
HYPERVISOR EVALUATION FOR VIRTUALIZATION OF A
HIGH-PERFORMANCE SMALL SATELLITE PAYLOAD

Maria Jose Luna Mejia, Konstantin Schäfer, Christian Heim, Clemens Horch,
Frank Schäfer, Stefan Rupitsch

Fraunhofer Institute for High-Speed Dynamics, Ernst-Mach-Institut EMI

Ernst-Zermelo-Straße 4, 79104 Freiburg im Breisgau, Germany

Abstract

The emerging field of NewSpace technologies has led to the development of cost-efficient small satellites by utilizing
commercial-off-the-shelf (COTS) components in their designs. Small satellites face significant challenges due to their
limited power resources and exposure to harsh environmental conditions, like radiation or temperature fluctuations. These
can cause hardware and software failures that compromise the reliability of the satellite operations. This paper focuses on
investigating the performance impact of virtualization in the context of COTS-based small satellite payloads. It specifically
explores the application of the open-source virtualization solution Xen and its potential to enhance the software reliability
of small satellite payloads based on a multiprocessor system-on-a-chip (MPSoC). The study evaluates how virtualization
enables the strict separation of mission-critical and non-critical software modules through the use of virtual machines,
ensuring isolation. Through experiments conducted on the ZynqMP UltraScale+ MPSoC-based data processing unit (DPU)
developed at Fraunhofer EMI for small satellite payloads, the results demonstrate a significant improvement in the
execution time and variance of a real-time application when executed in a separated, virtualized environment. This
observation highlights the value of a virtualization setup with CPU pinning, which enhances predictability, especially under
high system loads. Furthermore, leveraging virtualization in small satellite systems ensures strict isolation between
applications with different confidence levels, enabling multiple users to access and utilize the same hardware platform.
This approach also facilitates satellite-as-a-service models, promoting cost sharing, collaboration, and reducing barriers
for small satellite operators to provide shared infrastructure or engage in joint missions with other institutions.

Keywords: NewSpace, virtualization, small satellite, reliability

1. INTRODUCTION

In recent years, the development of small satellites has
gained significant interest due to their cost-efficiency and
flexibility. Many small satellites utilize commercial-off-the-
shelf (COTS) components to reduce development time and
launch costs. However, the use of COTS hardware in space
evokes challenges in regard to reliability and lifespan,
mainly due to the extreme environmental conditions such
as temperature changes and radiation. These factors can
lead to hardware and software failures, impacting the
reliability of small satellite operations. Additionally, some
small satellites have experienced mission failures due to
limited development budgets and compressed timelines,
which often involve accepting certain risks. Unfortunately,
the flight software (FSW) of small satellites is often
neglected until the late stage of spacecraft integration,
within an already constrained development cycle.
Consequently, FSW testing can be inadequate, potentially
leading to undetected software errors or, at worst, mission
failure [1]. In contrast, larger missions with more extensive
resources may employ thorough testing, including
simulations, to enhance FSW reliability. This way,
comprehensive FSW coverage can be achieved on those
missions and the software is expected to operate without
catastrophic failures once deployed in orbit [2].

To address described software failures in small satellites,
this paper proposes the utilization of virtualization

techniques. Virtualization in the context of space missions
is an actively explored domain. This evolving technology
enables the execution of multiple virtual machines (VMs) on
a single physical machine, which holds considerable
benefits for resource-constrained space missions that
require high reliability and flexibility. By implementing
virtualization in small satellites, it becomes possible to
combine multiple subsystem functions on a single
processing system encapsulated in individual VMs,
resulting in reduced satellite size, weight, and power
requirements. Furthermore, virtualization facilitates
software isolation among different applications running
concurrently on the same device, ensuring that failures in
one application or VM do not adversely impact others or the
overall system. In this paper, we assess the potential of
virtualization in enhancing the reliability and performance of
small satellite payloads by evaluating the Xen hypervisor.
The evaluation of the Xen hypervisor is performed on a
ZCU104 evaluation board from Xilinx, which is equipped
with a Zynq UltraScale+ Multiprocessor System-on-a-Chip
(MPSoC). This MPSoC is similar to the one used in a Data
Processing Unit (DPU) for small satellite missions
developed by Fraunhofer EMI [3].

