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Abstract
This paper presents a reduced-order modeling (ROM) approach based on a hybrid neural network in order to calculate
wing buffet pressure distributions due to structural eigenmode-based deformations. For this hybrid ROM a convolutional
autoencoder (CNN-AE) and a long short-term memory (LSTM) neural network are connnected in a serial fashion. The NASA
Common Research Model (CRM) with the FERMAT structural model is used for forced-motion computational fluid dynamics
(CFD) simulations at transonic buffet conditions. Aerodynamic responses are obtained as a result of the eigenmode-based
deformations. As eigen shape the first symmetric wing bendig mode is selected. The unsteady simulations are carried out
with the triangular adaptive upwind (TAU) solver of the German Aerospace Center (DLR) and the hybrid ROM is trained with
this data. When investigating the prediction capability of the hybrid ROM a high accuracy with respect to the forced-motion
buffet loads is indicated.
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NOMENCLATURE

Nomenclature

α angle of attack deg

Amax maximum deflection amplitude m

AR aspect ratio

Aref wing reference area m2

b wing span m

b bias vector

c cell state vector of LSTM cell

C channel dimension

cL design lift coefficient

cp pressure coefficient

∆t physical time step s

η dimensionless spanwise position

f reference scaling factor

f forget gate vector of LSTM cell

ft trip term of SA turbulence model

ft2 turbulence suppression term
of SA turbulence model

H data height

ŷi cp value obtained by the neural network

h hidden state vector of LSTM cell

i input gate vector of LSTM cell

kred reduced frequency

cref mean aerodynamic chord m

Macruise design cruise Mach number

Ma∞ freestream Mach number

NS number of data points

o output gate vector of LSTM cell

ϕ0.25 quarter chord sweep angle deg

q displacement vector

R specific gas constant J/(kg · K)

Re Reynolds number

SF scaling factor

σ sigmoid activation

SM scale of wind tunnel model

Sr Strouhal number

TBuffet buffet period s

TR taper ratio

T0 total temperature K

W data width

W weight matrix

x model input vector

yi cp value obtained by the numerical simulation

y+ dimensionless wall unit

y model output vector
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Acronyms

ADAM adaptive moment estimation algorithm [1]

BN batch normalization

BP backpropagation

BPTT back-propagation through time [2]

CFL Courant-Friedrichs-Levy number

CNN-AE convolutional neural network autoencoder

CNN convolutional neural network

CRM NASA Common Research Model

(D)DES (Delayed) Detached Eddy Simulations

DLR German Aerospace Center

FC fully-connected layer

FEM finite element model

FERMAT structural model of the CRM developed by
Klimmek [3]

HTP horizontal tail plane

LRZ Leibniz Supercomputing Center

LSTM long short-term memory neural network

MSE mean square error

QCR quadratic constitutive relation for SA turbu-
lence model [4]

ReLU rectified linear unit

RNN Recurrent Neural Network

ROM reduced order model

SAPRBS smoothed amplitude-modulated pseudo-
random binary signal

SA Spalart-Allmaras turbulence model

TAU triangular adaptive upwind solver

TPS thin-plate splines

URANS Unsteady Reynolds-averaged Navier-Stokes

VTP vertical tail plane

1. INTRODUCTION

Determining the limits of the flight envelope as precisely as
possible is a main task in the analysis and certification pro-
cess as well as the aerodynamic and structural optimization
of aircraft. Apart the quasi-steady stall limit, the flight enve-
lope limits are determined by dynamic aeroelastic phenom-
ena, in which the coupling of aerodynamic, structural-elastic
and inertia forces are present. For so-called "off-design"
conditions of commercial aircraft with supercritical wings,
structural shaking phenomena can occur as a result of the
prevailing shock fluctuations in chord and span direction on
the wing. Combined with shock-induced, locally separated
flow this is referred to as buffeting and represents a limit of

