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Abstract
The development of energy-efficient aircraft is crucial for achieving sustainable, zero-emission air travel. Achiev-
ing sustainability in aviation necessitates strategies to reduce fuel consumption, including the implementation
of low-drag wing designs and harnessing laminar flow. However, designing laminar aircraft requires intricate
methodologies due to sensitivity to environmental and operational variations. This study addresses the chal-
lenge of designing energy-efficient aircraft by employing computational fluid dynamics models and advanced
optimization under uncertainty techniques. We show the successful application of the surrogate-based opti-
mization and uncertainty quantification approach in the optimization of airfoil drag enabling a natural laminar
airfoil (NLF) design. The optimization process employs surrogate models trained using the data from high-
fidelity airfoil simulations using - (i) a boundary layer code coupled with linear stability method, and (ii) a
recently developed transition transport model. Accuracy of the surrogate models is improved using an active
sampling strategy. The robust optimization approach accounts for uncertainties in environmental and oper-
ational conditions, providing a more comprehensive understanding of their impact on key design parameters.
Contrary to conventional deterministic aerodynamic design optimization, our results demonstrate the effec-
tiveness and accuracy of optimization under uncertainty for achieving robust NLF airfoil designs. The robust
optimums favor a delayed transition location w.r.t. the instabilities, unlike their deterministic counterparts that
feature sudden transitions triggering fully turbulent flow. This study advances the field by offering a practical
and reliable methodology for developing energy-efficient airfoil. The application of these advanced optimization
techniques and uncertainty quantification methods holds significant promise for the broader field of aerospace
engineering, offering a pathway towards more robust designs.
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NOMENCLATURE

α angle of attack

c chord length

CD drag coefficient

CL lift coefficient

CM moment coefficient

CP pressure coefficient

DC drag count

J objective function

M Mach number

NCF critical N factor for crossflow instabilities

NTS critical N factor for Tollmien–Schlichting
instabilities

PDF probability density function

QoI quantity of interest

x design parameters

x, z x and z coordinates

xTr x-coordinate of transition location

ξ uncertainty parameters

1. INTRODUCTION

In commercial aviation, an ongoing need exists to
decrease fuel usage. This imperative arises from
the necessity to fulfill strict environmental objec-
tives established by aviation regulatory bodies. The
European Commission delineates these ecological ob-
jectives, stipulating a 75% decrease in CO2 and a 90%
decrease in NOx emissions per passenger kilometer by
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2050 [1]. Additionally, this endeavor aims to curtail
operational expenses for airlines.
Over the course of aviation’s evolution, the improve-
ments in aircraft design have led to enhanced aircraft
performance. Consequently, commercial aircraft have
gradually become highly efficient. Nonetheless, given
the fundamental design of aircraft i.e. tube and wing
has predominantly stayed unaltered, each subsequent
attempt at redesign yields only moderate benefits in
terms of efficiency. Hence, achieving a substantial ad-
vancement in aircraft performance necessitates the ex-
ploration of new aerodynamic configurations and the
utilization of intricate airflow phenomena.
The passive extension of laminar flow, known as
Natural Laminar Flow (NLF), aims for extending the
laminar boundary layer which in turn reduced viscous
drag thereby improving aerodynamic efficiency [2].
Achieving NLF requires suppressing boundary-layer
instabilities that trigger flow transition. The ad-
vantages of NLF have been studied primarily for
the low swept wings operating at reduced Reynolds
numbers where the boundary-layer instabilities are
negligible [3]. Higher Reynolds numbers and sweep
angles trigger crossflow instabilities near the leading
edge leading to a fully turbulent flow [4]. However,
pressure profiles that counteract crossflow instabilities
can be achieved via shape design, even without any
active flow-control devices such as suction of bound-
ary layer [5]. This is accomplished in NLF airfoil
design through careful adjustment of the pressure
distribution [6, 7].
The approach to design laminar wings involves using
inverse design methods based on linear stability the-
ory [6, 8]. These methods aim to create wing designs
that maintain laminar flow by specifying desired pres-
sure distributions. The pressure distribution features
- an initial acceleration at the leading edge to reduce
crossflow (CF) instability and a favorable pressure gra-
dients to dampen Tollmien–Schlichting (TS) instabil-
ities. Shock waves are then needed to slow down the
flow, and the rear shape is adjusted to meet lift re-
quirements. In this process, experts define the target
pressure distribution for a specific flight condition, and
inverse design techniques shape the wing accordingly,
often followed by manual iterations for fine-tuning.
Despite these efforts, this approach might not lead
to an optimal design. Direct optimization methods
are emerging as an alternative, offering better explo-
ration of the design space. Well-defined design op-
timization problems can generate configurations with
pressure distributions similar to expert-defined ones
and often yield better results compared to inverse de-
sign methods.
The field of aerodynamic shape optimization is fairly
established in academia and industry [9]. For instance,
direct shape optimization has been used in designing
airfoils and wings to achieve natural laminar flow [10].
Previously, NLF airfoils have been designed across var-
ious Mach numbers and lift coefficients to obtain a ro-
bust configuration [11]. In that work, the optimization
aimed at minimizing a linear combination of the mean