The chosen test setup simulates operations typically
executed by small satellites. This involves running a
real-time (RT) application in parallel with stress tests
designed to mimic resource-intensive or rogue on-board
processing tasks under various operating system
scenarios. This facilitates the evaluation of how

©2023 doi: 10.25967/610318

Deutscher Luft- und Raumfahrtkongress 2023
DocumentID: 610318

1

https://doi.org/10.25967/610318

virtualization impacts both the performance of the
RT application and the overall system.

By running a high-priority RT application in one VM and
executing stress tasks in another VM, it could be shown that
the performance of one application does not noticeably
interfere with the operation of the other. These insights
highlight the potential of virtualization techniques in
improving the reliability and performance of small satellite
systems. Furthermore, virtualization can be explored as a
NewSpace solution, enabling collaboration between
institutions and cost-sharing through the shared use of
satellite hardware.

2. RELATED WORK

The field of safety-critical hypervisors in the aerospace
domain has seen advancements in recent years, with
hypervisors like XtratuM [4]. As a type-1 (bare-metal)
hypervisor, XtratuM utilizes para-virtualization techniques
and adheres closely to the ARINC 653 standard [4], making
it suitable for safety-critical aerospace applications. XtratuM
has demonstrated its versatility by successfully being
ported to reference platforms within the spatial sector,
including LEON2 and LEON3. These implementations have
further validated its capabilities and suitability for
safety-critical aerospace applications. Moreover, in line with
the growing demand for multicore platforms, the
MultiPARTES project [5] has extended XtratuM to provide
support for multicore environments, enhancing its
scalability and performance [6].

Additionally, Steven VanderLeest developed an early
prototype of an ARINC 653 implementation using the
open-source Xen hypervisor and a Linux-based
domain/partition operating system. This prototype, known
as ARLX (ARINC 653 Real-time Linux on Xen) [7], was later
enhanced with additional safety and security features. A
notable aspect of ARLX was its innovative approach to
multicore processors. In a more recent work [8],
VanderLeest’s proposal focused on secure virtualization
deployed on heterogeneous multicore platforms (HMP) [9].

3. MATERIALS

In light of these developments in the field, this paper aims
to evaluate the efficacy of virtualization, specifically the Xen
hypervisor, in enhancing the dependability and efficiency of
small satellite payloads within space environments.

3.1. Xen hypervisor

Xen is an open-source type-1 hypervisor that enables
virtualization of hardware resources. It provides an
abstraction layer between the physical hardware and virtual
machines, offering features such as virtual machine
creation, resource management, as well as network and
storage connectivity [10]. According to the Xen hypervisor
terminology, the main source or virtual machine monitor is
Domain-0 (Dom0). It is a privileged virtual machine that
provides access to the management and control interface
to the hypervisor itself. Standard guest operating systems
exist in unprivileged domains, known as DomU and they
can run different guest software stacks, like
operating systems.

The Xen hypervisor offers several practical benefits that
make it a strong choice for various applications, especially
in the context of satellite systems. Firstly, Xen’s widespread
use in data centers speaks to its reliability and robustness.
It has been extensively tested and proven in real-world
scenarios, which is crucial for applications where downtime
or failures can have serious consequences. Additionally,
Xen is compatible with different architectures, particularly
embedded systems and it is open source. This means that
it can be customized and modified to meet specific
requirements, which is particularly valuable for satellite
missions that often have unique needs. Furthermore,
collaboration and cost-sharing become feasible in a satellite
system by hosting multiple virtualized missions on a single
platform, ultimately making space exploration more
affordable and accessible. Maintenance and upgrades are
simplified, with individual virtual machines (VMs) easily
updated without affecting the overall system.

