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Abstract
In this publication, a complementary sensor network is presented with the primary objective of increasing the robustness
of structural loads estimation. This augmentation is achieved through the combination of measurement methodologies and
model-based load observers, thereby creating synergistic effects that mitigate the limitations associated with each approach.
This work outlines the development of the complementary sensor network by means of laboratory tests and virtual flight
tests. The sensor technologies employed include strain gauges, fiber bragg sensors, inertial measurement units, camera-
based optical deformation measurements, and MEMS pressure measurement profiles. For each of these technologies,
the laboratory test setup and testing process, alongside the derivation of sensor models for virtual testing of the sensor
network is presented. The redundant and partially complementary sensors are fused through the utilization of both local
and centralized fusion using Kalman filters and machine learning based approaches. The local fusion strategy exploits the
integral correlation between inertial measurement unit (IMU) and camera data at specific observation points, establishing
the basis for employing a data-driven local-model network approach wherein local deformations are trained on structural
loads data. The centralized loads fusion combines a data association algorithm based on a quadruple-voting scheme and
an extended Kalman filter. Finally, the performance and robustness of the whole sensor network is demonstrated based on
virtual flight tests considering a load sensor failure.
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1. INTRODUCTION

In the pursuit of advancing contemporary aircraft designs,
achieving lightweight configurations and enhancing overall
system efficiency stand as pivotal factors in meeting ambi-
tious climate goals and continuously diminishing operational
expenses. Typically, these efforts yield wing structures that
are both lighter and more flexible, characterized by higher
wing aspect ratios. Moreover, forthcoming generations of
aircraft will see a heightened emphasis on multidisciplinary
optimization, with a comprehensive reconsideration of the
entire aircraft system to augment performance. One aspect
of this evolution may involve the integration of intelligent,
active load alleviation systems capable of mitigating load
peaks arising from gusts and flight maneuvers. This has
the potential to substantially reduce the weight of the wing
structure; however, its success highly depends upon accu-
rately assessing the current load condition of the aircraft.
Current methods for load monitoring rely on either mea-
surements or model predictive estimation techniques [1–4].
However, none of these offer the necessary precision and
robustness to serve as a sole, dependable source for load
control. For instance, model-predictive load monitoring
systems (load observers) tend to exhibit inaccuracies when
extrapolating data at high load factors, while measure-
ments can degrade or fail, resulting in inaccurate or absent
measurement signals. Recognizing these limitations, the
“Advanced Loads Monitoring Network” (AdLoNet) project
founded by the national LuFo VI-1 program, is developing
a network that incorporates complementary load sensors
and observers. This approach combines the strengths of
the different technologies, enabling robust monitoring of
structural loads through data fusion. This paper presents
the development and initial testing of the complementary

load sensor network, from conceptual design to laboratory
and virtual flight testing. The network’s implementation is
focused on a prototype wing associated with the scaled
test aircraft AdLoNet-Dimona. A primary project objective
is to employ a minimal sensor number, keeping installation,
calibration, operational efforts, and associated costs as
low as possible for potential future flight test applications.
To identify suitable sensor concepts, the project initially
explores a range of diverse technologies in a pre-testing
phase. These technologies comprise strain gauges (SG),
fiber bragg sensors (FBG) and inertial measurement units
(IMU) supplied by the Technical University of Hamburg
(TUHH), a camera-based optical deformation measure-
ment system (CamS) by the German Aerospace Center,
and a system provided by IBK Innovation GmbH & Co.
KG, which measures the local profile pressure distribu-
tion using Micro-Electro-Mechanical Systems (MEMS) air
pressure sensors. These measurement systems are used
complementary, considering factors such as installation
locations, measurement accuracy, and redundancy to en-
hance the reliability. This publication primarily focuses on
presenting the concept, pre-testing and characterization of
the measurement principles. In addition, the potential for
robustness enhancement through sensor fusion in a sensor
and observer network will be discussed and demonstrated
using exemplary virtual flight tests conducted by the TUHH.

2. SENSOR AND OBSERVER NETWORK

The basic idea of the sensor and observer network is to in-
crease robustness by using complementary, as well as re-
dundant loads monitoring principles and methods. This rela-
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tionship is depicted in Fig. 1, which illustrates that load infor-
mation can be sourced from measurement-based methods
(left half), model-based methods (right half), or a combina-
tion of both. The investigation of pure sensor networks is
already a part of various ongoing studies aimed at enhanc-
ing the maintenance intervals for current and future aircraft
fleets within the realm of structural health monitoring. How-
ever, the potential of this technology varies. For instance,
in Dong’s studies [5], it is advised against pure sensor net-
works due to cost-effectiveness concerns. Conversely, re-
cent studies by Büchter et al. [6] demonstrate operational
benefits through the targeted use of additional sensors for
monitoring critical components. Büchter et al. also high-
lights that a higher potential could be achieved through com-
plementary utilization alongside existing sensor data and
analytical methods. These findings underscore the impor-
tance of a strategic approach to sensor network deployment
and are indicative of the potential for combined use of sen-
sor and observer networks.