and standard deviation of the drag coefficient. An ef-
fective implementation of NLF is complicated due to
the sensitivity of the transition location to the surface,
the flow quality, the environmental and the opera-
tional conditions [12]. To account for such instabilities
triggering transition, a robust design optimization for
laminar airfoil under critical N -factor uncertainty has
been proposed [13]. In that work, a low-fidelity tool
XFOIL in combination with a boundary-layer solver
and eN transition model was used to compute the
aerodynamic quantities of interest. More recently, an
efficient bilevel approach for optimization under un-
certainty has been proposed [14], where the authors
considered the uncertainty not only in the N -factors
but also in the operational conditions.
Real-world applications of robust design methodolo-
gies addressing the environmental and operational con-
ditions related to NLF problems are notably lacking.
Previous efforts largely focused on low-fidelity simu-
lations incorporating only 2D instabilities, curtailing
their suitability for swept-wing scenarios. Moreover,
the environmental uncertainties have been studied for
the eN method and a suitable analysis is lacking for
the recently developed intermittency-based transition
model. The DLR TAU code offers steady RANS sim-
ulations coupled with a boundary layer code and lin-
ear stability method (eN ), on the one hand and a re-
cently developed intermittency-based transition trans-
port model (DLR γ) on the other hand. In the present
study, we primarily focus on - (i) establishing a proba-
bilistic framework for effectively designing robust NLF
transonic airfoil resilient against the uncertain environ-
mental and operational conditions at high sweep and
Reynolds number, and (ii) comparing the robust (and
deterministic) optimums obtained using the two tran-
sition modeling approaches, namely eN method and
DLR γ model.
The sections in this paper are structured as follows.
Section 2 introduces the bilevel robust optimization
framework that employs surrogate models for opti-
mization and uncertainty quantification. Section 3
presents the setup of transonic airfoil (RAE2822) opti-
mization under uncertainty including the formulation
of the optimization problem with constraints, flight
conditions, transition models and the associated en-
vironmental uncertainties, parameterization of design
space and the numerical model used to compute the
aerodynamic QoIs. The results obtained from the de-
terministic and robust optimization using both the
transition models are presented in 4. Finally, conclu-
sions are presented in section 5.

2. ROBUST OPTIMIZATION FRAMEWORK

Solving a global optimization problem may require a
large number of function (black-box) evaluations de-
pending on the design space and the non-linearity of
the function. This can rapidly turn intractable and
infeasible, e.g. when - (i) the design space is high-
dimensional, and/or (ii) the function evaluation is ex-
pensive (e.g. a typical CFD simulation). Moreover,
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due to the evaluation of statistics at each iteration
(discussed in subsequent section), the computational
cost of the optimization under uncertainties further
increases by several orders. Discussed next is an effi-
cient surrogate-based robust optimization framework
that has been proven to overcome such high computa-
tional cost [15].

2.1. Problem Definition

Let Y ∈ R be the quantity of interest (QoI) which
is usually a performance measure such as drag coeffi-
cient, depending (mostly non-linearly) on the design
variables x ∈ Rd at operating conditions A. The goal
of deterministic optimization is to find an optimal set
of design variables x∗ at constant (nominal) operating
conditions A0 while satisfying k constraints on the de-
sign variables,

x∗ = argmin
x

{Y (x,A0)},

gi(x) ≤ 0, i = 1, 2, ..., k.
(1)

Whereas, the robust optimization aims at finding an
optimal design while considering the uncertainties ξ ∈
Rm in environmental and/or operational conditions.
Consequently, the QoI becomes a random variable,
which in turn changes the problem from the optimiza-
tion of the QoI towards the optimization of relevant
statistic of the QoI. The statistic (e.g. mean, standard
deviation, quantile etc.) of the QoI is computed using
uncertainty propagation and is thereafter minimized
by the optimizer. In this study, we consider the mean
value of the QoI µY and define the robust optimization
problem as follows,

x∗ = argmin
x

{µY (x, ξ)},

gi(x) ≤ 0, i = 1, 2, ..., k.
(2)