the flight envelope, cf. Iovnovich [5], Raveh [6]. The aerody-
namic excitation forces are related to the term "high-speed
buffet" [5], while the scenario including the motion induced
by the aerodynamic forces and the structural response is
referred to as "buffeting" [6].
Transonic buffet/buffeting is characterized by a pronounced
shock-boundary-layer interaction, which leads to shock
induced, quasi-periodic flow separations, see Paladini [7].
Linked to this is a self-sustaining shock oscillation, which
interacts with the dynamically developing separation area.
This results in different complex flow conditions on airfoils
and swept wings of finite aspect ratio, see Masini [8].
Based on the results of various numerical and experimental
studies, buffet is caused by the interaction of various phys-
ical mechanisms. Stability analyses based on linearized
unsteady Reynolds-averaged Navier-Stokes equations (Un-
steady Reynolds-averaged Navier-Stokes, URANS) show
the presence of global flow instabilities, see Crouch [9],
He [10], Timme [11]. On the one hand, there is a mode
associated with the shock movement in chord direction
(Sr ≈ 0.05 – 0.1; Strouhal number based on mean aero-
dynamic chord), on the other hand modes associated with
the propagation of so-called “buffet cells” in span direction
occur (Sr ≈ 0.2 – 0.6; propagation speed: u/uref ≈ 0.25
– 0.5) [8], [11]. The characteristic frequencies are of more
broadband character on the wing of finite aspect ratio
compared to those on airfoils, see Ohmichi [12].
For airfoil flows, investigations with specified rigid-body
vibrations show that, if the vibration amplitude is sufficiently
large, a “lock-in effect” of buffet and vibration frequency
occurs, see Raveh [13]. This can also be seen in corre-
sponding scenarios of elastically supported airfoils, see
Scharnowski [14]. Overall, therefore, the structural vibra-
tions can influence the buffet-specific fluctuations, see
Nitzsche [15].
However, even the application of URANS/(D)DES methods
for the treatment of buffet flows is not possible for the large
number of parameters to be varied in an aircraft design pro-
cess due to the computational effort. For the calculation of
buffeting, the flow solver and the structural solver must also
be coupled, which generates additional computational ef-
fort. Therefore, especially with regard to applications in an
industrial context, a compromise between the desired physi-
cal accuracy and the resulting computational costs has to be
reached. One way to reduce computational resources is to
use reduced order models (ROMs), which are trained and
validated using CFD simulation data or experimental data
sets. The trained model can then be applied to other in-
flow conditions in order to predict characteristic aerodynamic
variables. Consequently, the computational effort of aeroe-
lastic investigations can be significantly reduced. A com-
prehensive overview of ROM approaches in the context of
transient aerodynamics and aeroelasticity can be found in
Kou and Zhang [16].
In the present study, structural deflections have been im-
posed on an already established buffet instability in order
to generate a highly nonlinear flow field. As a test case,
the NASA Common Research Model (CRM) configuration
has been chosen. Based on the FERMAT structural model,
a symmetric mode shape is considered for the simulation
process. For the generation of the training data set, forced-
motion CFD simulations of the mode shape are carried out.
In order to evaluate the performance capability of the trained
hybrid ROM, it is applied to predict buffet pressure distribu-
tions due to harmonic excitations of the considered mode
shape.
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2. TEST CASE

2.1. NASA Common Research Model (CRM)

The Common Research Model (CRM) is as generic aircraft
configuration with a supercritical transonic wing, featuring
wing, body and a horizontal-tail with 0◦ tail setting angle.
Figure 1 shows different views of the full-span model of the
CRM configuration. For the following investigations, only a
half-span model of the CRM configuration is simulated at
buffet conditions in order to save computational effort. Ta-
ble 1 summarizes important design properties of the se-
lected CRM configuration. The absolute dimensions refer
to a wind tunnel model, cf. [17]

FIG 1. Different views of the CRM configuration.