3.2. Zynq UltraScale+ MPSoC ZCU104

As an evaluation platform, the Xilinx ZCU104 development
board with a Zynq UltraScale+ XCZU7EV-2FFVC1156
MPSoC was selected. This platform was chosen to execute
the tests over the actual Fraunhofer EMI’s DPU since it is
built to run as a standalone device and therefore has a
standard power supply and provides easily accessible
interfaces.

4. METHODS

This paper undertakes a study involving the parallel
execution of two applications within different testing
environments. The applications in focus are a RT
application, commonly employed in small satellites and a
stress-inducing command intended to impose a substantial
load on the MPSoC. The testing environments are the
following:

- A standard GNU/Linux environment

- A GNU/Linux environment with different scheduling
priority for each task

- A Xen hypervisor utilizing one virtual machine for the
RT application and another for the stress command,
both running a GNU/Linux operating system

- A Xen hypervisor alike the previous scenario but
incorporating CPU pinning for each VM.

4.1. Description of applications

To replicate the DPU's processing capabilities within the
context of a small satellite, a RT application was developed,
which is frequently utilized in similar satellite systems. This
application operates in real-time by delivering
instantaneous results and data updates upon command
execution. As such, the RT application serves as a suitable
means to assess the DPU's capacity for managing and
processing data in real-time scenarios.

As a secondary application, the "stress" command is used.
It is a powerful utility commonly used in Unix-like
environments to impose a substantial load on a computer
system. Its primary purpose is to facilitate testing and

©2023

Deutscher Luft- und Raumfahrtkongress 2023

2

evaluation of system performance and stability under high-
stress conditions. By specifying various parameters, users
can control the type and intensity of the workload generated
by the stress command [11]. This paper focuses on
evaluating the “cpu”, “vm” and “io” stress options. Once
initiated, the "stress" command generates the specified
workload, causing the system to heavily consume CPU,
memory, or I/O resources respectively.

4.2. Testing environments

In the context of the paper, the GNU/Linux image refers to
the baseline operating system (OS) currently running on the
DPU. In this testing environment, the RT application and the
stress command are executed concurrently within the
GNU/Linux OS. This setup allows for the evaluation of the
system's performance and behavior under normal
operating conditions, serving as a reference point for
comparison with the subsequent testing scenarios.

The second testing scenario is the GNU/Linux image with
scheduling priority. Linux scheduling is a fundamental
aspect of the GNU/Linux operating system, determining the
execution order of processes and threads. The scheduler
continuously monitors and adjusts the placement of
processes on the run-queue and CPU, considering factors
such as CPU utilization and priority [12]. By assigning
higher priority to the RT application while running
concurrently with the stress command, this testing scenario
explores the impact of prioritization on the system behavior
and resource allocation. This is done in order to evaluate
how Linux scheduling influences the performance and
responsiveness of the system, particularly in the presence
of resource-intensive tasks.

In the Xen testing scenario, the environment is set up with
two virtual machines. The first VM runs the RT application,
while the second VM executes the stress command. This
configuration ensures that the resource consumption of the
stress command does not impact the performance of the
RT application, as they are isolated within separate VMs.
By utilizing virtualization, this testing scenario aims to
evaluate the effectiveness of maintaining the RT
application’s reliability and performance.

In the Xen image with CPU pinning testing scenario, the
assignment of CPU resources to the virtual machines is
explored. The VM running the RT application is assigned to
CPU 1, while the VM running the stress command is
allocated CPU 2 and 3, leaving CPU 0 available for Dom0
or the privileged VM. A representation of this configuration
is shown in Figure 1. This allocation is achieved through
CPU pinning, a mechanism provided by Xen that restricts
the utilization of virtual CPUs to specific groups of physical
CPUs. By employing this technique, the precise allocation
of CPU resources is ensured, preventing the VM running
the stress command from monopolizing all available CPUs
and potentially impacting the performance of the VM
running the RT application. Additionally, CPU pinning
guarantees that each VM has dedicated access to its
allocated resources, enhancing isolation and maintaining
consistent performance [13].