FIG 1. Overview: Sensor and observer network

In the sensor and observer network, the robustness of
load monitoring is enhanced through the combination
of measurement-based and model-based methods, i.e.,
load observers, and by the integration of complementary
technologies. Thus, potential sensor errors can be compen-
sated either by comparing data with complementary sensor
types or by direct comparison with the results generated by
model-based methods. Alternatively, load observers can
be compared among themselves or with the sensor-derived
signals. This multifaceted approach aims to synergize both
principles, enabling real-time correction or compensation of
potential sensor errors by either a complementary sensor
type or a load observer. Furthermore, the utilization of
measurement data serves to systematically increase the
quality of information, particularly in areas where the load
observer’s validity is limited. By making use of databases
and subsequently utilizing this information to refine load ob-

servers, the network can facilitate lifelong learning, thereby
continually improving its performance. In the past, the
design of model-based methods also required successive
flight test campaigns to validate or refine the underlying
models. The combined use of measurements and load
observers offers the possibility of reducing these test times
and might thus potentially play an important role in the de-
velopment of new aircraft configurations. In this publication,
the focus is initially placed on the development of the sensor
network and the identification of suitable sensor setups. For
example, weight and system complexity constraints are key
aspects of a commercial application, thus a minimal sensor
overhead is desirable. These constraints lead to a different
setup compared to research and modeling activities, where
information quantity is more important. A long-term goal
is to derive different setups for these application scopes.
Regarding the sensor network, a Kalman filter based ap-
proach is used in this work. In the future, this will allow
an easy integration of model-based load observers. It is
therefore a direct combination of measurement and model-
based methods, allowing the full potential of the sensor and
observer network to be exploited.

2.1. Complementary Sensor Network Design

The conceptual design of the sensor network is presented
in Fig. 3, originating from a recently developed proto-
type wing of the 25 kg reference subscale test aircraft,
AdLoNet-Dimona (Fig. 2). The prototype wing features a
wingspan of 2.5m, with a wing area of 0.76m2. It incorpo-
rates four multifunctional control surfaces and employs a
spar-rib configuration. The control surfaces consist of two
ailerons (ξR1, ξR2) located at the outer region of the wing
and two flaperons situated at the inner wing section (ηfR1,
ηfR2).

FIG 2. Dimona reference aircraft

They are used for primary flight control and are planned
to further integrate secondary tasks such as load con-
trol or load alleviation functions within advanced control
concepts [7]. For the preliminary assessment of the sensor

LSS1 LSF1LSI1

LSC2

LSC3

LSC1 LSC5

LSC4 LSC8 LSC10

LSS2 LSF2LSI2 LSS3 LSF3LSI3 LSS4LSI4 LSI5

Inertial measurement unit Strain gauge Fiber bragg sensor MEMS pressure profile CamS marker

LSM1 LSM2 LSM3 LSM4 LSM5

LSC11

LSC6

LSC7
LSC9

xb

yb

FIG 3. Prototype wing: Conceptual design of the sensor network with all relevant sensor types
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network, the wing is equipped with a large number of
complementary, partially redundant sensors based on dif-
ferent measurement principles (Fig. 3). This includes strain
gauges (LSS1 - LSS4) positioned at four distinct observation
points and fiber bragg sensors (LSF1 - LSF3) located at three
positions. These sensors enable the observation of local
structural loads through the measurement of strains, which
are calibrated using the Skopinski method [8]. Each sensor
monitors the loads of a wing section from the observation
point up to the wing tip. To distinguish between the local
loads induced by control surface deflections, these sensors
are strategically placed at the beginning of each control
surface section. These two measurement systems operate
redundantly. Local accelerations and angular velocities are
measured by five inertial measurement units distributed
along the wing (LSI1 - LSI5). Unlike the aforementioned
sensor types, they are intentionally positioned at the re-
spective ends of control surface sections to differentiate
structural loads caused by local control surface deflections.
Initially, low-cost MPU6050 sensors are employed. These
sensors are supplied pre-calibrated, hence calibration
details are not discussed in Sec. 3. The IMU at measuring
position LSI1 serves as a reference for determining relative
accelerations and angular velocities with all other measur-
ing positions. In combination with a camera-based optical
deformation measurement at observation points LSC1 -
LSC11, sensor fusion aims to enhance the robustness of
both measurement principles. Finally, the sensor network
is complemented by MEMS-based pressure measurement
profiles, facilitating the acquisition of local profile pressures
at five observation points (LSM1 - LSM5).