TAB 1. Design properties of the CRM configuration (wind tun-
nel model)

Quantity Symbol Value

Design cruise Mach number Macruise 0.85
Design lift coefficient cL 0.5
Scale of wind tunnel model 1:37
Wing reference area Aref 0.280 m2

Wing span b 1.586 m

Mean aerodynamic chord cref 0.189 m

Aspect ratio AR 9
Taper ratio TR 0.275
Quarter chord sweep angle ϕ0.25 35◦

2.2. FERMAT structural model

The FERMAT structural model is a finite element model
(FEM) for the CRM, developed by Klimmek [3] to represent
overall aircraft characteristics and to enable static and
dynamic aeroelastic investigations with the CRM geometry.
Therefore, it includes nodes for the fuselage, the wings, the
vertical (VTP) and horizontal (HTP) tail planes, the pylons
and the engines, see Fig. 2 left side. Two different mass
cases are available for the FERMAT model. The C1 case
is the maximum zero fuel weight configuration and the C2
case is the configuration with maximum take-off weight.
For the following investigation the C2 case of the FERMAT
structural model is used for modeling eigenmode-based
structural deformations. This configuration consists of 56
modes, including six rigid body and 50 elastic modes. As
the investigated CRM configuration only contains wing,
body and a horizontal-tail the structural model is reduced

FIG 2. Comparison of the structural FEM by Klimmek [3] (a)
and the reduced structural FEM [18] (b)

to that as well. Figure 2 shows on the left side the full
structural model by Klimmek [3] and on the right hand side
the reduced model for this investigation [18].

3. METHODS

3.1. Numerical setup

The numerical investigations are carried out using a hy-
brid computational mesh generated and applied by Ehrle
et al. [17]. The half-model has approximately 36 · 106
elements. The mesh contains unstructured cells in the
farfield and structured cells in the proximity of all surfaces.
The boundary layer has a sufficient high resolution with
a dimensionless wall unit of y+ < 1. In order to provide
a proper resolution of the area of shock motion and flow
separation a block with isotropic hexahedral elements is
added on top of the boundary layer elements on the wing’s
upper surface, see Fig. 3. The cell sizing of the block is
done in order to achieve a CFL (Courant-Friedrichs-Levy)
number of 1.

FIG 3. Hybrid numerical mesh of the CRM configuration with
a block containing hexahedral elements on the wing’s
suction side.

The buffet conditions are set to a freestream Mach number
of Ma∞ = 0.85, a Reynolds number of Re = 30 · 106 and
an angle of attack of α = 5◦. According to Ehrle et al. [17]
nitrogen with a gas constant of R = 296.8 J

kgK
at a total

temperature of T0 = 115K is chosen as working fluid. The
sutherland parameters are the same as in [17]. In order to
be able to compare the wind tunnel measurements [19] with
the numerical simulation, static mesh deformation is applied
ahead. The used aeroelastic wing deformation data was
gathered via stereo pattern tracking during the wind tunnel
testing [19].
URANS simulations are carried out using the DLR-TAU
code with the Spalart-Allmaras (SA) turbulence model
without trip-term ft and turbulence suppression term ft2. A
previous numerical study at flight Reynolds numbers of the
CRM by Illi et al. [20] showed corner flow separation not in
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accordance with the experiment. So additionally a quadratic
constitutive relation (QCR) [4] extension is activated. As
this fusion of an eddy-viscosity turbulence model with the
QCR extension is shown by Togiti et al. [21] to cause a
reduced corner flow separation.
A central differencing scheme is used for spatial discretiza-
tion and an implicit backward Euler scheme is used for the
time integration of the URANS equations. As a linear solver
the LU-SGS scheme is taken and the gradients are recon-
structed by the Green Gauss scheme. In order to improve
convergence a multigrid approach with a 3v cycle and dual
time stepping is chosen. The physical time step is set to
∆t = 1 · 10−5s with 100 inner iterations per physical time
step. For the inner iterations (implicit pseudo timesteps) a
CFL number of 2 is chosen. The meanflow fluxes are dis-
cretized via the Kok skew symmetric scheme and the turbu-
lence fluxes are discretized via the first order Roe scheme.
A reduced numerical dissipation of small scale structures is
achieved by a ratio of 0.4 between matrix and scalar dissi-
pation and a fourth order dissipation coefficient of 1/256.
The URANS simulations carried out with these settings are
used as training, validation and test data for the Reduced
Order Model (ROM) developed in this study.