2.2. Bilevel Surrogate-Based Approach for Optimiza-
tion Under Uncertainty

A general-purpose framework of a bilevel surrogate
model has been previously used for various robust
design optimization problems consisting of moderate
number of dimensions and uncertainties [14, 15]. As
shown in Fig 1, the framework consists of two nested-
loops combining a Surrogate-Based Optimization
(SBO) strategy (outer loop), with a Surrogate-Based
Uncertainty Quantification (SBUQ) method (inner
loop). Each iteration in the optimization requires only
the design variables x as the input to the SBO sur-
rogate (red response surface) and has the statistic of
the QoI as the output. Whereas the SBUQ surrogate
(blue response surface), for given design variables,
has the uncertainties ξ as the input and the QoI as
the output (computed using the black-box function).
The gradient-free robust optimization framework is
particularly useful as the CFD simulations involving
transition predictions using the eN method or the
DLR γ model that do not readily provide adjoint

solutions. The overall efficiency of the framework is
further enhanced by refining the vicinity of optimal
solution using infill (adaptive sampling) strategies.
Parallel evaluation of the design of experiment (DoE)
and the in-built parallelization of the black-box CFD
solver further adds to the efficiency of the framework.

2.2.1. Optimization

The main objective of the bilevel framework’s outer
loop (SBO) is to perform an efficient optimization by
using a low number of expensive black-box evaluations
[16]. For this purpose a surrogate model is constructed
which not only maps the design variables to the QoI
but is also cheap to evaluate.
We use the SBO module of Surrogate-Modelling for
AeRo-data Toolbox in pYthon (SMARTy) developed
by DLR, German Aerospace Center [17]. This opti-
mization module - (i) generates the initial DoE sam-
pling in the design space and evaluates the objective
function (and constraints), (ii) constructs a surrogate
model for the objective function (and constraints), (iii)
uses an active infill criteria to sequentially reach the
optimum while evaluating the black-box solver for each
proposed optimal design, and (iv) reconstructs the sur-
rogate model(s) after every infill iteration. In this
work, we use Sobol sequences for the DoE stage [18]
and Kriging (Gaussian process regression) models as
surrogates [19]. The infill criteria employed here is
expected improvement (EI) method which is based
on the normal distribution prediction (mean ŷ(x) and
standard deviation σ̂(x)) of the objective function ob-
tained from the Kriging surrogate at any given loca-
tion x in design space [20]. Using the probability of
improvement with respect to the current best sampled
solution ymin, EI is defined defined as:

(3) E[I(x)] = (ymin − ŷ(x)) Φ

(
ymin − ŷ(x)

σ̂(x)

)
+

σ̂(x)ϕ

(
ymin − ŷ(x)

σ̂(x)

)
,

where Φ and ϕ are the cumulative and probability dis-
tribution functions of the standard normal distribu-
tion, respectively. The EI infill method balances ex-
ploration with exploitation in the sense that a large
expected improvement is present in the regions where
a solution smaller than the current best is possible
and/or in the regions where the model error is large.
The refining continues until the convergence criteria
(L2 distance between consecutive design vectors or the
EI values) or the maximum number of infill points
(budget) is reached.

2.2.2. Uncertainty Quantification

The aim of the bilevel framework’s inner loop (SBUQ)
is to efficiently propagate the input uncertainties to-
wards the QoI, followed by accurately approximating
the statistic of the QoIs to be used by SBO. To avoid
the expensive classical Monte Carlo approach for un-
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FIG 1. Bilevel approach for uncertainty quantification [15]: surrogate of statistics (left), surrogate of random variable
(middle), and full-order model evaluation (right).

certainty quantification, we employ a surrogate-based
approach to estimate the statistic. Based on the initial
DoE generated using the stochastic space and its eval-
uations (black-box solves), a Kriging surrogate model
is constructed that maps the uncertainties to the QoI.
In order to increase the accuracy of the surrogate, a
statistic based active infill criteria is used. In this
study we use the infill criteria targeting the mean of
QoI which requires a high global accuracy of the sur-
rogate. To ensure an even sampling in the stochastic
space, the infill criteria makes use of the prediction
mean square error ŝ(ξ) at any point ξ available in
the Kriging surrogate. A new sample is sequentially
added (after updating the surrogate) in the location ξ∗

where the product of the joint probability distribution
function of the input uncertainties PDFξ and the er-
ror estimate is maximum. The resulting minimization
problem is defined as:

(4) ξ∗ = argmin
ξ

{−PDFξ(ξ) ŝ(ξ) }

The PDFξ term favors the sampling of location with
high probability in the stochastic space while the error
term ŝ(ξ) favors the sampling from regions of low sur-
rogate accuracy. Differential evolution is used to find
the optimum location in the surrogate. The statistic of
QoI is obtained using a large number of Quasi Monte
Carlo samples evaluating the surrogate model.