3. IMPLEMENTATION, TESTING AND CALIBRATION

The sensor network detailed in Sec. 2.1 is subsequently im-
plemented in a real-world test bench, which serves as an
ongoing testing platform for the exploration of the individ-
ual core technologies and the envisioned sensor fusion pro-
cess. The sensor network, in conjunction with the prototype
wing, is depicted in Fig. 5. A primary focus of this chap-
ter centers around the development and conceptualization
of camera-based deformation measurements and MEMS-
based profile pressure measurement modules. These struc-
tural load measurement methods are relatively less estab-
lished when compared to classical strain-based approaches
(such as strain gauges or fiber bragg sensors), which typ-
ically involve Skopinski calibration. Notably, the selection
and positioning of cameras, in combination with correspond-
ing observation points on the wing, play an important role in
this context. Furthermore, this chapter presents the results
of initial laboratory tests conducted on the sensor network.
The objectives of these investigations comprise sensor cal-
ibration for relevant load cases, testing of individual mea-
surement principles, and the derivation of sensor character-
istics in order to derive sensor models for the virtual testing

of fusion strategies in Sec. 4. In particular, this constitutes a
step toward the creation of a digital twin of the test wing, facil-
itating continuous and extended examinations initially within
a virtual testing environment. The findings from these in-
vestigations form the foundation for subsequent wind tunnel
tests of the sensor network in the future.

3.1. Strain Gauges

In accordance with the sensor network’s conceptual design,
the prototype wing is equipped with four strain gauges at
observation points LSS1 - LSS4. Each of these observa-
tion points comprises a set of four full bridges designed
to measure shear forces in the lift direction (body-fixed
z-axis), shear forces in the drag direction (body-fixed x-
axis), bending moments (about body-fixed x-axis), and
torsional moments (about body-fixed y-axis). The utilization
of a full bridge configuration, employing a Wheatstone
bridge circuit, serves a dual purpose: enhancing the signal
strength of the measured strain and mitigating temperature
effects. Each full bridge comprises four individual strain
gauges. During the calibration process, a total of 196
individual measurements were conducted. In each case,
a test run comprises two zero measurements and five
load measurements (Fig. 4). These load measurements
systematically account for point loads or distributed loads
applied at predefined load application points along the wing
using calibration masses. During the calibration the wing is
clamped upside down. The wing’s spar serves as the refer-
ence point for calculating the theoretically acting torsional
moments. The stepwise calibration procedure starts with a
zero measurement, followed by a systematic increment of
the reference load until reaching the maximum load. Subse-
quently, there’s a systematic reduction of the reference load
until the final zero measurement is obtained. The maximum
absolute calibration loads with respect to observation point
LSS1 are: |Qxb,th,max| = 15.5N, |Qzb,th,max| = 202.5N,
|Mxb,th,max| = 195.1Nm, and |Myb,th,max| = 7.1Nm. For
calibration, the Skopinski method is used, as elaborated in
Sec. 3.1.1.
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FIG 4. Stepwise calibration procedure

3.1.1. Skopinski Method

The Skopinski method [8] is a well-established method for
load calibration of strain-based sensors which has been

FIG 5. Test rig setup of the AdLoNet prototype wing in laboratory testing as part of calibration tests with CamS markers on the
wing surface
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widely adopted in various works (e.g. [9–11]). It is based
on the assumption that the strains measured by different
strain sensors at an observation point can be linearly su-
perimposed and thus result in a functional dependence of
the measured strain to the structural load based on a linear
system of equations. In this work, the Skopinski method
is applied to the calibration of the strain gauges and the
fiber bragg sensors. The calibration equation for multiple
sensors and measured loads is depicted in Eq. 1.

(1) L = β · ϵ

wherein L ∈ Rm×n is the load matrix for n load cases and
m load outputs, ϵ ∈ Rj×n is the strain matrix for j sensors
and n load cases, and β ∈ Rm×j is the Skopinski coefficient
matrix. During calibration, n known load cases are applied
to the wing and the corresponding strains of the j sensors
(full or half bridges) are measured. By rearranging Eq. 1 and
applying the least squares method, the Skopinski coefficient
matrix can be determined according to Eq. 2.

(2) β =
[
LϵT

]
·
[
ϵT ϵ

]−1

3.1.2. Calibration and Testing

Using the data obtained of the calibration measurement
campaign, the strain matrix ϵ and the calibration load matrix
L are known. By solving the linear calibration equation
Eq. 2, the Skopinski matrix β can be calculated. The
multiplication of β with the measured strain ϵ results in the
calibrated loads output. Comparing the calibrated loads
with the theoretical loads allows for the evaluation of the
calibration accuracy.
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FIG 6. Strain gauges calibration: Ideal ( ) and calibrated val-
ues ( ) at LSS2.