3.2. Structural vibration input

For the above (Section 3.1) described numerical setup of
the URANS simulations the structural vibrations have to be
implemented as well. This is achieved by mapping the struc-
tural deflections of the FEM model onto the surface grid
via the thin-plate splines (TPS) algorithm. As the focus of
this study is on the wing buffet instability, exemplarily only
one eigenmode is considered. The chosen eigenmode is
the mode 11 representing the first symmetric wing bending
mode. In accordance with the work of [18,22], the structural
deflections are scaled proportional to the reference chord
length cref with a scaling factor SF of:

(1) SF = f · cref
Amax

Here Amax denotes the maximum deflection amplitude of
the considered deformation and f the reference scaling fac-
tor of f = 0.01 =̂ 1%. f is chosen in order to guarantee
stable numerical simulations. The mode 11 is visualized in
Figure 4 with increased deflections for clarity.

FIG 4. Structural-eigenmode-based surface deformations (in-
creased) of the FERMAT-C2 configuration (red) for
the first symmetric wing bendig mode and the non-
deformed CRM geometry (grey).

A smoothed amplitude-modulated pseudo-random binary
signal (SAPRBS) [23] is used as excitation signature input.
This signal contains a high amount of different frequencies
and amplitudes. During the generation process of this
signal the minimum and maximum excitation amplitude are
set equally to a reference scaling factor of f = 1%. The first
2000 time steps of this signal are shown in Figure 5.

FIG 5. Smoothed SAPRBS time series for the forced-motion
excitation of the mode shapes.

3.3. Neural network setup - ROM

In this section the utilized deep learning model is described.
The first subsection is about the working principle of CNNs,
the second one about the LSTM neural network and the third
one about the architecture of the applied hybrid neural net-
work.

3.3.1. Convolutional Neural Network (CNN)

Convolutional neural networks (CNN) are specially designed
neural networks for processing data with a grid-like topol-
ogy [24]. CNNs are mostly used for image data, as those
are 2D grids of pixels. If time series are recorded with a fixed
time interval, they can also be processed by CNNs as it is
then grid-like as well. A CNN consists of three main layers:
a convolutional layer, a pooling layer and a fully-connected
(FC) layer. The number of convolutional and pooling layers
can be adjusted in order to optimize the architecture for the
application scenario.
For better explanation a data set with 3D matrix contain-
ing spacial information is chosen as example. The data
points can be addressed via their indices (i, j, o). Using
the nomenclature of Goodfellow et al. [24] and Rosov and
Breitsamter [25] the convolution is then defined like this:

(2) yk,i,j =

Cin−1∑
l=0

Hw−1∑
m=0

Ww−1∑
n=0

xl,i×s+m,j×s+nWk,l,m,n + bk

with the output yk,i,j at the indices (k, i, j). The dimension of
the input x is Cin×Hx×Wx with the number of input chan-
nels Cin, the height Hx and width Wx of the input data. The
matrix of the filter weights is Wk,l,m,n. The filter is also called
kernel with the size Cin ×Hw ×Ww ×Cout and selects im-
portant features of the input data. The output channel Cout

is added to the filter as an additional dimension. The convo-
lution itself is carried out elementwise by the kernel sliding
stepwise over the input data, performing element-wise mul-
tiplication. By setting the stride s larger than one the input
size can be reduced by a factor of s as the data points are
picked s-entries apart.
In this study the selected CNN architecture is used as an
autoencoder, also called convolutional autoencoder (CNN-
AE). The training of the CNN-AE is done in an unsupervised
fashion by backpropagation (BP) [26]. Here the CNN-AE
encodes a given input and reconstructs it to its output [24].
An autoencoder is built by an encoder, a decoder and a la-
tent space, also called bottleneck, in between. The encoder
reduces the high-dimensional data into the low-dimensional
latent space and the decoder does the inverse.

3.3.2. Long Short-Term Memory (LSTM)

Hochreiter and Schmidhuber [27] proposed a special type
of Recurrent Neural Network (RNN) called Long Short-Term
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Memory (LSTM). It is able to predict both long- and short-
term dependencies in time series data. One advantage of
a LSTM is its robustness against vanishing gradients [28],
where the training performance saturates after a small num-
ber of training cycles. The LSTM is also capable to capture
time-delayed effects existing in unsteady aerodynamic sys-
tems.