3. ROBUST DESIGN OF A TRANSONIC AIR-
FOIL: SETUP

In this section we present the formulation of the de-
terministic and robust transonic airfoil optimization,
characterization of the design space and the uncer-
tainties as well as the numerical model used as the
black-box solver.

3.1. Flight Conditions for Robust Optimization

The deterministic and the robust optimization are
used to determine an optimal transonic airfoil design
operating under the design conditions of: Mach
number 0.78, coefficient of lift 0.7, Reynolds num-
ber 23 × 106 and sweep angle of 27o. Based on
the Fokker 100 and Advanced Technologies Testing
Aircraft System (ATTAS) flight tests [21, 22], due
to the attachment line and crossflow instabilities, a
premature transition to turbulence is inevitable at
higher Reynolds number and sweep angles. Attach-
ment line transition can be mitigated by constructive
features such as anti-contamination devices or Gaster
bumps and is, therefore, excluded from the present
investigation. In contrast to that, crossflow instabil-
ities can be suppressed by adequate profiling of the
wing, at the cost of increasing Tollmien-Schlichting
instability. This trade-off can be efficiently handled
using numerical optimization, enabling the extension
of laminarity even at higher Reynolds number and
sweep angles.

3.2. Deterministic and Robust Optimization

In the present study, the deterministic optimization
solves for the optimum design x∗ that minimizes the
drag coefficient at a constant (nominal) value of Mach
number and lift coefficient. The maximum airfoil
thickness normalized by chord length t/cmax is set to
be greater than t/cmax,0 = 0.11:

x∗ = argmin
x

{CD(x,M,CL)}

s.t. t/cmax ≥ t/cmax,0

(5)

The constant lift coefficient is handled by the CFD
solver by iteratively adjusting the angle of attack. The
maximum thickness constraint is set as a constraint
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FIG 2. CST design variable bounds used for optimization
(top). RAE2822 airfoil (dashed) and sample airfoil
profiles (colored) in the design space (bottom).

in the optimization process.

In order to approximate realistic flight conditions, the
robust optimization incorporates both environmental
and operational uncertainties ξ. As discussed earlier,
the QoI (CD) becomes a random variable, the statistic
of which is therefore optimized. In order to obtain an
overall good performance, in this study, the minimiza-
tion of the mean values of the drag coefficient µCD

is
sought.

x∗ = argmin
x

{µCD
(x, ξ)}

s.t. t/cmax ≥ t/cmax,0

(6)

3.3. Parameterization of Design Space

The objective function in both deterministic and ro-
bust optimization depends on the design variables x
that describe the shape of the airfoil. In this study, we
use the class shape function transformations (CSTs)
to describe and change the profile of an airfoil over
the optimization iterations [23]. The parameterization
represents a two-dimensional geometry by the prod-
uct of a class function C(x/c), and a shape function
S(x/c) based on Bernstein binomials, plus a term that
characterizes the trailing edge thickness:

z

c
= C

(x
c

)
S
(x
c

)
+

x

c

∆zTE

c

C
(x
c

)
=

(x
c

)N1

C
(
1− x

c

)N2

for 0 ≤ x

c
≤ 1

S
(x
c

)
=

n∑
i=0

[
XiKi,n

(x
c

)i (
1− x

c

)n−i
](7)

where Ki,n = n!
i!(n−i)! . The exponents N1 and N2 de-

fine the type of geometry to be represented. An airfoil,
e.g. is represented by N1 = 1/2 and N2 = 1, adher-
ing to the fact that the term

√
x/c yields round lead-

FIG 3. CFD grid of the baseline (RAE2822) airfoil used in
the optimization problem. Every iteration in the
optimization performs a mesh deformation.

ing edges, whereas (1 − x/c) results in sharp trailing
edges. The weight factors Xi is representing the de-
sign variables. The CST parameterization guarantees
C2 continuity of the surfaces and captures the space of
smooth airfoil shapes. Ten design parameters are used
to define this parameterization (five for the upper sur-
face and five for the lower surface). The theoretical
bounds of the CST parameters is [−1, 1]. However, in
order to avoid unrealistic designs, we restrict the de-
sign space with respect to the baseline transonic air-
foil (RAE2822) shape such that the CST bounds are
x0(1± 0.3), i.e. ±30% of baseline design x0. This not
only avoids nonphysical shapes but also facilitates the
convergence of the optimizer. Fig 2 shows the bounds
of the design variables and a few sample airfoil profiles
around the baseline.

