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Abstract 

The emerging field of NewSpace technologies has led to the development of cost-efficient small satellites by utilizing 
commercial-off-the-shelf (COTS) components in their designs. Small satellites face significant challenges due to their 
limited power resources and exposure to harsh environmental conditions, like radiation or temperature fluctuations. These 
can cause hardware and software failures that compromise the reliability of the satellite operations. This paper focuses on 
investigating the performance impact of virtualization in the context of COTS-based small satellite payloads. It specifically 
explores the application of the open-source virtualization solution Xen and its potential to enhance the software reliability 
of small satellite payloads based on a multiprocessor system-on-a-chip (MPSoC). The study evaluates how virtualization 
enables the strict separation of mission-critical and non-critical software modules through the use of virtual machines, 
ensuring isolation. Through experiments conducted on the ZynqMP UltraScale+ MPSoC-based data processing unit (DPU) 
developed at Fraunhofer EMI for small satellite payloads, the results demonstrate a significant improvement in the 
execution time and variance of a real-time application when executed in a separated, virtualized environment. This 
observation highlights the value of a virtualization setup with CPU pinning, which enhances predictability, especially under 
high system loads. Furthermore, leveraging virtualization in small satellite systems ensures strict isolation between 
applications with different confidence levels, enabling multiple users to access and utilize the same hardware platform. 
This approach also facilitates satellite-as-a-service models, promoting cost sharing, collaboration, and reducing barriers 
for small satellite operators to provide shared infrastructure or engage in joint missions with other institutions. 
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1. INTRODUCTION 

In recent years, the development of small satellites has 
gained significant interest due to their cost-efficiency and 
flexibility. Many small satellites utilize commercial-off-the-
shelf (COTS) components to reduce development time and 
launch costs. However, the use of COTS hardware in space 
evokes challenges in regard to reliability and lifespan, 
mainly due to the extreme environmental conditions such 
as temperature changes and radiation. These factors can 
lead to hardware and software failures, impacting the 
reliability of small satellite operations. Additionally, some 
small satellites have experienced mission failures due to 
limited development budgets and compressed timelines, 
which often involve accepting certain risks. Unfortunately, 
the flight software (FSW) of small satellites is often 
neglected until the late stage of spacecraft integration, 
within an already constrained development cycle. 
Consequently, FSW testing can be inadequate, potentially 
leading to undetected software errors or, at worst, mission 
failure [1]. In contrast, larger missions with more extensive 
resources may employ thorough testing, including 
simulations, to enhance FSW reliability. This way,  
comprehensive FSW coverage can be achieved on those 
missions and the software is expected to operate without 
catastrophic failures once deployed in orbit [2]. 

To address described software failures in small satellites, 
this paper proposes the utilization of virtualization 

techniques. Virtualization in the context of space missions 
is an actively explored domain. This evolving technology 
enables the execution of multiple virtual machines (VMs) on 
a single physical machine, which holds considerable 
benefits for resource-constrained space missions that 
require high reliability and flexibility. By implementing 
virtualization in small satellites, it becomes possible to 
combine multiple subsystem functions on a single 
processing system encapsulated in individual VMs, 
resulting in reduced satellite size, weight, and power 
requirements. Furthermore, virtualization facilitates 
software isolation among different applications running 
concurrently on the same device, ensuring that failures in 
one application or VM do not adversely impact others or the 
overall system. In this paper, we assess the potential of 
virtualization in enhancing the reliability and performance of 
small satellite payloads by evaluating the Xen hypervisor. 
The evaluation of the Xen hypervisor is performed on a 
ZCU104 evaluation board from Xilinx, which is equipped 
with a Zynq UltraScale+ Multiprocessor System-on-a-Chip 
(MPSoC). This MPSoC is similar to the one used in a Data 
Processing Unit (DPU) for small satellite missions  
developed by Fraunhofer EMI [3]. 

The chosen test setup simulates operations typically 
executed by small satellites. This involves running a 
real-time (RT) application in parallel with stress tests 
designed to mimic resource-intensive or rogue on-board 
processing tasks under various operating system 
scenarios. This facilitates the evaluation of how 
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virtualization impacts both the performance of the 
RT application and the overall system. 