FIG 6. Architecture of the LSTM cell including the characteris-
tic gate structure.

Figure 6 depicts the architecture of a LSTM cell. It consist of
three gates, namely the forget gate f , the input gate i and
the output gate o. In order to build a LSTM neural network
the hidden layer consists of recurrently connected blocks,
also called memory blocks or cells. The forget gate f takes
the input xt of the current time step and the output from the
previous time step ht−1 (hidden state of the LSTM cell) and
computes following equation:

(3) ft = σ (Wfxt +Wfht−1 + bf )

with the weights Wf and the bias bf . The sigmoid σ acts
as an activation and removes parts of the incoming informa-
tion from the cell. This output is then further processed in
the input gate i. It takes the same input as the forget gate,
namely xt and ht−1:

(4) it = σ (Wixt +Wiht−1 + bi)

Respectively, the weights and bias are Wi and bi, and σ is
the sigmoid activation. In a parallel step a new cell state c̃t
is calculated via:

(5) c̃t = tanh (Whxt +Whht−1 + bh)

using a hyperbolic tangent (tanh) activation instead of a sig-
moid activation. This new cell state c̃t is then used to update
the current cell state ct:

(6) ct = ftct−1 + itc̃t

After this the data is transferred to the output gate o. Here
the data gets processed in a similar way:

ot = σ (Woxt +Woht−1 + bo)(7)
ht = ot · tanh (ct)(8)

The now updated hidden state ht and the current cell state
ct are transferred as input to the next hidden layer or the
output layer. To be able to predict data the weights and bi-
ases have to be set properly. This is achieved by applying
back-propagation through time (BPTT) [2] with the adaptive
moment estimation (ADAM) [1] algorithm.

3.3.3. The hybrid Reduced Order Model (ROM)

The previous introduced CNN-AE (Section 3.3.1) and the
LSTM (Section 3.3.2) are combined into a hybrid ROM archi-
tecture so that the forced-motion wing buffet pressure loads
can be represented accurately and efficiently. The created
hybrid ROM is visualized in Figure 8.
In order to reduce the spatial dimension of the data for the
LSTM several levels of the CNN-AE encoder are used. After
the LSTM the same number of CNN-AE decoder levels are
used to have the same spatial dimension for the output. At
each level the encoder performs a multi-channel convolution
with a kernel size of 4× 4, stride s = 2 and padding of one.
The input for the hybrid ROM is a sequence of cp values on
the wing suction side from the URANS simulation with forced
vibrations (Section 3.2). The data is fed to the encoder as a
tensor of size Nin ×Cin ×H ×W , with the number of input
time steps Nin, the number of input channels Cin and H, W
the number of grid points in span - and chord-wise direction.
For performance reasons those have been chosen by pow-
ers of two. At each level of the encoder and the decoder the
input data is normalized via batch normalization (BN) and a
rectified linear unit (ReLU) activation is applied. In order to
have the same output resolution the output channel size of
each level is set to two times its input channel size. In the
last encoding level the data is flattened and passed through
a FC and a tanh activation layer, the inverse is then done in
the first decoding level. In the last decoder level the data is
rescaled to the value range of [-1,1] via an activation by a
tanh layer.
The deformation ∆q with respect to structural oscillations
or vibrations, respectively, on the other hand is not passed
through the CNN encoder, but directly combined with the cp
data before passing the data into the LSTM. This is done via
concatenating the scalar deformation values to the end of
the cp vector, as shown in Fig. 7.

FIG 7. Concatenation of deformation and surface cp.

The aim of the developed hybrid ROM is to predict the cp
distribution at time steps k+m based on previous snapshots
at time steps k−n+1 to k. The incidence amplitudes of the
deformation are given at time steps k − n+ 2 to k + 1.