Dom0

Real-time app

real-time-vm

Stress command

stress-vm

Xen

Hardware

GNU/Linux image GNU/Linux imageDom0 image

CPU 1 CPU 2 CPU 3CPU 0

shared memory

FIGURE 1. Representation of Xen image with virtual
machines and CPU pinning.

5. IMPLEMENTATION

In order to assess the real-time capabilities of the RT
application, its execution time (Δt) is measured using
GPIOs of the ZCU104 board and an oscilloscope. The
execution is triggered when a rising edge is detected at
GPIO1, and upon completion, it toggles GPIO2. Δt is
calculated by measuring the time between the rising edge
of GPIO1 (when its voltage exceeds a threshold of 2.5 V,
indicating the transition from 0 to 1) and the rising or falling
edge of channel 2 (when its voltage surpasses or drops
below 2.5 V, indicating the toggling of GPIO2 after
executing the real-time application). Figure 2 illustrates the
voltage levels of channel 1 and 2 during the execution of
the real-time application, resulting in a Δt value of 0.7 ms.

FIGURE 2. Exemplary plot of data obtained from
oscilloscope and resulting Δt.

The performance evaluation of the RT application and the
system is conducted in this paper under the different testing
environments and stress configurations. The testing
involves examining various combinations of stress
commands, such as different options of the "cpu" "vm" and
"io" workers. In total, 35 different stress combinations are
evaluated to assess the performance of the system and the
RT application for each testing scenario.

To assess the real-time application's execution time under
different stress conditions, the application was executed
500 times in each subtest (representing a specific
combination of “cpu”, “vm” and “io” stress workers) within
each scenario (GNU/Linux, GNU/Linux+priority, Xen, and

Δt=0.7 ms

©2023

Deutscher Luft- und Raumfahrtkongress 2023

3

Xen+CPUpinning). This methodology allowed for the
collection of 500 data points (Δt) for each subtest within
each scenario, enabling the calculation of the mean and
standard deviation of Δt. The execution of 500 RT
application runs in each subtest constituted a batch,
resulting in a total of four batches for each scenario. This
yielded a comprehensive data set of 2000 data points per
scenario, ensuring statistical significance in the analysis of
performance metrics across different stress combinations.
Furthermore, conducting the tests in four separate batches,
rather than gathering all 2000 data points consecutively,
helps mitigate setup errors and minimizes the impact of
external factors that may vary over time. This approach
ensures more reliable and consistent results throughout the
evaluation process.

Alongside measuring the execution time of the RT
application, other system metrics were also recorded,
including the load average, memory usage, and stress
bogus operations. These metrics provided valuable insights
into the system's behavior under stress and facilitated the
identification of potential bottlenecks and areas for
optimization.

5.1. Mean and standard deviation of execution time
of real-time application

The mean execution time represents the average or
expected performance of the application under a specific
scenario, while the standard deviation indicates the degree
of variability or inconsistency in its performance. By
examining both the mean and standard deviation of the
execution time, we gain a deeper understanding of how the
real-time application behaves in different scenarios and
potentially identify factors that contribute to performance
variations. These metrics also allow to track variations in
execution time across environments and evaluate the RT
application's stability.

5.2. Load average

The load in a GNU/Linux system is a metric that indicates
the current CPU utilization by measuring the number of
processes being executed or waiting for execution. A load
of 0 represents an idle system, while each additional
process in execution or waiting increments the load by 1.
On a quad-core processor, a load of 1 corresponds to 25%
CPU usage, while a load of 4 corresponds to 100% CPU
usage. However, the instantaneous load value alone does
not provide meaningful information due to its rapid
fluctuations. Therefore, the load average over a specified
time period is used to monitor resource utilization [14].

To analyze the load in each subtest, the load average at the
end of each subtest is monitored. Specifically, we focus on
the 15-minute average load value as it offers a stable and
representative measure of the CPU's average load
throughout the entire subtest, which lasts approximately 21
minutes. By evaluating the load average over this duration,
it gives valuable information about the resource utilization
patterns during the subtest and can assess the system's
performance in managing the workload.