By running a high-priority RT application in one VM and 
executing stress tasks in another VM, it could be shown that 
the performance of one application does not noticeably 
interfere with the operation of the other. These insights 
highlight the potential of virtualization techniques in 
improving the reliability and performance of small satellite 
systems. Furthermore, virtualization can be explored as a 
NewSpace solution, enabling collaboration between 
institutions and cost-sharing through the shared use of 
satellite hardware. 

2. RELATED WORK 

The field of safety-critical hypervisors in the aerospace 
domain has seen advancements in recent years, with 
hypervisors like XtratuM [4]. As a type-1 (bare-metal) 
hypervisor, XtratuM utilizes para-virtualization techniques 
and adheres closely to the ARINC 653 standard [4], making 
it suitable for safety-critical aerospace applications. XtratuM 
has demonstrated its versatility by successfully being 
ported to reference platforms within the spatial sector, 
including LEON2 and LEON3. These implementations have 
further validated its capabilities and suitability for 
safety-critical aerospace applications. Moreover, in line with 
the growing demand for multicore platforms, the 
MultiPARTES project [5] has extended XtratuM to provide 
support for multicore environments, enhancing its 
scalability and performance [6]. 

Additionally, Steven VanderLeest developed an early 
prototype of an ARINC 653 implementation using the 
open-source Xen hypervisor and a Linux-based 
domain/partition operating system. This prototype, known 
as ARLX (ARINC 653 Real-time Linux on Xen) [7], was later 
enhanced with additional safety and security features. A 
notable aspect of ARLX was its innovative approach to 
multicore processors. In a more recent work [8], 
VanderLeest’s proposal focused on secure virtualization 
deployed on heterogeneous multicore platforms (HMP) [9]. 

3. MATERIALS 

In light of these developments in the field, this paper aims 
to evaluate the efficacy of virtualization, specifically the Xen 
hypervisor, in enhancing the dependability and efficiency of 
small satellite payloads within space environments. 

3.1. Xen hypervisor 

Xen is an open-source type-1 hypervisor that enables 
virtualization of hardware resources. It provides an 
abstraction layer between the physical hardware and virtual 
machines, offering features such as virtual machine 
creation, resource management, as well as network and 
storage connectivity [10]. According to the Xen hypervisor 
terminology, the main source or virtual machine monitor is 
Domain-0 (Dom0). It is a privileged virtual machine that 
provides access to the management and control interface 
to the hypervisor itself. Standard guest operating systems 
exist in unprivileged domains, known as DomU and they 
can run different guest software stacks, like 
operating systems. 

The Xen hypervisor offers several practical benefits that 
make it a strong choice for various applications, especially 
in the context of satellite systems. Firstly, Xen’s widespread 
use in data centers speaks to its reliability and robustness. 
It has been extensively tested and proven in real-world 
scenarios, which is crucial for applications where downtime 
or failures can have serious consequences. Additionally, 
Xen is compatible with different architectures, particularly 
embedded systems and it is open source. This means that 
it can be customized and modified to meet specific 
requirements, which is particularly valuable for satellite 
missions that often have unique needs. Furthermore, 
collaboration and cost-sharing become feasible in a satellite 
system by hosting multiple virtualized missions on a single 
platform, ultimately making space exploration more 
affordable and accessible. Maintenance and upgrades are 
simplified, with individual virtual machines (VMs) easily 
updated without affecting the overall system. 

3.2. Zynq UltraScale+ MPSoC ZCU104 

As an evaluation platform, the Xilinx ZCU104 development 
board with a Zynq UltraScale+ XCZU7EV-2FFVC1156 
MPSoC was selected. This platform was chosen to execute 
the tests over the actual Fraunhofer EMI’s DPU since it is 
built to run as a standalone device and therefore has a 
standard power supply and provides easily accessible 
interfaces. 

