
Modelling the European Space Sector
with Knowledge Graphs

Audrey Berquand∗,a and Dominik Dold∗,b

aEuropean Space Agency, Software Technology Section
bEuropean Space Agency, Advanced Concepts Team

∗Both authors contributed equally to this work.

Abstract. Launched in a New Space era, the space economy is ex-

periencing rapid growth with an ever-increasing number of new com-

mercial entrants. In this context, we present an approach based on Nat-

ural Language Processing (NLP) and Knowledge Graph Embedding

(KGE) to model and analyse the socio-economic landscape of the

European space sector. In this prototype study, we present the initial

results obtained by extracting information from 3 databases contain-

ing information on R&D studies led at the European Space Agency

(ESA), and on European companies. This information is merged in

a semantically compatible way as a Knowledge Graph (KG). Com-

bining NLP and KGE, we predict new links to complete and clean

this KG, enabling novel insights into the integrated databases. The

presented results demonstrate the potential of our approach for en-

hancing ecosystem monitoring, mapping existing capabilities, and

identifying technology gaps. Although we obtain encouraging results,

we also identify several challenges for adapting such an approach in

production, to be solved in future studies.

1 Introduction

With lower barriers to entry, an increasing number of novel stake-

holders1 are arising across the world driving a commercialisation-

driven New Space economy [6]. The role of the European Space

Agency (ESA) is to shape and lead the development of Europe’s space

capability. ESA is an international organisation involving 22 member

states and a public funding budget of, e.g., e 7.15B in 2022. Moni-

toring a fast growing and diverse ecosystem is a challenge that is key

for the agency to address. In fact, a sound ecosystem overview signifi-

cantly accelerates and facilitates state-of-the-art (SOTA) reviews, the

identification of existing capabilities and technology gaps – which

are all essential to roadmap design.

Our study aims at leveraging Natural Language Processing (NLP),

Knowledge Graph (KG), and Knowledge Graph Embedding (KGE)

methods to generate – from existing databases – an overview of the

European space ecosystem. The combination of NLP and KGE al-

lows us to (i) complete the information missing in the used databases,

and (ii) predict new links between entities to uncover novel and hid-

den relationships in the ecosystem. Although encouraging, the results

presented here are preliminary and of limited scope. Therefore, they

are not to be used to derive any conclusions about countries and stake-

holders that appear in this work.

The contributions of this study are summarised as follows:

1 By stakeholders, we mean all legal entities involved in space activities such
as agencies, companies, start-ups and research institutes.

1. We create a KG structure representing the various aspects of the

space ecosystem dynamics, which we populate from several het-

erogeneous public databases.

2. We demonstrate how KGE can assist in the completion of domain-

specific KGs.

3. We demonstrate the potential of utilising this cleaned KG to unveil

new insights into domain-specific ecosystems.

2 Related Work
KGE is an approach for statistical relational learning on KGs. It has

been used in a variety of industrial applications, e.g., as an engineering

design assistant for industrial products [9], for detecting anomalous

behaviour in automated systems [7] and for building web-scale recom-

mender systems [17]. Moreover, a specific form of graph embedding

algorithm, so-called Graph Neural Network (GNN), have become a

prominent algorithm for machine learning on graph-structured data

(e.g., [15],[1], and [10]).

While previous studies [5, 2] have applied NLP embedding and KG

mapping to space-related content (e.g. utilising large language models

to autonomously construct a KG, see [2]), to our current knowledge,

KGE methods have not yet been applied to space-related challenges

– even though the space sector offers huge amounts of historical data

(e.g., scientific projects and mission designs) that could be semanti-

cally integrated in a KG and analysed using KGE (or similar methods).

Thus, in this study, we assess a combination of KG, NLP and KGE

techniques to model the socio-economic landscape of the European

space ecosystem – providing a first glimpse at the potential of these

technologies for the space sector.

3 Assembling the Knowledge Graph
In the following, we describe the steps required to construct a KG.

The two main building blocks for constructing a KG are (i) a manually

defined schema describing the structure of the KG (Section 3.1) and

(ii) data sources which are used to populate the KG (Section 3.2), i.e.,

we are filling in information from the data sources according to the

schema to obtain the final KG.

3.1 Knowledge Graph Structure

The KG data model or schema defines the allowed entities, attributes,

and relations in the graph. The schema shown in Figure 1 is tailored

to the target use cases of this study. We defined 7 entities: study, appli-
cation, technologyDomain, competenceDomain, stakeholder, country,
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and product. The study and the stakeholder entities both have several
attributes. All relations are n-ary, meaning a stakeholder can be re-
lated to n product entities or n study entities.