A comparison of theoretical and calibrated loads is exem-
plarily given for observation point LSS2 in Fig. 6 in terms
of correlation plots. Here, for example, Qzb,th describes
the theoretically applied shear force in the lift direction, and
Qzb,cal its calibrated equivalent. The results of the calibra-
tion at load observation point LSS2 reveal a satisfactory over-
all accuracy. The results for all other load observation points
are listed in Tab. 1 with respect to the mean absolute calibra-
tion error. In particular, the calibration of bending moment
and z-shear force show a high accuracy. Typically, the cal-

ibration of the torsional moment tends to be more difficult,
which is why higher deviations of up to 0.1Nm occur. Al-
though these deviations are lower in absolute value than the
mean deviations observed for the bending moment, they are
significantly higher relative to the maximum applied calibra-
tion load. However, these deviations are considered moder-
ate to small with respect to the comparably small absolute er-
ror. Larger relative deviations occur mainly in the calibration
of the shear force Qxb. In particular, at LSS1 near the wing
root, a significant drop in calibration quality becomes appar-
ent with an error of up to 2.27N. This increased uncertainty
must be attributed to the extremely rigid clamping at the wing
root, which transmits hardly any shear forces in the body
fixed x-direction. This circumstance also affects almost all
other calibration results at LSS1, although the relative uncer-
tainties related to the maximum calibration loads are largest
for the load case Qxb. However, at all other load observa-
tion points the implementation of a full bridge for measuring
the x-shear forces has proven to be useful, to avoid a cor-
relation between x-shear forces, e.g. due to thrust or aero-
dynamic drag, and the torsional moment. This results in an
overall higher accuracy of torsional moment calibration and
becomes evident in comparison with the calibration of the
fiber bragg sensors in Sec. 3.2, which are missing an addi-
tional sensor for this loads in body-fixed x-directions.

LSSx
Mean absolute calibration error

µ|rQz,cal
| µ|rMx,cal

| µ|rMy,cal
| µ|rQx,cal

|

1 3.62N 0.62Nm 0.11Nm 2.27N

2 0.43N 0.28Nm 0.10Nm 0.52N

3 0.29N 0.15Nm 0.09Nm 0.65N

4 0.24N 0.06Nm 0.06Nm 0.48N

TAB 1. Mean absolute calibration error of the strain gauges at
the observation points LSS1-LSS4

3.2. Fiber Bragg Sensors

In addition to conventional strain gauges, optical fiber bragg
sensors are frequently employed for strain monitoring. Their
tolerance to electric and magnetic fields and their intrinsic
safety make them particularly suitable for use under diffi-
cult operating conditions. In addition, the application of the
sensors into the wing structure is comparatively easy. In the
prototype wing of the AdLoNet-Dimona, an edge filter based
optical interrogator from imc Test & Measurement GmbH is
used. It is characterized by high sampling rates and the si-
multaneous use of an anti-aliasing filter. Therefore it is suit-
able for the acquisition of static, quasi-static, and dynamic
signals. However, it is not possible to use multiplexed sen-
sor arrays, such that each fiber bragg sensor requires an
individual evaluation channel. The application of the sen-
sors is shown in Fig. 7 representative for all three observa-
tion points (LSF1 - LSF3). In contrast to the strain gauges
discussed in Sec. 3.1 the individual sensors are connected
to half bridges, primarily due to the limited number of chan-
nels available on the evaluation electronics. In order to com-
pensate for temperature-related effects influencing the strain
sensors in the half-bridge configurations, pre-calibrated op-
tical temperature sensors are additionally installed at each
observation point. For each of the sensors shown in Fig. 7,
the change of measured wavelength is related to a change in
strain according to Eq. 3. Thus, the measured wavelength λ
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is directly related to the initial wavelength of the prestressed
sensor λ0 and the factor k of the bragg grating. In addition,
the temperature dependence of the strain sensor must be
considered, which is accounted for by a thermal expansion
coefficient of the substrate αs and the temperature response
kT .

90°

F1

F2

F3
45°

F4

xb
yb

zb

FIG 7. Application of fiber bragg sensors at the observation
points LSF1 - LSF3

(3) ϵ =
1

k
· λ− λ0

λ0
− (αs + kT ) ·∆T

Equivalent to the wiring of the strain gauges, the respective
fiber bragg sensors F1 - F4 are interconnected to form half
bridges which are sensitive to the load cases: shear force
in the lift direction, bending moment, and torsional moment.
A half-bridge for the monitoring of the bending moment re-
sults from the interconnection of the sensors F1 and F2 on
the upper and lower side of the spar, respectively. Due to
the tensile and compressive stress curves, both measured
strains in equation Eq. 4 are accounted for with different
signs. Assuming that the temperature at an observation
point changes almost uniformly due to the spatial proximity,
the temperature-related part of Eq. 3 negates itself out and
the half-bridge is theoretically temperature-compensated.

(4) ϵMxb = ϵF1 − ϵF2

Analogously, the torsional moment is derived using the sen-
sors F3 and F4 rotated by 45 degrees relative to the normal
direction. By subtracting the measured strain of F4 from
the measured strain F3, the strain ϵMyb caused by torsional
stress can be inferred (Eq. 5). Again, temperature compen-
sation results from truncating the temperature dependent
parts in Eq. 3.