4. METHODS 

This paper undertakes a study involving the parallel 
execution of two applications within different testing 
environments. The applications in focus are a RT 
application, commonly employed in small satellites and a 
stress-inducing command intended to impose a substantial 
load on the MPSoC. The testing environments are the 
following: 

- A standard GNU/Linux environment 

- A GNU/Linux environment with different scheduling 
priority for each task 

- A Xen hypervisor utilizing one virtual machine for the 
RT application and another for the stress command, 
both running a GNU/Linux operating system 

- A Xen hypervisor alike the previous scenario but 
incorporating CPU pinning for each VM. 

4.1. Description of applications 

To replicate the DPU's processing capabilities within the 
context of a small satellite, a RT application was developed, 
which is frequently utilized in similar satellite systems. This 
application operates in real-time by delivering 
instantaneous results and data updates upon command 
execution. As such, the RT application serves as a suitable 
means to assess the DPU's capacity for managing and 
processing data in real-time scenarios. 

As a secondary application, the "stress" command is used. 
It is a powerful utility commonly used in Unix-like 
environments to impose a substantial load on a computer 
system. Its primary purpose is to facilitate testing and 
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evaluation of system performance and stability under high-
stress conditions. By specifying various parameters, users 
can control the type and intensity of the workload generated 
by the stress command [11]. This paper focuses on 
evaluating the “cpu”, “vm” and “io” stress options. Once 
initiated, the "stress" command generates the specified 
workload, causing the system to heavily consume CPU, 
memory, or I/O resources respectively. 

4.2. Testing environments 

In the context of the paper, the GNU/Linux image refers to 
the baseline operating system (OS) currently running on the 
DPU. In this testing environment, the RT application and the 
stress command are executed concurrently within the 
GNU/Linux OS. This setup allows for the evaluation of the 
system's performance and behavior under normal 
operating conditions, serving as a reference point for 
comparison with the subsequent testing scenarios. 

The second testing scenario is the GNU/Linux image with 
scheduling priority. Linux scheduling is a fundamental 
aspect of the GNU/Linux operating system, determining the 
execution order of processes and threads. The scheduler 
continuously monitors and adjusts the placement of 
processes on the run-queue and CPU, considering factors 
such as CPU utilization and priority [12]. By assigning 
higher priority to the RT application while running 
concurrently with the stress command, this testing scenario 
explores the impact of prioritization on the system behavior 
and resource allocation. This is done in order to evaluate 
how Linux scheduling influences the performance and 
responsiveness of the system, particularly in the presence 
of resource-intensive tasks. 

In the Xen testing scenario, the environment is set up with 
two virtual machines. The first VM runs the RT application, 
while the second VM executes the stress command. This 
configuration ensures that the resource consumption of the 
stress command does not impact the performance of the 
RT application, as they are isolated within separate VMs. 
By utilizing virtualization, this testing scenario aims to 
evaluate the effectiveness of maintaining the RT 
application’s reliability and performance. 

In the Xen image with CPU pinning testing scenario, the 
assignment of CPU resources to the virtual machines is 
explored. The VM running the RT application is assigned to 
CPU 1, while the VM running the stress command is 
allocated CPU 2 and 3, leaving CPU 0 available for Dom0 
or the privileged VM. A representation of this configuration 
is shown in Figure 1. This allocation is achieved through 
CPU pinning, a mechanism provided by Xen that restricts 
the utilization of virtual CPUs to specific groups of physical 
CPUs. By employing this technique, the precise allocation 
of CPU resources is ensured, preventing the VM running 
the stress command from monopolizing all available CPUs 
and potentially impacting the performance of the VM 
running the RT application. Additionally, CPU pinning 
guarantees that each VM has dedicated access to its 
allocated resources, enhancing isolation and maintaining 
consistent performance [13]. 

Dom0

Real-time app

real-time-vm

Stress command

stress-vm

Xen

Hardware

GNU/Linux image GNU/Linux imageDom0 image

CPU 1 CPU 2 CPU 3CPU 0

shared memory

 

FIGURE 1. Representation of Xen image with virtual 
machines and CPU pinning. 