3.2 Data Sources

The data used in this study is extracted and merged from 3 databases:
ESA’s Nebula library2, the ESTACA’s space database3, and the
Nanosats Database’s company table4. All database owners were con-
tacted and agreed to sharing their data. Table 1 summarises where the
data to populate the graph is sourced from.

The ESA Nebula library is a public database of ESA R&D projects
listing 1,512 studies led by the agency from 1989 to today. Each study
has a title, a written description, a start and end date, an ESA program
it belongs to, an application, and keywords. There are 8 types of
application domains defined by the agency: Earth observation, explo-
ration, navigation, space safety, space science, space transportation,
telecommunications, and generic technologies. A study is also related
to one or several Competence Domains (CDs) and Technology Do-
mains (TDs). To better coordinate its projects, the agency relies on 10
internally defined CDs5 such as CD 2: Structures, Mechanisms, Mate-
rials, and Thermal or CD10: Astrodynamics, Space Debris, and Space
Environment, and 26 TDs 6 such as Space System Software, Propul-
sion or Ground Station System & Networks. Finally, the database
contains information on the companies involved in the study, along
with their country of registration. The data is manually submitted by
the study lead at the end of the project. It is, however, not mandatory
to assign CDs and TDs. Therefore, only 11% of studies include this
information.

Members of the French engineering school ESTACA recently re-
leased a ‘space database’ with verified data on 764 space stakeholders,
and among them, 306 European entities. Each entity has a creation
year, a description of its activities, tags or keywords, and a country of
registration. Finally, the Nanosat database links, among other param-
eters, 272 European stakeholders to their products and services, and
to their country of registration.

3.3 Knowledge Graph Population

Data from the 3 databases is extracted, processed, mapped to triples
and to TypeQL insert queries. The processing is automated as much
as possible, mainly with the use of regular expressions. Eventually,
the resulting KG contains 3,167 populated entities (including 1,495
stakeholders), 5,830 links, and 6,068 attributes. The current KG is
still preliminary as further cleaning is necessary to remove the re-
maining duplicate stakeholder entities. The overlap of stakeholders
is rather weak between the Nebula and the other two databases: 14
entities in common with the Nanosats database and 18 with the ES-
TACA database. However, the overlap between the ESTACA and the
Nanosats databases is higher, with 62 entities in common. Further
processing is planned to increase the databases’ overlap. Appendix A
displays subsets of the KG, visualised with TypeDB Studio.

2 https://nebula.esa.int/
3 https://estaca-space-systems.notion.site/09044b95aac84076bb11077d124a665f
4 https://www.nanosats.eu/
5 https://www.esa.int/Enabling_Support/Space_Engineering_Technology/

Shaping_the_Future/ESA_Competence_Domains
6 https://www.esa.int/Enabling_Support/Space_Engineering_Technology/

Technology_Domains

4 Multi-relational learning

KGs are purely symbolic structures, combining multi-relational infor-
mation in a human-and computer-readable format. They are usually
incredibly sparse, meaning that only a very small subset of true state-
ments is contained in the KG, and the truth about all missing state-
ments (i.e., non-existing links in the KG) is unknown. This is also
known as the open-world assumption (OWA). KGE is a prominent
approach for working with (noisy and incomplete) KGs, allowing us
to infer novel, plausible links as well as detect known, implausible
ones. Moreover, KGE enables the usage of machine learning meth-
ods such as neural networks or decision trees – which work on data
represented by vector spaces – for analysing KGs.

In the following, we first introduce the concept of KGE as well as
the link prediction task – one type of inference that can be performed
on KGs. Afterwards, as a proof of concept, we demonstrate in prelim-
inary experiments how KGE can be used to predict novel facts about
the European space ecosystem – of course limited to the information
contained in the 3 databases – from the accumulated KG.

4.1 Knowledge Graph Embedding

The main idea behind KGE is to find, for each element of the KG,
a vector-based representation that preserves properties of the origi-
nal KG’s structure. For example, properties of interest are often the
existence of links between entities, or the local neighbourhood of
entities in a graph. Many methods for KGE exist nowadays. For this
initial study, we limit ourselves to the well-known tensor-factorisation
model RESCAL [11] that has the benefit of being conceptually sim-
ple while providing competitive performance levels. For an overview
of current KGE approaches, see, e.g., [14, 8].