5.3. Memory usage

Monitoring the memory usage is important during stress
testing to ensure consistent system performance. Stress
tests can consume system resources significantly. Tracking
changes in used memory allows us to draw conclusions
regarding resource utilization and potential bottlenecks. As
the number of “vm” stress workers increases, the system's
memory requirements also increase. By logging available
memory values every 2 seconds during each subtest and
capturing total memory data once per subtest (as it remains
constant), potential memory limitations that may impact
system performance can be identified. Additionally, to
facilitate comparisons across subtests and testing
scenarios, the area under the curve of used memory versus
the duration of the subtest is calculated, providing a
quantitative measure for evaluating memory utilization as it
can be seen in Figure 3.

FIGURE 3. Plot of used memory vs. time during a subtest.

5.4. Stress bogus operations

The stress command utilizes "bogus operations per
second" [bogo/s] as a metric to measure the amount of
stress imposed on the system. During a stress test, various
workloads are generated to stress different system aspects.
The bogus operations represent a type of load that exerts
stress by performing calculations that do not yield any
useful output. Measuring the rate at which the system
executes these bogus operations allows stress to estimate
the overall processing power of the system under load. A
higher number of bogus operations per second indicates a
higher level of stress on the system [15]. The specific
number of bogus operations varies depending on the
stressor being executed. While it is acknowledged that
bogus operations per second may not serve as a
universally viable benchmark for system performance, it is
important to note that in our specific use case of relative
comparison, they can provide insights into the performance
differences among the different testing scenarios.

6. RESULTS AND DISCUSSION

The boxplots shown in Figure 4 and 5 show the mean and
standard deviation of the execution time of the RT
application across the different stress combinations and
testing environments. In the analysis, the interquartile range
(IQR) provides information on the range of values that the

©2023

Deutscher Luft- und Raumfahrtkongress 2023

4

middle 50% of the data falls into. The GNU/Linux
environment exhibits the highest values for IQR and median
for both the mean and standard deviation of the Δt of the
real-time application. On the other hand, the
Xen+CPUpinning environment shows the smallest IQR and
median for both the mean and standard deviation of Δt,
indicating a smaller range of execution time values.
Notably, the Xen+CPUpinning environment displays the
least disparity and lowest mean execution time compared
to all other testing environments. This observation implies
that the Xen+CPUpinning setup holds the potential to
provide a more consistent and predictable performance for
the real-time application.

The analysis reveals significant variations in the mean and
standard deviation of the RT application's execution times
across different testing scenarios. Specifically, the
Xen+CPUpinning scenario exhibits the smallest statistical
values compared to the other scenarios, with a mean Δt of
0.7505 ms and a standard deviation of 0.6820 ms. In
contrast, the GNU/Linux scenario displays the highest
statistical values, with a mean Δt of 2.757 ms and a
standard deviation of 3.781 ms.

FIGURE 4. Boxplot of Δt’s mean of the different testing
scenarios.

FIGURE 5. Boxplot of Δt’s standard deviation of the
different testing scenarios.

When analyzing the average load results, Figure 6 presents
the aggregate average load of different stress combinations
for each testing scenario. The graph showcases the sum of
the 35 average CPU load values within each scenario. The

non-virtualized environments GNU/Linux and
GNU/Linux+priority, exhibit an identical total system load of
140.33. In contrast, the virtualized environments, Xen and
Xen+CPUpinning, demonstrate higher total system loads of
144.04 and 144.73, respectively. This indicates a 2.64%
increase in average load from the non-virtualized scenarios
to Xen, and a 3.13% increase from the non-virtualized
scenarios to Xen+CPUpinning. These findings suggest that
virtualization introduces additional overhead, resulting in a
higher overall system load compared to non-virtualized
environments.

FIGURE 6. Sum of average load per testing scenario.