(5) ϵMyb = ϵF3 − ϵF4

By addition of the sensors ϵF3 and ϵF4, the strains caused
by z-shear forces can be concluded (Eq. 6). Unlike the
other two cases, no direct temperature compensation
results here, such that the measured strains must be
compensated for temperature effects using the installed
temperature sensors.

(6) ϵQzb = ϵF3 + ϵF4

The calibration of the fiber bragg sensors also relies on the
Skopinski method, as described in Sec. 3.1.1, based on the
same measurement data used for the strain gauges calibra-
tion. The calibration results are shown in Fig. 8 and with re-
spect to the mean absolute calibration error in Tab. 2. This
comparison reveals that a high calibration accuracy at LSF2

and LSF3 can be achieved using the fiber bragg half bridge
sensor configurations. This is especially true for the calibra-
tion of the bending moment and the z-shear force. In direct
comparison with the strain gauge calibration, the mean ab-
solute calibration error of the bending moment varies only by
±0.01Nm, indicating a comparable high calibration quality.
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FIG 8. Fiber bragg sensor calibration: Ideal ( ), calibrated
values ( ) and calibrated values with x-shear force ex-
citation ( ) at LSF2

LSFx
Mean absolute calibration error

µ|rQz,cal
| µ|rMx,cal

| µ|rMy,cal
|

1 9.62N 0.89Nm 0.62Nm

2 0.53N 0.27Nm 0.17Nm

3 0.38N 0.16Nm 0.10Nm

TAB 2. Mean absolute calibration error of the fiber bragg sen-
sors at the observation points LSF1-LSF3

With respect to the z-shear force, however, slightly in-
creased deviations of up to 0.1N must be taken into
account. Further investigations show that this is a result of
the calibration loads introduced in the x-direction which can-
not be resolved by the sensors due to the missing half bride
in x-shear force direction. This is particularly evident in the
calibration result of the torsional moment, which is worse
by up to 70% compared to the calibration result of the strain
gauges. For clarification, the corresponding load cases
inducing torsional strain are highlighted in gray in Fig. 8c,
indicating their influence on the mean absolute calibration
error. Nevertheless, due to the small absolute errors, an
overall good calibration result can also be achieved for the
fiber bragg sensors. Only the results at observation point
LSF1 again prove to be conspicuous, especially with regard
to the shear force calibration. On the one hand, this must
again be attributed to the clamping situation of the wing.
On the other hand, more detailed investigations after the
calibration showed a defective sensor of the shear force
half-bridge, making it impossible to distinguish between
torsional moment and shear force without correlation.
The replacement of the sensor is planned in future work,
whereby a similar calibration quality compared to the strain
gauges is expected. The direct comparison between fiber
bragg sensors and strain gauges shows a comparably
high calibration accuracy for both measuring principles.
In practical application of fiber bragg sensors, however,
their good applicability on the spar surface as well as the
low cabling effort have proven to be extremely positive,
especially for multiplexing applications.
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3.3. Camera-Based Optical Deformation Measurement

In addition to the described sensors in the wing, the defor-
mation is also determined optically. For this purpose, mark-
ers are placed on the upper wing surface and measured
from the tail (CamS 1) and cockpit (CamS 2) using two cal-
ibrated cameras (5 Mpx Ximea MC050MG-SY). The posi-
tioning of the cameras during the calibration tests is shown
in Fig. 9. In the context of calibration, the use of CamS 1,
CamS 2 or a combination of both cameras is to be investi-
gated.

zb

xb

CamS 1

yb

CamS 2

FIG 9. Schematic diagram of the camera positions on the sub-
scale test aircraft AdLoNet-Dimona

ArUco makers are used in the field of augmented reality
and are implemented in software libraries such as OpenCV
[12,13]. A translational and rotational position determination
can be made using the known edge length of the markers
(Fig. 10). With respect to the prototype wing, eleven markers
(LSC1 - LSC11, Fig. 3) are applied on the wing surface. The
marker edge length increases from 0.03m to 0.1m along the
wing span. They are designed such that the marker in the
camera image is still at least ten pixels in size to allow robust
detection.

FIG 10. ArUco marker [13] with ID LSC1 (left) and right on the
wing (rendered in Blender [14]) with the marker’s coor-
dinate system

For the calibration of the camera, 12 images of a checker-
board pattern are used to determine the intrinsic and extrin-
sic camera parameters. For this purpose, the pattern is po-
sitioned in different poses around the wing in the measure-
ment volume (Fig. 11, [15]).