In RESCAL, each entity i of the graph is represented by a N -
dimensional embedding vector eeei ∈ RN . In addition, each rela-
tion type l (i.e., edge type) is represented by an embedding ma-
trix7 RRRl ∈ RN×N . To evaluate the plausibility of a link (i.e., triple)
(s, p, o) with entities s and o as well as relation type p, the score θs,p,o
is calculated from the embeddings

θs,p,o = eeeTsRRRpeeeo , (1)

with θs,p,o ≈ 1 reflecting high and θs,p,o ≈ 0 low plausibility.
Embeddings are obtained using gradient-descent based optimisa-

tion by minimising a reconstruction loss L for the KG∑
(s,p,o)∈KG

[
(1− θs,p,o)

2 +
∑

(i,j,k)∈Cs,p,o

θ2i,j,k
]
, (2)

where Cs,p,o is a set containing M ∈ N corrupted triples, i.e., triples
where either s or o have been replaced randomly with any other en-
tity8.

In the KG collected for our study, most attributes such as keywords
and tags can be represented as triples as well. However, text features
such as study descriptions cannot be represented in this way, and are
therefore not accessible for RESCAL during training. In the follow-
ing, we explain how this downside can be circumvented.

7 Which is shared by all relations of the same type.
8 For experiments, we use N = 64, M = 10, the Adam optimizer with a

learning rate of 10−3 and regularization strength of 10−5 and a batch size
of 1000 (triples).
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Figure 1. Unformalised KG structure. Information from the databases has to be parsed to be compatible with this structure, e.g., for a stakeholder, studies,
products and country of origin are extracted for populating the KG. In addition, entities such as stakeholders or studies contain categorical or textual attributes.

Table 1. Distribution of information over the databases used in this study.

Db Study Application Technology
Domain

Competence
Domain Stakeholder Country Products

Nebula ✓ ✓ ✓ ✓ ✓ ✓ -
Space Database - - - - ✓ ✓ ✓

Nanosats - - - - ✓ ✓ ✓

4.2 Natural Language Embedding

Text attributes can be represented as triples as well, with each attribute
(i.e., each studyDescription) being represented by an individual en-
tity, connected to a relation of type hasAtt_studyDescription. The
RESCAL vector representations of the text descriptions are given by
their sentence embeddings, and they are kept fixed during training
such that the remaining KGEs learn to align accordingly with them.
For instance, a description text ’This company focuses on EO systems
for climate monitoring’ would be represented by a real-valued vector
eeetext obtained via sentence embedding and used to rank triples such
as (studyA, hasAtt_studyDescription, ’This company focuses on EO
systems for climate monitoring’). To generate the embeddings, the
sentence-transformers Python framework [13] is used. This frame-
work also provides distillation solutions, notably enabling dimension-
ality reduction through Principal Component Analysis (PCA)9. For
the results presented in Sections 4.4 and 4.5, we map the study de-
scriptions into a N = 64 dimensional vector space and include them
during the training of KGE models.

4.3 Link prediction

The main application of KGE in this study is the so-called link predic-
tion task, where the trained embeddings are used to predict new links
in the KG. To evaluate how well the model performs in this task, we
use the well known mean rank (MR), mean reciprocal rank (MRR)
and Hits@k metrics.

Here, we restrict ourselves to predicting either the competenceDo-
main or application of studies. This is done in the following way,

9 https://github.com/UKPLab/sentence-transformers/blob/master/examples/
training/distillation/dimensionality_reduction.py

described for the case of predicting applications:

1. Take a triple (studyX, hasApp, Y) from the test dataset, i.e., a triple
we know is true, but has not been used to train the model.

2. Score this triple, as well as all possible alternatives (studyX, has-
App, Z), with Z being all other applications as long as the triple
does not appear in the training dataset.

3. Create a sorted list, with the highest scored triple being the first on
the list.

4. The rank of the test triple is given by its place in this list and its
reciprocal rank is the inverse of this value. Hit@k is 1 if the test
triple is among the first k entries of the list and 0 otherwise.

MR, MRR and Hits@k are obtained by averaging these quantities
over the whole test dataset.

4.4 Predicting Missing Information

As stated in Section 4.1, KGs are typically highly sparse, with a lot of
information missing. In our case, the study descriptions obtained from
Nebula contain only 204 competenceDomain descriptions. Moreover,
even though every study is assigned an application, only 150 studies
have one that is different from the generic_technologies entity.

