarily increase with the number of backbone
net layers. In some cases, it even decreases. The
ResNet50-RS-based network performed the best with
the highest IoU. Fig. 7 in appendix A includes a visu-
alization of misclassifications compared to the ground
truth (Fig. 4d) for every Deeplabv3+ configuration.

The high-resolution flash-LiDAR information as a
depth image was added to the CNN’s input for the
next test. An overall performance improvement
could be achieved here. Again, the CNN with the
ResNet50-RS backbone achieved the highest IoU of
67.45. Fig. 5a - 5f depict the output for all variants.
The visualized output Fig. 5d is the closest to the
corresponding ground truth (Fig. 4d). It was possible

(a) Camera image (45◦) (b) Qualitative depth image

(c) ResNet50-RS (d) Corresponding ground
truth image

FIG 6. Vizualized landing site prediction with a crater
of the best performing Deeplabv3+ version with
ResNet50-RS backbone. Red-marked areas are
classified as suitable for landing.

to detect small stones as well as larger rocks and
classify these areas as unsuitable for landing. Fig. 6c
shows one example where the best-performing net-
work (ResNet50-RS backbone) must detect a crater
on the simulated asteroid’s surface. It was possible for
the network to predict the crater and the areas with
strong slope changes around it. This task is harder
because objects like craters with strong slope changes
are less frequent in our training data set.

5. LIMITATION AND FUTURE WORK

It should be noted again that an artificially generated
dataset was used for training. Even though an arti-
ficial dataset can represent reality to some degree, it
typically has a limited range of variation compared
to the real world. A neural network can filter some
noise if it has been trained with data containing this
noise. However, artificially generated datasets contain
no noise or may not accurately reflect it. Therefore,
the network will have problems processing real-world
data.
Due to the unavailability of ground truth data, an im-
portant step in the future is to improve our data gen-
eration process further and create more realistic train-
ing and test data, which is essential for performance
and robustness in a real-world environment. Addition-
ally, a transfer learning approach with CamSim data
will be used to optimize the training strategy, enhanc-
ing the performance and robustness in the scope of
our project. In this paper, we have concentrated on a
CNN-only approach. Other neural network architec-
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tures may perform better in some scenarios, especially
with high-resolution data. Therefore, our future work
will focus on testing vision transformer approaches in
combination with CNN-based approaches.

6. CONCLUSION

This paper presented the AI Mapping part of the As-
trone KI navigation concept. We propose an AI-based
approach to detect and pre-identify suitable landing
sites for a small vehicle operating close to the surface
of an SSSB. Different versions of the Deeplabv3+
CNN were trained and validated using an artificially
generated dataset of the surfaces of SSSBs. Data
with different sun positions were created to simulate
changes in local illumination during a real mission.
The results show adding high-resolution depth images
can increase the performance of the segmentation
process for the lading-site detection instead of just
relying on camera images. Our method was able
to detect objects like stones and rocks. Also, areas
dangerous for landing around craters with great slopes
were roughly recognized in this first attempt.

Additionally, this paper gave an overview of an
AI-based approach to increase the resolution of low-
resolution 3D terrain data by data fusion with a single
monocular 2D grayscale image. This part of the AI
Mapping made it possible to use high-resolution depth
images for the landing site detection.

The presented solution shows the potential for AI-
based approaches as part of guidance and navigation
applications on irregular SSSBs.
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A. APPENDIX

(a) ResNet50 (b) ResNet101 (c) ResNet152

(d) ResNet50-RS (e) ResNet101-RS (f) ResNet152-RS

FIG 7. Visualized misclassifications (white) of the Deeplabv3+ with different backbone net configurations for the output
shown in Fig. 5.
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