FIG 11. CamS 1 calibration image with checkerboard pattern

The calibration error after the final optimization is 0.281 pix-
els using the OpenCV 4.7 functions [12]. For comparability
and initial evaluations, the corner points of the markers are
also triangulated using the Digital Image Correlation (DIC)
method. In previous work, the authors mainly used this tech-
nique to measure the deformation of the airfoil using a ran-
dom pattern distributed over the surface [16]. However, it is
so computationally intensive that an evaluation must be per-
formed offline in the post-processing phase [15]. One of the
goals of the AdLoNet project is to perform this evaluation in
real time on a microcontroller, which is why the complexity
and computational effort must be drastically reduced com-
pared to the DIC. For this purpose, the already presented
ArUco markers are used, which only discretely cover the
wing and thus will reduce the calculation amount required.
However, initially the results of a DIC evaluation taking a
stepwise calibration procedure measurement (Fig. 4) as an
example is shown in Fig. 12. For this, the triangulation re-
sults are averaged (N = 58− 64 images) and the deforma-
tion in reference to the first unloaded measurement is de-
termined, as well as the standard deviation as error. For
markers towards the wing tip (LSC10, LSC11), detection be-
comes increasingly difficult as the viewing angle becomes
flatter. The deformation correlates well with the loads and
the markers at the same spanwise position give very similar
results (e.g. LSC4 & LSC5).
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FIG 12. Wing deformation at the camera markers LSC1 - LSC11

for a stepwise calibration procedure

3.4. MEMS-based Pressure Measurement Profiles

In order to measure the air pressure on the airfoil surface,
the digital absolute pressure sensor FXPS7115D4 from
NXP [17] is used. It is a high-precision barometric pressure
sensor, which consists of a capacitive micro-electro-
mechanical systems (MEMS) device coupled with a digital
integrated circuit. The measurement range of the sensor is
from 40 kPa to 115 kPa on two redundant pressure transduc-
ers. The sensor is enclosed in a 4mm x 4mm x 1.98mm
surface mount package (HQFN) for circuit board (PCB)
integration. Addressing of the sensors is achieved by an
individually programmed I2C-Bus address. For the use in
this project a small PCB is created to mount and wire the
sensors. The PCB mounted MEMS pressure sensors are
distributed on the upper and lower surface of the wing inside
a 3D printed part, which is fixed to the spar between two ribs
(Fig. 13). Printed pressure tubes connect the MEMS sensor
with the airfoil surface. Small o-rings seal the MEMS sensor
to the 3D print. According to the conceptual design of the
sensor network, the prototype wing has five measuring sec-
tions in span wise direction (LSM1 - LSM5) equipped with
22 (root) to 14 (tip) MEMS sensors. Each section captures
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the pressure distribution around the airfoil profile. Taking all
five sections into account, the pressure distribution on each
section or the whole wing can be reconstructed with an
Adaptive-Network-based Fuzzy Inference System (ANFIS)
[18, 19]. For the final ANFIS setup, the individual pressure
measurements as well as the rigid body motion and the
control surface deflections will be taken into account. The
training of the network is done with simulation data.

FIG 13. 3D printed profile for the application of MEMS pressure
sensors to measure the local airfoil surface pressure

3.4.1. Calibration and Testing

The calibration of the pressure sensors is done within the
measurement software. Before each measurement run, the
static pressure of all sensors is recorded. During the mea-
surement, the individual static pressures can be subtracted
to record only the relative dynamic pressure on the airfoil.
In order to increase the accuracy of the sensor, the mean
pressure of both internal sensors is used. From reference
measurements the standard deviation was determined to be
12.941Pa and is stated in Tab. 3. For the use in the central-
ized fusion (Sec. 4.2.3) however, an approximated standard
deviation of 1.3Pa is used. The in flight post processing and
combining of the single pressure readings with an ANFIS will
act as a filter and reduce the noise by at least a factor of 10.

3.4.2. ANFIS Preliminary Testing

As an initial step for the pressure distribution reconstruc-
tion, a preliminary 2D ANFIS study has been carried out.
The Fuzzy Logic Toolbox [20] of MATLAB [21] was used
for modeling of an ANFIS generated by using the subtrac-
tive clustering method [22] and 30 epochs with the hybrid
training algorithm and default settings. The input and output
membership functions of the ANFIS are Gaussian and linear
type respectively. The training is done with a noisy (addi-
tive white Gaussian noise (AWGN) with standard deviation
corresponding to Tab. 3) pressure at all MEMS locations as
input and a noise-free fine grid airfoil pressure distribution
as output. The input and output pressures are synthetically-
generated using XFOIL [23]. The database is generated per
∆α = 0.1◦ in αi ∈ [−10◦, 10◦] and 10 different noise in-
puts each. Since the ANFIS supports only single-output, a
Matlab structure containing multiple ANFIS is used to model
multiple outputs. Fig. 14 shows the initial result of the trained
network, reconstructing the pressure distribution on the air-
foil from a noisy prediction input with 1σ AWGN (Fig. 14a)
and 5σ AWGN (Fig. 14b). The achieved results show a very
good match of the predicted and trained Cp distribution even
for a high noise level. Based on these results, the aforemen-
tioned factor of 10 for the approximated standard deviation in
Sec. 4.2.3 will be reached. The initial results are promising
to reveal the potential of the reconstruction technique and it

is planned to extend it for a detailed 3D reconstruction of the
pressure distribution over the wing.
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FIG 14. Reconstruction of pressure coefficient details from
noisy sparse input data at MEMS sensor locations us-
ing ANFIS for α = 0◦

4. SENSOR NETWORK IN VIRTUAL FLIGHT TESTS

Based on the initial laboratory tests with the prototype wing
in Sec. 3, simplified sensor models of the individual mea-
surement principles were developed. They form the basis
for a detailed investigation of the sensor network in virtual
flight tests. In order to obtain quasi-measurement data that
are as representative as possible, a nonlinear, 6-degree-
of-freedom flight-dynamic model of the AdLoNet-Dimona is
used (Sec. 4.1). By using an elastic motion model [24] and
a structural loads model different approaches for fusing the
individual sensor data can subsequently be tested and an
overall strategy for sensor fusion can be derived (Sec. 4.2).