3.4. Numerical Model

The flow around the airfoil is modeled using the DLR,
German Aerospace Center, CFD solver TAU [24].
The aerodynamic quantities of interest are obtained
by solving the Reynolds-averaged Navier-Stokes
(RANS) equations in combination with the k − ω
SST turbulence model. The solver settings include
- a 4w multigrid cycle, a backward Euler solver for
pseudo time integration, a central flux discretization
scheme and an infinite swept-wing formulation to
account for cross flow effects (2.5D analysis) [25].
The unstructured mesh with 150,000 cells and 1024
surface nodes is shown in Fig 3.
To predict the transition location we employ two dif-
ferent methods, namely the most commonly used eN

method [26] and the recently developed DLR γ−CAS
model [27]. The purpose of using two models is to
make a comparison study of the optimums obtained
and assess their robustness towards the environmental
and operational uncertainties.
The eN method is validated through wind-tunnel and
flight tests [8] and, therefore, commonly used for tran-
sition prediction in the industry. The TAU transition
module [28] offers multiple tools for streamline-based
transition prediction, e.g. including the eN method.
In the present work the boundary-layer data is
determined by the compressible conical boundary-
layer code COCO [29]. Based on this data, the
boundary-layer stability is analyzed by the linear-
stability-theory (LST) based code LILO [30]. The
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resulting N -factors are evaluated by the two-N-factor
method. This means that transition is determined
where the empirically determined critical N-factor
envelope for Tollmien-Schlichting transition (NTS)
and crossflow transition (NCF ) is exceeded.
The DLR γ model [27] consists of a transport equa-
tion for the intermittency γ, an auxiliary field vari-
able taking values between 0 (laminar) and 1 (turbu-
lent) and acting as a switch for the turbulence model.
The model is derived from the γ-ReΘt

model [31] and
includes advancements for the application of trans-
port aircraft, e.g. the improved accounting of pres-
sure gradient and compressibility on transition. This
is achieved by means of a simplified version of the AHD
transition criterion. In addition, the model offers an
extension for crossflow transition [32] by means of the
helicity and the C1 criteria. The model is successfully
applied to laminar wings at high Reynolds numbers
(∼ 107) and continuously validated [33]. However, for
the configuration and operational conditions consid-
ered in the present study, we do not use the crossflow
extension as it has been previously shown that the
crossflow instabilities do not have a significant effect
on the transition location [14].

3.5. Characterization of Uncertainties

In order to obtain laminar configurations that are ro-
bust against discrepancies in environmental and oper-
ational conditions, we must characterize and incorpo-
rate them in the optimization process.
The critical N -factors NTS , NCF appearing in the eN

method can be considered as an integral measure of
the flow quality [8, 34]. These factors are highly de-
pendent on freestream conditions such as the pres-
ence of clouds and the disturbance level (turbulent
intensity) [35]. Moreover, the quality of the surface
(imperfections) and acoustic disturbances can trigger
the instability waves resulting in a decrease in criti-
cal N -factors (implying an early transition to turbu-
lence). Therefore, the physical (environmental) uncer-
tainties related to the eN method can be represented
in terms of uncertainties in these critical N -factors.
In a recent study [14], different possible distributions
of uncertainties in critical N -factors were studied for
a robust optimization of a NLF wing. Similarly, in
this study, we characterize the uncertainties in the N -
factors as two random variables with uniform distribu-
tions: NTS ∼ U [5, 14], NCF ∼ U [4, 11]. Such charac-
terization of uncertain N -factors was considered to be
a realistic approach accounting for instabilities due to
clouds, imperfections and freestream turbulence [14].
Similarly, the environmental uncertainties related to
the DLR γ model can be represented in terms of ran-
dom freestream turbulent intensity Tu. To approxi-
mate the distribution of the turbulent intensity, we
use a direct relation between NTS and Tu [36]:

(8) NTS = −8.43− 2.4 ln(Tu)

FIG 4. Distribution of environmental and operational un-
certainties. For the eN method the N -factors
(NTS , NCF ) are considered to be uncertain and tur-
bulent intensity Tu is considered uncertain for the
DLR γ model. The dots represent a sampling ex-
ample based on the distribution.
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We construct a sampling-based distribution for Tu us-
ing 1000 samples of NTS from the above-mentioned
uniform distribution. The distributions for the N -
factors and the freestream turbulent intensity are show
in Fig 4 (left).
The operational values of Mach number and lift coef-
ficient have been usually considered to be fixed. How-
ever, in a short-haul configuration the variability in the
operational conditions during the cruise conditions can
significantly affect the performance of the aircraft [37].
In this study, we consider Mach number and lift coeffi-
cient to be uncertain and model them using thin sym-
metric beta distributions centered around their nomi-
nal values as shown in Fig 4 (right).