4. RESULTS AND DISCUSSION

In the following section, the flow phenomenology of the buf-
fet cycle will be discussed as well as the application of the
hybrid ROM. In the first part, the flow phenomenology of
the buffet cycle is briefly discussed. The second subsec-
tion will elaborate the data preprocessing and the training
of the ROM. In the last subsection the results of the ROM
application will be discussed.
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FIG 8. Architecture of the hybrid ROM.

FIG 9. Pressure coefficient (cp) contour plots of one buffet cy-
cle with the buffet period TBuffet (Ma∞ = 0.85, Re =

30 · 106, α = 5◦).

FIG 10. Six consecutive pressure coefficient (cp) contour plots
of the wing suction side for the SAPRBS forcing (Mode
11, ∆t = 1 · 10−5s, Ma∞ = 0.85, Re = 30 · 106, α = 5◦).
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4.1. Flow phenomenology - buffet cycle

URANS simulations have been carried out with and with-
out structural vibrations. The used numerical setups are
described in Sections 3.1 and 3.2, respectively. First the
results without structural vibrations will be discussed.
Figure 9 shows six cp contour plots of a buffet cycle with a
buffet period of TBuffet = 0.0065s. Close to the wing root
(at the bottom of each snapshot) a characteristic λ-shaped
two-shock pattern can be seen. Further outboard the
pressure distribution changes, indicated by two black dotted
lines. These indicate the convection of so called buffet cells
which is in alignment with previous numerical studies [5].
The mean cp [17] from the URANS simulations also agree
well in the shock region with the experimental data [19].
The influence of the forced excitation and the resulting struc-
tural deflections can be seen in Figure 10. Figure 10 shows
six consecutive cp snapshots. Especially in the wing tip re-
gion stronger fluctuations of the shock positions are visible.

4.2. Data processing and ROM training

The data has to be preprocessed in order for the hybrid ROM
to be able to process it. The surface mesh on the wing suc-
tion side is represented by 168686 data points. This reso-
lution is too fine, therefore the size of the data is reduced
by a factor of approximately 2.5 to 128 × 512(27 × 29) data
points. This data reduction is done by linear interpolation.
For a good representation of the flow field, the wing is di-
vided into two parts, see Fig. 11. Each part has a resolution
of 256 nodes in spanwise and 128 nodes in chordwise di-
rection. Afterwards the minimum and maximum pressure
values (cp,min, cp,max) of each data set are used to normal-
ize the data set to [-1,1].

FIG 11. Sketch of the surface mesh interpolation for the hybrid
ROM.

Figure 12 depicts the result of the data reduction and nor-
malization for two selected time steps. The difference be-
tween the reduced and original resolution can be evaluated
by comparing Figure 10 and Figure 12. Still the character-
istic λ-shaped two-shock pattern is clearly visible. In span-
wise direction a high level of spatial resolution is maintained
too.
The next step after the preprocessing is the training of the
hybrid ROM. The set of all interpolated and normalized sur-
face cp snapshots on the wing suction side is now referred
to as data set. This is done in two consecutive steps, first
the CNN-AE is trained and afterwards the LSTM is trained
with the reduced data set provided by the CNN-AE. In order
to provide validation data, the data set is split into 80% train-
ing data and 20% validation data. The validation data is also
used for hyperparameter tuning.

FIG 12. Interpolated and normalized surface cp resolution on
the wing suction side at two selected time steps (sym-
metric mode 11, SAPRBS excitation).

The CNN-AE is trained in batch mode, with each batch con-
taining 128 cp snapshots. The encoder and decoder consist
of four convolution levels, thereby reducing the spatial res-
olution of the data from 128× 512 to 8× 32. As a result the
channel sizes are increased from 4 to 512. The FC layer
reduces the latent size from 512 to 256 features. The CNN-
AE is trained for 15000 epochs with an initial learning rate
of 10−4. The objective of the training was to minimize the
mean square error (MSE, see Eq. (9)) between the refer-
ence numerical data and the corresponding predictions.

(9) MSE =
1

NS

NS∑
i=1

(ŷi − yi)
2

Here NS is the number of data points in the data set, ŷ the
value obtained by the neural network and y the value from
the numerical simulation. The development of the training
and validation losses over the 15000 training epochs of the
CNN-AEs is visualized in Figure 13.