In the following, we demonstrate that KGE can be used to clean
up the KG by proposing missing competence domains of studies,
as well as providing more specific applications to studies by remov-
ing the generic_technologies entity from the KG and using KGE to
predict more appropriate applications. This is possible since KGEs
encode information about statistical patterns in the KG, learned from
co-occurrences of entities and relations in triples (i.e., links) during
training.
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In Table 2 and Table 3, we show the performance of RESCAL on
these link prediction tasks. For testing, we put 1/4 of triples with
the hasApp and hasCD relation, respectively, randomly aside during
training. Thus, for training to predict applications, 114 examples are
found in the training data and we test on 36 examples. For competence
domains, 159 examples are found in the training data and we test on
45 examples. As a baseline, we train both a linear regression model
and a random forest10 to predict applications / competence domains
given the Natural Language (NL) embedding of a study’s description
text. It is important to note that RESCAL is trained on predicting all
links in the KG, not just competence domains and applications.

Table 2. Predicting competence domains of studies in ESA’s Nebula library.
Model MR MRR Hits@1 Hits@3

RESCAL 1.53 0.86 0.78 0.93
Random Forest 2.40 0.64 0.47 0.80
Lin. Regression 2.58 0.65 0.49 0.71

Table 3. Predicting applications of studies in ESA’s Nebula library.

Model MR MRR Hits@1 Hits@3
RESCAL 1.08 0.97 0.94 1.00

Random Forest 1.50 0.86 0.78 0.92
Lin. Regression 1.72 0.83 0.75 0.89

In both cases, RESCAL reaches the best performance, providing
reliable predictions for applications and competence domains. Thus,
the trained model can be used to find new links, as shown in Table
4, where we assign updated application domains to studies – two
of which had the generic_technologies and one that had a specific
domain assigned before. For cross-reference, we also provide the
study titles (not used during training).

Table 4. Applications assigned to studies using KGE. For the first study,
the application with the highest score is Exploration, which is already

contained in the training data. Thus, we show the model prediction with the
second highest score as an alternative application label, consistent with the

first one. The other two studies were only classified as generic_technologies
in the raw KG, which was removed from the data before training.

Study title Application / Score
Local sleep episodes during wakefulness

and long term space travel.
Space Science ✓

0.72
An AI-based system for an active tracking

of Earth features from OPS-SAT.
Earth Observation ✓

0.62
Integration of optical detectionin microfluidic

systems for space exploration missions.
Exploration ✓

0.41

4.5 Inferring Application Domain of Entities

The presented approach can further be used to detect trends in the
data that are otherwise hard to detect with conventional methods like
visual inspection and KG querying. For instance, in the following the
learned KGEs are used to predict the application domain of compa-
nies and countries.

For a company, we obtain a measure of its affinity to a certain
application domain by averaging over the scores of all its studies, i.e.,
evaluating triples of the form (studyX, hasApp, Y) using the learned

10 With ensemble size 200 and maximum tree depth of 6.

embeddings, where studyX has the company as a stakeholder. This
is demonstrated in Table 5, with ✓ denoting that the prediction is
correct, ✗ denoting that its incorrect, and (·) denoting uncertainty in
our estimation. As a cross-reference, we also provide brief company
descriptions extracted from the official company webpages.

In cases where the KG contains almost no information about stud-
ies a company is part of (e.g., no keywords and no description), the
quality of the predictions is drastically reduced, as shown for the com-
pany Snecma in Table 5. This could be mitigated by having additional
information from another domain available, e.g., information about
products a company sells, as contained in the ESTACA and Nanosat
databases. Although we are merging these databases into our KG,
they are not yet perfectly aligned, meaning that many entities appear
in Nebula and the other databases under different names. However,
we are confident that the presented results will greatly improve after
solving this alignment problem.

The same approach used for companies can be applied to analyse
the application focus of countries as well. Most importantly, since
the learned embeddings are used to predict – from the information
available in the KG – the most likely application for each study, this
has a huge impact on the result compared to simply counting the few
application domains available in the KG, as shown in Figure 2. First,
as an example that missing information is recovered correctly using
KGE, we remove all application domains of studies with stakeholders
located in Sweden from the training dataset (2× Earth Observation).
As shown in Figure 2, our model successfully recovers this informa-
tion. In cases where several application domains are already present
in the KG, due to most studies having no application assigned, we ob-
tain a strong shift in the application landscape. For instance, different
from the raw data where Germany seems to mostly focus on Explo-
ration activities, the KGE model also assigns it a strong focus on
Space Safety (e.g., debris removal) and Space Transportation. France,
which in the data is also strongly biased towards Exploration, is as-
signed more weight for Space Science as well as Telecommunication.