5. IMPLEMENTATION 

In order to assess the real-time capabilities of the RT 
application, its execution time (Δt) is measured using 
GPIOs of the ZCU104 board and an oscilloscope. The 
execution is triggered when a rising edge is detected at 
GPIO1, and upon completion, it toggles GPIO2. Δt is 
calculated by measuring the time between the rising edge 
of GPIO1 (when its voltage exceeds a threshold of 2.5 V, 
indicating the transition from 0 to 1) and the rising or falling 
edge of channel 2 (when its voltage surpasses or drops 
below 2.5 V, indicating the toggling of GPIO2 after 
executing the real-time application). Figure 2 illustrates the 
voltage levels of channel 1 and 2 during the execution of 
the real-time application, resulting in a Δt value of 0.7 ms. 

 

FIGURE 2. Exemplary plot of data obtained from 
oscilloscope and resulting Δt. 

The performance evaluation of the RT application and the 
system is conducted in this paper under the different testing 
environments and stress configurations. The testing 
involves examining various combinations of stress 
commands, such as different options of the "cpu" "vm" and 
"io" workers. In total, 35 different stress combinations are 
evaluated to assess the performance of the system and the 
RT application for each testing scenario. 

To assess the real-time application's execution time under 
different stress conditions, the application was executed 
500 times in each subtest (representing a specific 
combination of “cpu”, “vm” and “io” stress workers) within 
each scenario (GNU/Linux, GNU/Linux+priority, Xen, and 

Δt=0.7 ms 
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Xen+CPUpinning). This methodology allowed for the 
collection of 500 data points (Δt) for each subtest within 
each scenario, enabling the calculation of the mean and 
standard deviation of Δt. The execution of 500 RT 
application runs in each subtest constituted a batch, 
resulting in a total of four batches for each scenario. This 
yielded a comprehensive data set of 2000 data points per 
scenario, ensuring statistical significance in the analysis of 
performance metrics across different stress combinations. 
Furthermore, conducting the tests in four separate batches, 
rather than gathering all 2000 data points consecutively, 
helps mitigate setup errors and minimizes the impact of 
external factors that may vary over time. This approach 
ensures more reliable and consistent results throughout the 
evaluation process. 

Alongside measuring the execution time of the RT 
application, other system metrics were also recorded, 
including the load average, memory usage, and stress 
bogus operations. These metrics provided valuable insights 
into the system's behavior under stress and facilitated the 
identification of potential bottlenecks and areas for 
optimization. 

5.1. Mean and standard deviation of execution time 
of real-time application 

The mean execution time represents the average or 
expected performance of the application under a specific 
scenario, while the standard deviation indicates the degree 
of variability or inconsistency in its performance. By 
examining both the mean and standard deviation of the 
execution time, we gain a deeper understanding of how the 
real-time application behaves in different scenarios and 
potentially identify factors that contribute to performance 
variations. These metrics also allow to track variations in 
execution time across environments and evaluate the RT 
application's stability. 

5.2. Load average 

The load in a GNU/Linux system is a metric that indicates 
the current CPU utilization by measuring the number of 
processes being executed or waiting for execution. A load 
of 0 represents an idle system, while each additional 
process in execution or waiting increments the load by 1. 
On a quad-core processor, a load of 1 corresponds to 25% 
CPU usage, while a load of 4 corresponds to 100% CPU 
usage. However, the instantaneous load value alone does 
not provide meaningful information due to its rapid 
fluctuations. Therefore, the load average over a specified 
time period is used to monitor resource utilization [14]. 

To analyze the load in each subtest, the load average at the 
end of each subtest is monitored. Specifically, we focus on 
the 15-minute average load value as it offers a stable and 
representative measure of the CPU's average load 
throughout the entire subtest, which lasts approximately 21 
minutes. By evaluating the load average over this duration, 
it gives valuable information about the resource utilization 
patterns during the subtest and can assess the system's 
performance in managing the workload. 

5.3. Memory usage 

Monitoring the memory usage is important during stress 
testing to ensure consistent system performance. Stress 
tests can consume system resources significantly. Tracking 
changes in used memory allows us to draw conclusions 
regarding resource utilization and potential bottlenecks. As 
the number of “vm” stress workers increases, the system's 
memory requirements also increase. By logging available 
memory values every 2 seconds during each subtest and 
capturing total memory data once per subtest (as it remains 
constant), potential memory limitations that may impact 
system performance can be identified. Additionally, to 
facilitate comparisons across subtests and testing 
scenarios, the area under the curve of used memory versus 
the duration of the subtest is calculated, providing a 
quantitative measure for evaluating memory utilization as it 
can be seen in Figure 3. 