FIG 13. Training and validation losses over the 4000 training
epochs of the CNN-AEs.

The result of the training can be seen in Figure 14 where an
exemplary snapshot is visualized. On the left side is shown
the cp-snapshot from URANS, in the middle the cp-snapshot
obtained by the trained CNN-AE and on the right the error
between both cp-distributions depicted by the MSE on the
wing surface. The MSE is close to zero on almost the entire
surface, which indicates a good performance quality of the
CNN-AE.
The chosen LSTM architecture contains three layers, with
each layer including 256 neurons. The LSTM is also trained
in batch mode, with batches of 32 data points each. The
sequence length is defined as one. It is trained for 3000
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FIG 14. Comparison of a numerical cp-snapshot (left) and a
cp-snapshot obtained by the trained CNN-AE (middle)
(Mode 11, SAPRBS excitation). The corresponding
MSE is shown on the right wing surface.

epochs with an initial learning rate of 10−4. The performance
evaluation of the trained hybrid ROM is done via recurrent
multi-step predictions using the validation data set. As ini-
tializer for the trained model three consecutive cp-snapshots
are used. Afterwards the trained ROM replaces those with
predicted cp-snapshots, as it advances.

FIG 15. Comparison of a numerical cp-snapshot (left) and a cp-
snapshot obtained by the trained hybrid ROM (mid-
dle) (Mode 11, SAPRBS excitation). The correspond-
ing MSE is shown on the right wing surface.

The performance of the hybrid ROM is visualized in Fig-
ure 15. The left side shows a cp-snapshot from the URANS
simulation. In the middle the corresponding prediction of the
hybrid ROM is shown. The MSE (right) is close to zero on
almost the entire surface, with exception of the leading edge
and the shock in the region close to the wing tip. Neverthe-
less this indicates a good performance quality of the hybrid
ROM.

4.3. ROM application and data analysis

After training and validating, the prediction performance of
the hybrid ROM is now investigated in more detail. Therefore
a new testcase is chosen. Rozov et al. [25] states that a
harmonic signal is a well-suited testcase for a ROM trained
with an SAPRBS, as the SAPRBS differs significantly from a
harmonic signal. The chosen harmonic signal has a reduced
frequency of kred = 0.6. Two different amplitudes with a
reference scaling factor of f = [0.5%, 1%] are used for the
external forcing of the wing. The URANS simulation and
the trained ROM were run for one oscillation period of each
harmonic signal.
In order to better evaluate the prediction quality of the trained
ROM, first the prediction accuracy of the CNN-AE is inves-
tigated. Figure 16 shows one snapshot of URANS results
with the harmonic excitation (left), the corresponding result
of the trained CNN-AE (middle) and the squared difference
between both cp-distributions as the MSE on the wing sur-
face (right). The overall small MSE on the wing suction side
pinpoints the good prediction capability of the trained CNN-
AEs.
Subsequently to the performance evaluation of the trained
CNN-AE, the performance of the hybrid ROM is evaluated.
This is done in a recurrent multi-step prediction mode.
Therefore an initializer of 32 cp-snapshots from the URANS
simulation with the corresponding deformation data is used.

FIG 16. Comparison of a numerical cp-snapshot (left) and a
cp-snapshot obtained by the trained CNN-AE (middle)
(Mode 11, harmonic excitation). The corresponding
MSE is shown on the right wing surface.