4. ROBUST DESIGN OF A TRANSONIC AIR-
FOIL: RESULTS

In the following subsections we present the results for
deterministic and robust optimization using both the
transition models discussed in the previous section.

4.1. Deterministic Optimization at Nominal Values

The surrogate-based optimization (section 2.2.1) is
used to solve the deterministic optimization problem
defined in (5). The operational conditions Mach num-
ber and lift coefficient are set to their nominal values
of 0.78 and 0.7, respectively. The optimization also
assumes a constant value of N -factors (in eN method)
and turbulent intensity (for DLR γ model) which are
set to NTS = 11.5, NCF = 8.5 and Tu = 0.000247.
The value of turbulent intensity is based on NTS as
per the relation in (8). The optimization budget,
i.e. the number of DoE samples and the infill iter-
ations are fixed to 100 and 20, respectively. This
implies a DoE of ten samples with two infill points
for each dimension of the design space R10, which is
deemed to be reasonable for an accurate meta model
construction [14, 15]. Fig 5 shows the optimization
history for both the transition models. The DoE stage
(1-100 iterations) consist of designs that are close
to the baseline and have converged CFD solutions,
resulting in a smooth and accurate surrogate model.
The infill stage (101-120) as a result only takes a
few iterations to reach the optimum. Designs that
violate the constraint of maximum thickness are not
considered as the (local) optimum by the optimizer.
In Fig 6, the optimum design and pressure profile
are compared with those obtained using baseline
(RAE2822). The optimal configuration for both the
transition models is able to outperform the baseline
by delaying the transition (almost) up to the shock.
The optimized profile transition location for eN

method and DLR γ model is around 45 and 42%,
respectively, resulting in a large extent of laminar
flow as compared to the baseline configuration. This
further leads to a reduction in drag by 22 and 19% for
eN method and DLR γ model, respectively. Despite
of a high-dimensional design space, it is worth noting
that the surrogate-based optimization is able to find

(a) eN method

(b) DLR γ model

FIG 5. Convergence history of deterministic optimization
with 100 DoE and 20 Infill iterations. The gray
dots represent each iteration while the step-wise
connected black dots represent the run-time opti-
mal designs. The iterations under the solid line
are not considered optimal as they violate the con-
straint.
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(a) eN method

(b) DLR γ model

FIG 6. Surface pressure distribution for the deterministic
optimum. The dashed and the solid line represent
the baseline (RAE2822) and the optimal airfoil,
respectively. The corresponding dots denote the
transition location (xTr/c).

a realistic laminar profile by merely enabling accurate
transition prediction and drag minimization under
a simple constraint. Also, worth mentioning is that
there is only a subtle difference between the baseline
as well as the optimum profiles of eN method and
DLR γ model. This is expected as the DLR γ model
relies on the "Simple-AHD" criterion [38] calibrated
based on the LST-analysis database of the original
AHD criterion [27]. It is believed that the main source
of the (notably small) differences come from the fact
that incompressible LST is used in combination with
the eN method, whereas the "Simple-AHD" criterion
is accounting for compressibility.

4.2. Performance of Deterministic Optimum under
Environmental Uncertainties

Under the situations of varying environmental condi-
tions, the performance of the deterministic optimum
may deteriorate substantially. As discussed in [14],
under the presence of uncertainties, the transition lo-
cation of the deterministic optimum configuration may
shift significantly upstream resulting in a fully turbu-
lent flow. We employ a surrogate-based uncertainty
quantification approach (section 2.2.2) to investigate
the effect of environmental uncertainties on the aero-
dynamic performance of the deterministic optimum. A
Kriging surrogate model is constructed using five DoE
samples and one infill sample for each input random
variable. Note that the infill criteria aims at improving
the surrogate model based on the local error estimate
(as discussed in section 2.2.2). The mean of the drag
coefficient is computed using on 10,000 Quasi Monte-
Carlo samples in the stochastic space evaluated with
the surrogate and compared to a reference solution
based on 200 Monte-Carlo samples evaluated directly
using the black-box (CFD solver). As shown in Fig 7
the relative error in the mean and standard deviation
of the drag coefficient for both the transition models
was found to be less than 1 and 2.4%, respectively.
Fig 8 (a) and (d) shows ten random realizations of the
pressure and transition locations obtained using the
deterministic optimum design with uncertainty in N -
factors (for eN method) and Tu (for DLR γ model),
respectively. The details of the distribution of these
uncertainties can be found in section 3.5. As observed
for both the transition prediction approaches, the lam-
inar to turbulent transition location has high variance
and lies between 10 and 45%. i.e. from close to leading
edge up to the shock. Also, the shock wave is found
to be much stronger as compared to the baseline, fur-
ther worsening the performance especially when the
flow is already turbulent due to early transition. The
deterministic optimum, therefore, operates in a fully
turbulent mode for a considerable range of environ-
mental parameters, implying a low resilience towards
the uncertainties.
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FIG 7. Comparison of statistics at deterministic optimal configurations under environmental uncertainties.