When examining the results related to used memory, a
distinction can be observed between the subtests with zero
and non-zero "vm" stress workers. This differentiation is
made since the "vm" stressor directly impacts memory
utilization. To analyze these results, the boxplot presented
in Figure 7 is utilized. Notably, the boxplot for the
Xen+CPUpinning scenario displays a narrow IQR for non-
zero “vm” workers. This suggests that the used memory
values in this scenario are tightly clustered around the
median, indicating consistent memory resource
management. One possible explanation is that the
utilization of CPU pinning in the Xen hypervisor enables
improved memory management and allocation, resulting in
reduced variability in used memory values. Additionally, it is
worth noting that the mean used memory is slightly higher
compared to the Xen scenario, exhibiting a difference of
approximately 2-3%. Further investigation could be
conducted to explore the underlying cause of this increased
memory usage and its implications.

FIGURE 7. Boxplot of used memory in testing scenarios,
considering zero and non-zero “vm” workers.

©2023

Deutscher Luft- und Raumfahrtkongress 2023

5

The cumulative number of bogus operations performed
across all four testing scenarios is presented in Figure 8,
offering a comparative analysis of this metric among the
different scenarios. The results reveal that the GNU/Linux
scenario demonstrates the highest sum of bogus
operations in all stress tests, with a total of 1,742,887
operations. It is followed by the GNU/Linux+priority
scenario with 1,672,763 operations, the Xen scenario with
1,205,589 operations, and finally, the Xen+CPUpinning
scenario with 837,020 operations. Figure 8 illustrates that
non-virtualized environments tend to calculate more bogus
operations than virtualized environments under similar
stress conditions. This difference suggests that virtualized
environments provide less processing performance to the
stressors, which results in fewer bogus operations to induce
a comparable level of system stress. Notably, in the
GNU/Linux+priority scenario, the higher priority assigned to
the real-time application also limits resources available for
other operations, resulting in a 4.02% decrease in the
cumulative bogus operations compared to the GNU/Linux
scenario.

FIGURE 8. Sum of bogus operations per testing scenario.

The Xen and Xen+CPUpinning scenarios show the lowest
total bogus operations compared to the non-virtualized
scenarios. Specifically, the Xen scenario exhibits a 30.82%
reduction in operations compared to the GNU/Linux
scenario, while the Xen+CPUpinning scenario
demonstrates a significant reduction of 51.97% in bogus
operations compared to the GNU/Linux scenario. These
reductions can be attributed to the resource management
and allocation capabilities of the hypervisor in virtualized
environments. Furthermore, the employment of CPU
pinning technique in the Xen+CPUpinning scenario leads to
a 30.57% reduction in bogus operations compared to the
Xen scenario, due to the dedicated CPU resources
allocated to each virtual machine.

7. CONCLUSIONS

This paper investigated the application of a virtualization
technology on a processor intended for small satellites. The
performed study involved conducting various experiments
on the ZCU104 evaluation board, which is equipped with
the same MPSoC as the Fraunhofer EMI’s DPU, a high-
performance data processor for small satellite missions.

Overall, the findings of this paper highlight the advantages
and disadvantages of using virtualization. Virtualization with
CPU pinning can significantly improve the predictability of a
system under stress, delivering consistent execution times

for real-time applications with strict timing requirements.
This is shown in the Xen+CPUpinning environment which
provided the smallest execution time’s mean and variance
when the application is executed in a separated, virtualized
environment with CPU pinning. Furthermore, among the
scenarios tested, Xen+CPUpinning showed the least
variation in used memory. However, this scenario
introduced additional overload in the system.

This study showed the advantages of virtualization in
ensuring isolation between real-time applications and
complex data processing tasks running in different virtual
machines. The results illustrate the potential of virtualization
techniques to improve the software reliability and
performance of small satellite payloads based on a MPSoC.
Virtualization can allow strict separation between different
parts of the software which can be used in onboard
applications to encapsulate mission-critical and non-critical
software modules in virtual machines to ensure isolation.
Furthermore, virtualization allows to run applications with
different reliability levels simultaneously on the same
device. In a small satellite, this can enable different users
to access and use the same hardware platform while
maintaining isolation between the small satellite’s flight
software and the different VMs where users can run their
applications. With this approach, virtualization can be
utilized as a possible satellite-as-a-service method, where
small satellite operators can provide a shared infrastructure
to enable sharing of the costs associated with developing
or launching a satellite. In conclusion, this is a promising
NewSpace strategy, where virtualization can contribute to
lowering the barriers for newcomers and small satellite
operators. This shared infrastructure fosters collaboration
between different agents and space institutions, who will be
able to easily join forces and work together on a mission.