4.1. Nonlinear Flight Dynamics Model

For the virtual flight tests the AdLoNet-Dimona nonlinear
flight dynamics model is used. According to the reference
aircraft in Sec. 2.1 it has eight control surfaces at the wing
trailing edge (four flaps: ηfR1/fL1, ηfR2/fL2, four ailerons:
ξR1/L1, ξR2/L2), one rudder ζ and two synchronously op-
erated elevators ηR/L. The flight dynamics model was
derived from the TUHH in-house toolbox for preliminary
design of subscale test aircraft SCALAR [25] and addi-
tional assumptions (e.g. eigenmodes and eigenvalues)
based on a comparable aircraft configuration presented
by Herrmann et al. [24]. The model is furthermore based
on the TUHH in-house simulation library FLYSIM [26]
which provides basic models for elastic equations of mo-
tion, actuator and control surface dynamics, earth and
atmosphere (wind & turbulence) and a linear propulsion
model. The aerodynamic model was parametrized using
the LIFTING_LINE methodology [27] and is based on quasi-
steady strip aerodynamics. Lastly, a structural loads model
for physical estimation of internal loads was implemented
using the formulations by Luderer [28].
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4.1.1. Sensor Models

For the virtual testing of the sensor network the nonlinear
flight dynamic model of the AdLoNet-Dimona is extended by
the necessary sensor output equations. Here, the local ac-
celerations at the sensor positions of the IMUs are derived
from the rigid and elastic equations of motion of the aircraft
according to the derivation by Grauer et al. [29]. Further-
more, the structural deformation detected by the cameras
results from the solution of the elastic equation of motion.
A simplified sensor model is applied for all sensor types.
Thereby, all quasi-measured sensor data are subjected to
a normally distributed white noise. The associated stan-
dard deviations are determined based on reference mea-
surements during calibration in Sec. 3 and are summarized
in Tab. 3.
For the virtual camera sensor model 80 images of a repre-
sentative static measurement are used and the standard de-
viation for the 10 markers (LSC1 - LSC10, Fig. 3) is evaluated.
Marker LSC11 at the wing tip cannot be robustly detected due
to the very flat viewing angle and is thus not taken into ac-
count. For each image, the corner points of the markers,
the position and location in space are calculated using the
ArUco library [13]. The standard deviation is determined us-
ing the 2-norm of the position and the maximum value of the
angular deviation. It increases with distance from the cam-
era and is less than 6.4 · 10−3 m respectively 0.27◦ (Fig. 15,
Tab. 3).
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FIG 15. Camera error as σ(X) for space position and angle
over marker distance based on N = 80 images

To determine the quasi measurement data of the strain
gauges and fiber bragg sensors, an inverse Skopinski
method is used in combination with the internal forces
and moments at the load observation points known from
the structural loads model (L̂). Here, the inverse of the
Skopinski matrix, determined during the laboratory test, is
used to infer the local strains ϵm at the load observation
points (Eq. 7). The Skopinski matrix is then used again to
infer the structural loads subject to measurement noise.

(7) ϵm = L̂ · β−1

The quasi-measurement data of the pressure sensors are
obtained from the distributed strip aerodynamic equations at
a local profile section. By a simplified assumed scaling ap-
proach of the representative local forces and moments, the
required internal forces at the load observation points can be
approximated. In addition, local accelerations are included
with the help of the distributed IMUs in order to consider iner-
tial forces according to the formulations by Raab et al. [30].
Furthermore, to consider the post processing of the MEMS

pressure data a ten times lower standard deviation (1.3Pa)
is assumed in the virtual MEMS models.