FIG 8. Random realizations of surface pressure coefficient (solid colored lines) and transition location (solid colored
circles). The baseline design (RAE2822) is represented in dashed lines with its transition location in gray
diamonds. Subfigures (a, b, c) and (d, e, f) correspond to eN method and DLR γ model, respectively.
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4.3. Robust Optimization under Environmental Un-
certainties

As discussed earlier, the deterministic optimization re-
sults in an unstable configuration where a small varia-
tion in the environmental uncertainties can adversely
affect the performance. Therefore, we seek a design
based on robust optimization, i.e. optimization un-
der uncertainties (section 3.2). We use the bilevel
surrogate-based optimization to minimize the mean of
drag coefficient under the presence of environmental
uncertainties in the respective transition models. The
surrogate-based uncertainty quantification was used in
the inner loop to estimation the mean of drag coeffi-
cient (five DoE samples and one infill sample for each
input random variable). Similar to deterministic opti-
mization, a 100 DoE samples with 20 infill iterations
were used for optimization. Fig 8 (b) and (e) shows
ten random samples of the pressure and transition lo-
cations obtained using the robust optimum design for
eN method and DLR γ model, respectively. Unlike
the deterministic optimum, the transition location for
the robust optimum has significantly low variance and
lies in a range from 30 to 55% and 43 to 52% for eN

method and DLR γ model, respectively. The range
of transition location approximated using the Quasi
Monte Carlo sampling in the surrogate were found to
be close to that obtained from the random samples. A
smooth variation in transition location and a weaker
shock wave as compared to the baseline and deter-
ministic optimum was observed. The robust optimum,
therefore allows for delayed transition favouring an ex-
tended laminar region even at adverse environmental
conditions, indicating resilience towards uncertainties.

4.4. Robust Optimization under Environmental and
Operational Uncertainties

As discussed in section 3.5, in addition to the environ-
mental conditions, the variability in the operational
conditions may also contribute significantly to the vari-
ance in the aerodynamic QoIs. Therefore, we perform
a robust optimization considering uncertainty not only
in the N -factors (or turbulent intensity) but also in the
Mach number and the lift coefficient. The number of
DoE and infill samples (iterations) per input random
variable (design variable) for uncertainty quantifica-
tion (optimization) are kept the same. Fig 8 (c) and
(f) shows realizations of the pressure and transition
locations obtained using the robust optimum design
for eN method and DLR γ model, respectively. As
observed, the smooth variation in the transition loca-
tion is only slightly larger as compared to the robust
optimum with only environmental uncertainties, with
a range from 30 to 58% and 42 to 56% for eN method
and DLR γ model, respectively. However, the vari-
ance in the shock location as well as its strength in-
creased significantly due to the addition of operational
uncertainties. Overall, the optimum design still favors
laminarity and is fairly robust against a relative larger
input uncertainty.