 

FIGURE 3. Plot of used memory vs. time during a subtest. 

5.4. Stress bogus operations 

The stress command utilizes "bogus operations per 
second" [bogo/s] as a metric to measure the amount of 
stress imposed on the system. During a stress test, various 
workloads are generated to stress different system aspects. 
The bogus operations represent a type of load that exerts 
stress by performing calculations that do not yield any 
useful output. Measuring the rate at which the system 
executes these bogus operations allows stress to estimate 
the overall processing power of the system under load. A 
higher number of bogus operations per second indicates a 
higher level of stress on the system [15]. The specific 
number of bogus operations varies depending on the 
stressor being executed. While it is acknowledged that 
bogus operations per second may not serve as a 
universally viable benchmark for system performance, it is 
important to note that in our specific use case of relative 
comparison, they can provide insights into the performance 
differences among the different testing scenarios. 

6. RESULTS AND DISCUSSION 

The boxplots shown in Figure 4 and 5 show the mean and 
standard deviation of the execution time of the RT 
application across the different stress combinations and 
testing environments. In the analysis, the interquartile range 
(IQR) provides information on the range of values that the 
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middle 50% of the data falls into. The GNU/Linux 
environment exhibits the highest values for IQR and median 
for both the mean and standard deviation of the Δt of the 
real-time application. On the other hand, the 
Xen+CPUpinning environment shows the smallest IQR and 
median for both the mean and standard deviation of Δt, 
indicating a smaller range of execution time values. 
Notably, the Xen+CPUpinning environment displays the 
least disparity and lowest mean execution time compared 
to all other testing environments. This observation implies 
that the Xen+CPUpinning setup holds the potential to 
provide a more consistent and predictable performance for 
the real-time application. 

The analysis reveals significant variations in the mean and 
standard deviation of the RT application's execution times 
across different testing scenarios. Specifically, the 
Xen+CPUpinning scenario exhibits the smallest statistical 
values compared to the other scenarios, with a mean Δt of 
0.7505 ms and a standard deviation of 0.6820 ms. In 
contrast, the GNU/Linux scenario displays the highest 
statistical values, with a mean Δt of 2.757 ms and a 
standard deviation of 3.781 ms.  

 

FIGURE 4. Boxplot of Δt’s mean of the different testing 
scenarios. 

 

FIGURE 5. Boxplot of Δt’s standard deviation of the 
different testing scenarios. 

When analyzing the average load results, Figure 6 presents 
the aggregate average load of different stress combinations 
for each testing scenario. The graph showcases the sum of 
the 35 average CPU load values within each scenario. The 

non-virtualized environments GNU/Linux and 
GNU/Linux+priority, exhibit an identical total system load of 
140.33. In contrast, the virtualized environments, Xen and 
Xen+CPUpinning, demonstrate higher total system loads of 
144.04 and 144.73, respectively. This indicates a 2.64% 
increase in average load from the non-virtualized scenarios 
to Xen, and a 3.13% increase from the non-virtualized 
scenarios to Xen+CPUpinning. These findings suggest that 
virtualization introduces additional overhead, resulting in a 
higher overall system load compared to non-virtualized 
environments. 

 

FIGURE 6. Sum of average load per testing scenario. 

When examining the results related to used memory, a 
distinction can be observed between the subtests with zero 
and non-zero "vm" stress workers. This differentiation is 
made since the "vm" stressor directly impacts memory 
utilization. To analyze these results, the boxplot presented 
in Figure 7 is utilized. Notably, the boxplot for the 
Xen+CPUpinning scenario displays a narrow IQR for non-
zero “vm” workers. This suggests that the used memory 
values in this scenario are tightly clustered around the 
median, indicating consistent memory resource 
management. One possible explanation is that the 
utilization of CPU pinning in the Xen hypervisor enables 
improved memory management and allocation, resulting in 
reduced variability in used memory values. Additionally, it is 
worth noting that the mean used memory is slightly higher 
compared to the Xen scenario, exhibiting a difference of 
approximately 2-3%. Further investigation could be 
conducted to explore the underlying cause of this increased 
memory usage and its implications. 