5 Discussion

We demonstrate that KGs are a promising technology for modelling
the European space ecosystem. In particular, KGs allow a meaningful
integration of information about the space ecosystem from different
domains, e.g., product information and scientific activities of stake-
holders – which in turn can be accessed via modern machine learning
methods to extract novel insights about the space ecosystem.

Although the shown results are promising, we identified two chal-
lenges that are being addressed in ongoing work. First, in its current
state, the resulting KG does not perfectly align the information from
the 3 databases – mostly due to differences in how stakeholders are
named. This prohibits, for example, KGE methods to fully utilise
information about company products to predict their competence do-
main as defined in ESA’s R&D ecosystem. Solving this will require
more pre-processing of the data (e.g., using NLP) combined with
manual validation.

Secondly, the predictions generated by using NLP and KGE meth-
ods on the KG are hard to verify, and can currently only be used
to get initial insights for further, manual data analysis. This can be
mitigated by including Explainable Artificial Intelligence (XAI) ap-
proaches that, e.g., in addition to a prediction, also return the sub-KG
that has been most important for this output [18], or leverage Lan-
guage Models to provide human-readable explanations [16]. In addi-
tion, a human-in-the-loop solution could be applied as well, where
human-verified model outputs are integrated into the original KG, and
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Figure 2. Predicting application domains of countries. Labels are obtained by counting the occurrence of the application domain in the KG. Both label counts
as well as the scores obtained from RESCAL are normalised on the respective maximum value.

Table 5. Predicting application domain of companies.

Company Noveltis QinetiQ Snecma

Highest Earth Obs. � Space Science � Earth Obs. �

Lowest Telecom (�) Earth Obs. (�) Exploration (�)

Descriptions
(company webpages)

Noveltis significantly contributes to the development of new Earth Observation missions, whether related to

the atmosphere, oceans or land surfaces.11

We (QinetiQ) are a world-centre of excellence in research and development, and act as catalyst for fast-track

innovation, offering outstanding experimentation facilities, technical, engineering and scientific expertise.12

Safran Aircraft Engines (prev. Snecma) — A world-class aircraft engines manufacturer.13

in-production evaluation is only performed by querying the KG. Ulti-

mately, to identify the most suitable solution, a survey with domain

experts will be performed.

Finally, in future work, the presented KG will be enhanced by

adding further data sources to improve our underlying model of the

European space ecosystem. Likewise, we will also investigate the suit-

ability of a variety of NLP and KGE methods for the aforementioned

challenges in detail.

6 Conclusion
Space, as famously quoted, is not only the final frontier, but an es-

sential and strongly growing part of the European economic system;

being both a key enabler for innovative, nature-preserving technolo-

gies as well as opening new opportunities for research and companies

alike. In this study, we present initial results on modelling the Euro-

pean space ecosystem using KGs and machine learning techniques

such as NLP and KGE. We are confident that the proposed frame-

work will yield a fundamental contribution to the field by assisting

experts in the space research, technology and economy sector to navi-

gate the European space ecosystem, e.g., by allowing them to connect

market needs and stakeholders, but also identify under-represented

competences early.

Ethics Statement
The study has been performed following the Ethics Guidelines for

Trustworthy Artificial Intelligence of the European Commission. To

construct the used KG, only publicly available data has been used

with permission of the database owners. The companies and coun-

tries specifically used in this study for model evaluation have been

selected arbitrarily. No conclusion about the competence and domain

expertise of said countries and companies is to be derived from this

study, as it represents only preliminary results of limited scope. Fi-

nally, the tools developed in this study have the aim of bolstering

the economic development of the European space sector, ultimately

supporting highly relevant applications such as climate change moni-

toring, as well as enabling European leadership and autonomy.

Software
For sentence embeddings, we use the sentence-transformers Python

library [13], scikit-learn [12] for the PCA decomposition and cosine

similarity, and nltk [3] for various processing tasks. For KGE, we

use custom implementations for, e.g., data loaders and link prediction

evaluation, building upon the source code of the TorchKGE [4] Python

library. For baseline models, we use scikit-learn. For the KG, we use

the open-source Vaticle TypeDB database14. The visualisation of the

KG is done through their TypeDB Studio interface. We use their

Python client to read from and write to a KG. TypeQL is the query

language of TypeDB.
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A Technical Appendix: Knowledge Graph Visualisation

Figure 3. Overview of the stakeholder entities linked to Ireland. Visualised with TypeDB Studio.

Figure 4. Overview of the entities linked to Iceye, a Finnish company. Visualised with TypeDB Studio.
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