For a better comparison the results of the hybrid ROM with
the URANS results, the cp values in chordwise direction are
calculated for one selected spanwise positions η = 80%.
This position is chosen for its distinct changes in surface cp.
The result depicted in Figure 17 showcases that the hybrid
ROM is able to predict the overall trend of the cp values.
The deviation of the hybrid ROM from the numerical solu-
tion increase with an increasing number of time steps pre-
dicted. The chosen spanwise position is η = 80%. For
the advanced time step larger deviations are shown. Es-
pecially at the higher forcing amplitude a deviation in the
shock intensity is visible. Despite the deviations between
the URANS and the hybrid ROM solutions, the overall trend
of the shock position and the overall spanwise cp-distribution
are captured by the used ROM.
The deviations are also shown by the MSE values of the
surface cp for the timestep t = 2, see Figs. 18 and 19.
Here moderate deviations in the overall MSE are indi-
cated. In conclusion, the hybrid ROM is able to predict the
cp-distributions to a sufficient extend.
After evaluating the prediction quality of the hybrid ROM the
computational efficiency is investigated. All numerical sim-
ulations have been carried out with the DLR-TAU solver on
the SuperMUC-NG of the Leibniz Supercomputing Center
(LRZ). For the calculation 10 nodes with 48 cores each have
been applied, resulting in a total number of 480 cores. The
training, validation and test computations of the hybrid ROM
on the other hand where conducted with one core of an Intel
Xeon W-2295 3 GHz processor.
For comparison the needed time for every simulation will be
given in CPU hours, which are the wall clock time of a simu-
lation times the number of processors used. For the training
of the hybrid ROM a total of 18244 CPU hours was needed.
This is composed out of 18240 CPU hours for running the
SAPRBS simulations for the generation of the training data
and 4 CPU hours for training the hybrid ROM.
The generation of the harmonic motion test data set took
7200 CPU hours each. In contrast, the application of the
trained hybrid ROM took around 0.3 CPU hours. So the
reduction in computational time for the already trained hybrid
ROM is by three orders of magnitude for the considered test
cases.
Exceeding a number of three different harmonic excitation
signals to be investigated the effort of training the hybrid
ROM has already payed off. In an industrial context for
an aeroelastic analysis a set of approximately 40 different
modes would have to be investigated. Done solely by
URANS simulations this would result in an overall compu-
tational effort of approximately 1 Mio. CPU hours. If further
variations should be investigated like different flow condi-
tions even more computational time is needed. Depending
on the number of test cases and performed simulations,
using hybrid ROMs like this has a potential to save several
orders of magnitude in computational time.
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FIG 17. Comparison of original and predicted cp values at a spanwise positions η = 80% for two timesteps t of the multi-step
prediction (harmonic excitation, f = [1%, 0.5%]).

FIG 18. Comparison of a numerical cp-snapshot (left) and a cp-
snapshot obtained by the trained hybrid ROM (middle)
(Mode 11, harmonic excitation, f = 1%, t = 2). The cor-
responding MSE is shown on the right wing surface.

FIG 19. Comparison of a numerical cp-snapshot (left) and a cp-
snapshot obtained by the trained hybrid ROM (middle)
(Mode 11, harmonic excitation, f = 0.5%, t = 2). The
corresponding MSE is shown on the right wing sur-
face.

5. CONCLUSION AND OUTLOOK

This study presented a hybrid deep learning model based
on a convolutional autoencoder (CNN-AE) and a long
short-term memory (LSTM) neural network. This hybrid
reduced order model (ROM) has been applied to predict
wing buffet pressure distributions under forced vibrations
in the structural eigenmodes. By imposing this structural
deflections during an already established buffet instability
a highly nonlinear flow field has been generated. The
NASA Common Research Model (CRM) with the FER-
MAT structural model has been used as test case. The
first symmetric wing bending mode shape (mode 11) has
been simulated. The training data for the hybrid ROM

was computed via forced-motion URANS simulations with
the DLR-TAU solver. A smoothed amplitude-modulated
pseudo-random binary signal (SAPRBS) was used for the
training data. The performance of the trained hybrid ROM
was evaluated by using the ROM to predict buffet pressure
distributions due to harmonic excitations of the considered
mode shapes. When comparing the buffet loads from the
reference numerical solution with the prediction of the hybrid
ROM good agreement could be achieved. Therefore, the
proposed ROM is able to capture buffet pressure loads due
to deflections with a high degree of accuracy. By applying
the ROM, computational time and with that computational
costs can be reduced by several orders of magnitude
compared to the full-order reference solution.
Future work will focus on applying the hybrid ROM archi-
tecture to different eigenmodes of the wing. Besides the
prediction quality of the hybrid ROM also the extrapolation
abilities onto different eigenmodes of the wing should be in-
vestigated.
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