 

FIGURE 7. Boxplot of used memory in testing scenarios, 
considering zero and non-zero “vm” workers. 
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The cumulative number of bogus operations performed 
across all four testing scenarios is presented in Figure 8, 
offering a comparative analysis of this metric among the 
different scenarios. The results reveal that the GNU/Linux 
scenario demonstrates the highest sum of bogus 
operations in all stress tests, with a total of 1,742,887 
operations. It is followed by the GNU/Linux+priority 
scenario with 1,672,763 operations, the Xen scenario with 
1,205,589 operations, and finally, the Xen+CPUpinning 
scenario with 837,020 operations. Figure 8 illustrates that 
non-virtualized environments tend to calculate more bogus 
operations than virtualized environments under similar 
stress conditions. This difference suggests that virtualized 
environments provide less processing performance to the 
stressors, which results in fewer bogus operations to induce 
a comparable level of system stress. Notably, in the 
GNU/Linux+priority scenario, the higher priority assigned to 
the real-time application also limits resources available for 
other operations, resulting in a 4.02% decrease in the 
cumulative bogus operations compared to the GNU/Linux 
scenario. 

 

FIGURE 8. Sum of bogus operations per testing scenario. 

The Xen and Xen+CPUpinning scenarios show the lowest 
total bogus operations compared to the non-virtualized 
scenarios. Specifically, the Xen scenario exhibits a 30.82% 
reduction in operations compared to the GNU/Linux 
scenario, while the Xen+CPUpinning scenario 
demonstrates a significant reduction of 51.97% in bogus 
operations compared to the GNU/Linux scenario. These 
reductions can be attributed to the resource management 
and allocation capabilities of the hypervisor in virtualized 
environments. Furthermore, the employment of CPU 
pinning technique in the Xen+CPUpinning scenario leads to 
a 30.57% reduction in bogus operations compared to the 
Xen scenario, due to the dedicated CPU resources 
allocated to each virtual machine. 

7. CONCLUSIONS 

This paper investigated the application of a virtualization 
technology on a processor intended for small satellites. The 
performed study involved conducting various experiments 
on the ZCU104 evaluation board, which is equipped with 
the same MPSoC as the Fraunhofer EMI’s DPU, a high-
performance data processor for small satellite missions. 

Overall, the findings of this paper highlight the advantages 
and disadvantages of using virtualization. Virtualization with 
CPU pinning can significantly improve the predictability of a 
system under stress, delivering consistent execution times 

for real-time applications with strict timing requirements. 
This is shown in the Xen+CPUpinning environment which 
provided the smallest execution time’s mean and variance 
when the application is executed in a separated, virtualized 
environment with CPU pinning. Furthermore, among the 
scenarios tested, Xen+CPUpinning showed the least 
variation in used memory. However, this scenario 
introduced additional overload in the system.  

This study showed the advantages of virtualization in 
ensuring isolation between real-time applications and 
complex data processing tasks running in different virtual 
machines. The results illustrate the potential of virtualization 
techniques to improve the software reliability and 
performance of small satellite payloads based on a MPSoC. 
Virtualization can allow strict separation between different 
parts of the software which can be used in onboard 
applications to encapsulate mission-critical and non-critical 
software modules in virtual machines to ensure isolation. 
Furthermore, virtualization allows to run applications with 
different reliability levels simultaneously on the same 
device. In a small satellite, this can enable different users 
to access and use the same hardware platform while 
maintaining isolation between the small satellite’s flight 
software and the different VMs where users can run their 
applications. With this approach, virtualization can be 
utilized as a possible satellite-as-a-service method, where 
small satellite operators can provide a shared infrastructure 
to enable sharing of the costs associated with developing 
or launching a satellite. In conclusion, this is a promising 
NewSpace strategy, where virtualization can contribute to 
lowering the barriers for newcomers and small satellite 
operators. This shared infrastructure fosters collaboration 
between different agents and space institutions, who will be 
able to easily join forces and work together on a mission. 
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