8. REFERENCES

[1] D. Franzim, M. Ferreira, and F. Kucinskis, “A
Comparative Survey on Flight Software Frameworks
for ‘New Space’ Nanosatellite Missions,” Journal of
Aerospace Technology and Management 11, doi:
10.5028/jatm.v11.1081.

[2] M. Grubb, “Increasing the Reliability of Software
Systems on Small Satellites Using Software-Based
Simulation of the Embedded System,” West Virginia
University, 2021. [Online]. Available: https://
researchrepository.wvu.edu/cgi/viewcontent.cgi?
article=9091&context=etd

[3] K. Schäfer, C. Horch, S. Busch, and F. Schäfer, “A
Heterogenous, reliable onboard processing system
for small satellites,” in 2021 IEEE International
Symposium on Systems Engineering (ISSE),
Vienna, Austria, 2021, pp. 1–3. [Online]. Available:
https://ieeexplore.ieee.org/document/9582474

[4] M. Masmano, I. Ripoll, and A. Crespo, “XtratuM: a
Hypervisor for Safety Critical Embedded Systems,”
in 11th Real-Time Linux Workshop.

[5] A. Crespo, M. Masmano, J. Coronel, S. Peiró, P.
Balbastre, and J. Simó, “Multicore partitioned
systems based on hypervisor,” in 19th World
Congress The International Federation of Automatic
Control, 2014, doi: 10.3182/20140824-6-ZA-

©2023

Deutscher Luft- und Raumfahrtkongress 2023

6

1003.02410.

[6] 11th Real-Time Linux Workshop. Dresden,
Germany.

[7] S. Vanderleest, “ARINC 653 hypervisor,” in Digital
Avionics Systems Conference (DASC), 2010
IEEE/AIAA 29th, doi: 10.1109/DASC.2010.5655298.

[8] S. Vanderleest and D. White, “MPSoC hypervisor:
The safe & secure future of avionics,” in 2015
IEEE/AIAA 34th Digital Avionics Systems
Conference (DASC), doi:
10.1109/DASC.2015.7311448.

[9] S. Pinto, A. Tavares, and S. Montenegro, “Space
and time partitioning with hardware support for
space applications,” in Data Systems in Aerospace
Conference, DASIA 2016.

[10] H. Karacali, N. Dönüm, and E. Cebel, “Xen
Hypervisor Network Management System,” The
European Journal of Research and Development,
early access. doi: 10.56038/ejrnd.v3i1.244.

[11] Linux. “stress command.” https://linux.die.net/man/1/
stress (accessed Jun. 23, 2023).

[12] Learn Linux Organization. “Scheduling, Priority
Calculation and the nice value.: Chapter 7. System
Tuning.” https://www.learnlinux.org.za/courses/build/
internals/ch07s02.html (accessed Jun. 23, 2023).

[13] Alibaba Cloud Bao. “What Is Cpu Pinning In
Virtualization.” https://www.alibabacloud.com/tech-
news/virtualization/3ai-what-is-cpu-pinning-in-
virtualization (accessed Jun. 26, 2023).

[14] Ninad. “What is Load Average in Linux?” https://
www.digitalocean.com/community/tutorials/load-
average-in-linux (accessed Jun. 26, 2023).

[15] Ubuntu. “stress-ng.” https://wiki.ubuntu.com/Kernel/
Reference/stress-ng (accessed Jun. 26, 2023).

©2023

Deutscher Luft- und Raumfahrtkongress 2023

7