4.5. Overall Performance of Optimums

Fig 9 shows the polar graphs of four aerodynamic QoIs
- angle of attack α, moment coefficient CM , drag coef-
ficient CD and transition location w.r.t. chord length
xTr/c, at different optimums for eN method and DLR
γ model. The polygons (colored) represent the realiza-
tions of the normalized QoIs. The variation in poly-
gon vertices can be considered to be inversely propor-
tional to the robustness of the design. As observed,
the deterministic optima (a, d) have high variances in
all QoIs (except the moment coefficient) and thus can
be deemed not robust towards the uncertainties (also
asserted earlier). The robust optima (b, e), on the
other hand, have lower variances in the QoIs except
for a couple of realizations where the drag is signifi-
cantly larger then all the other samples. Overall, the
optimal design under the presence of environmental
uncertainty is considerably more resilient to the input
randomness as compared to its deterministic counter-
part. Upon adding the operational uncertainties (c,
f), as expected and discussed earlier, the robustness
of the optimal design only decreases marginally due to
increased variations in the QoIs.
The box-plot for the drag coefficient (in terms of drag
counts) at different optimums for eN method and DLR
γ model are presented in Fig 10. The determinis-
tic optimum for both the approaches shows a large
and nearly the same average drag. The variability is
however, higher for DLR γ model, which can be at-
tributed to a large number of realizations with signif-
icantly early transition and stronger shock waves as
shown in Fig 8 (a, d). The robust optimums (envi-
ronmental uncertainties) for both approaches shows
roughly a 45% reduction in drag and a considerably
lower variability. The almost-deterministic drag count
for DLR γ model can be attributed to a relatively low
scattering of transition locations as shown in Fig 8 (e).
Upon adding the operational uncertainties, the mean
and the variance of the drag count increases slightly
for both the approaches.
The overall accuracy of the optimization is driven by
many factors, of which, in the present study, the accu-
racy of transition prediction was the most important.
The estimation of transition location using the recently
developed intermittency-based model was found to be
very close (within 2%) to that obtained using the tradi-
tional linear stability theory method. Moreover, opti-
mal airfoil shapes (deterministic and robust) obtained
using DLR γ model were found to be close to those
obtained with eN method. The overall cost of the op-
timization process is directly influenced by the total
number of black-box evaluations. A single evaluation
on 128 processors take around 45 and 25 minutes for
eN method and DLR γ model, respectively. This com-
putational cost is marginal for the DoE phase as it
can be parallelized. However, the difference quickly
grows as we increase the number of sequential infill
samples. Therefore, the DLR γ model with its in-
built (on-the-fly) transition prediction capability out-
performs the eN method which relies on a periodic
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FIG 9. Polar graphs of four aerodynamic QoIs - angle of attack α, moment coefficient CM , drag coefficient CM and
transition location w.r.t. chord length xTr/c, at different optimums for eN method and DLR γ model. The
polygons (colored) represent the realizations of the normalized QoIs. Subfigures (a, b, c) and (d, e, f) correspond
to eN method and DLR γ model, respectively.

FIG 10. Box plot of optimal configurations under environmental and operational uncertainties.
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convergence in xTr. Additionally, a reasonably low
number of the parameters settings is required for the
stability-based transition transport model. The above-
mentioned, therefore, makes the DLR γ model a suit-
able choice to carry out an already expensive robust
optimization study.

5. CONCLUSIONS

The potential fuel efficiency gains promised by laminar
configurations might not be realized in real-world situ-
ations using commonly applied inverse design method-
ologies. A robust design configuration of laminar air-
foils (wings) must be sought to maintain a high fuel
efficiency under the presence of environmental and op-
erational uncertainties. Direct optimization allows to
derive realistic configurations that are able to extend
the laminarity until (or close to) the shock location
thereby delaying the transition and minimizing the
drag. Since the configurations obtained have been op-
timized only at the nominal values, under the presence
of uncertainties in environmental and operational con-
ditions, these design become unstable and can quickly
result in fully turbulent flow. This problem can be
resolved by quantifying and propagating the uncer-
tainties towards the QoIs and using their statistic(s)
to perform optimization enabling new configurations
that are robust against the changes in environmental
and operational conditions.
A robust optimization framework has been used for
extending the natural laminar flow region of an infi-
nite swept wing. An initial study using only the de-
terministic optimization showed that the optimum is
not resilient against the uncertainties in environmen-
tal conditions for both the transition prediction ap-
proaches (eN method and DLR γ model). Once the
uncertainties were incorporated in the optimization
process (using a surrogate-based uncertainty quantifi-
cation approach), the average performance was signif-
icantly improved resulting in overall robust configura-
tions. These robust designs promote - (i) delayed tran-
sitions (extended laminarity), (ii) weaker shock waves,
(iii) realistic pressure profiles, and (iv) stability. More-
over, the robust optimums favor a smooth variation
in transition location w.r.t. the instabilities, unlike
the deterministic optimums that feature sudden tran-
sitions triggering fully turbulent flow. To perform an
efficient robust optimization study, the recently devel-
oped DLR γ transition transport model was found to
be more economical and easy-to-use as compared to
the traditional eN method.
In the future, larger design space (exploration mode)
can be investigated to seek robust design with larger
extent of laminarity. The thickness based constraint
can be replaced with a wing-box constraint to obtain
further realistic configurations. Also, other sources
of uncertainties can be considered e.g. randomness
in Reynolds number, model form uncertainties etc.
Lastly, a crossflow extension of the DLR γ model can
be used to account for crossflow instabilities which is
vital for investigating more complex configurations.
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