Sensor Standard deviation σ(X)

ϵQxb ϵQzb ϵMxb ϵMyb

SG 0.048 µm
m

0.048 µm
m

0.048 µm
m

0.049 µm
m

FBG - 0.066 µm
m

0.056 µm
m

0.056 µm
m

ωs bs

IMU 0.0053 rad
s

0.098m
s2

Φs rs

CamS 0.0516− 0.2693◦ 0.0002− 0.0065m

pt

MEMS 12.941Pa

TAB 3. Sensor characteristics determined from calibration ref-
erence measurements

4.2. Complementary Sensor Network Fusion

As an intermediate step towards real testing of the sensor
network in wind tunnel or flight tests, the fusion strategy is
initially investigated in virtual flight tests. The conceptual de-
sign of the fusion algorithm is shown in Fig. 16. Here, the
camera and IMU quasi measured signals are locally fused
using a Kalman filter (Sec. 4.2.1). This is supposed to in-
crease the robustness of the optical deformation measure-
ment, especially when optical detection of the structure is
not guaranteed (e.g. cloudy conditions). Subsequently, vir-
tual calibration to structural loads at the load observation
points is performed using a data-based method based on
local model networks [31] in Sec. 4.2.2. The virtual cali-
bration of the strain-based measurement principles uses the
Skopinski factors as depicted in Sec. 4.1.1. The core of the
sensor and observer network is formed by a centralized load
fusion using an extended Kalman Filter. This also enables
future integration of a model-based loads observer in the
form of linearized equations. Preceding a data association
algorithm verifies the validity of the individual sensor signals
and is intended to enable error detection. By dynamically
adjusting the measurement error covariance matrix of the
Kalman filter, direct control of the confidence level of individ-
ual sensors can be achieved.

FIG 16. Conceptual design of the sensor and observer network
as the basis for virtual testing

By extending the presented sensor network by a model-
based loads observer, another redundant source of load
information would be available. This could reduce the need
for measurement redundancy and lead to the full potential of
the sensor and observer network by exploiting synergy ef-
fects between both principles. With regard to a commercial
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application, a long-term goal is therefore to systematically
reduce the number of sensors in order to reduce complexity
and maintenance and possibly increase cost efficiency. For
research purposes, however, the increased redundancy as
well as the complementary information sources are rather
advantageous, so that a much more extensive sensor
setup can be expected here. In this paper, however, the
virtual testing of the local fusion of camera and IMU data,
the load calibration of the resulting deformation data, and
the centralized fusion is firstly presented. A simplified,
state-of-the-art approach is initially used for the data asso-
ciation algorithm. The optimization of this algorithm and the
overall network by integrating a model-based method and
optimizing the sensor amount, is part of future work.

4.2.1. Local Sensor Fusion of CamS and IMU Data

The local fusion of camera and IMU measurements relies
on a Kalman filter, exploiting the integral relationship be-
tween local deformations and accelerations (or rates) ob-
tained from the IMUs. In this process, only the measured
quantities from the camera markers positioned at observa-
tion points LSC1, LSC4, LSC8, LSC10, and LSC11 are used,
as they are directly correlated with the IMU positions. Addi-
tionally, only relative rotation angles Φb and angular veloc-
ities Ωb of both measurement systems are accounted with
respect to LSC1, respectively LSI1. The linear equation sys-
tem of the Kalman filter is summarized in Eq. 8. The process
noise w and measurement noise v are used to account for
uncertainties.

x(k + 1) = A · x(k) +G ·w(k)

ŷ(k) = C · x(k) + v(k)
(8)

The state vector x is defined according to Eq. 9.

(9) x =
[
∆Φx ∆Φ̇x ∆Φy ∆Φ̇y ∆Φz ∆Φ̇z

]T
b

The matrix A describes a simple integral relationship be-
tween the angular velocities and the rotation angles accord-
ing to Eq. 10 and C is the identity matrix I6.

(10) A =



1 Ts 0 0 0 0

0 1 0 0 0 0

0 0 1 Ts 0 0

0 0 0 1 0 0

0 0 0 0 1 Ts

0 0 0 0 0 1


The process noise w is assumed to act as a non-additive,
unknown acceleration noise. Its influence is described by
the matrix G in Eq. 11 and results from the process noise
covariance matrix Q. The matrix Q is assumed simplified
as a diagonal matrix (uncorrelated noise of angular acceler-
ations).

(11) G =



T2
s
2

0 0

Ts 0 0

0
T2
s
2

0

0 Ts 0

0 0
T2
s
2

0 0 Ts


Fig. 17 shows the result of the sensor fusion using the
Kalman filter for the observation point LSC10. The basis is
a 3-2-1-1 manoeuvre using the presented flight dynamic

model of the AdLoNet-Dimona and the corresponding
sensor models. It can be seen that satisfactory tracking
of the deformation angles Φ̂xb, Φ̂yb and Φ̂zb is achieved.
In addition, the sensor noise of the cameras can be sig-
nificantly reduced, which simplifies the data processing.
Furthermore, by adjusting the measurement error covari-
ance matrix of the camera data or the IMU data, a sensor
failure, e.g. due to poor visibility conditions, could be
compensated.
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FIG 17. Quasi Measurement from CamS Sensor Model atLSC10

( ) and Kalman filter result ( )

4.2.2. Loads Calibration using Local Model Networks

In this work, a data-driven method based on local-model net-
works ([2, 28, 31]) is used for the calibration of the camera
data to internal structural loads. The purpose is to demon-
strate that structural loads can be inferred based only on
deformation data of the wing. Primarily, the pre-fused rota-
tional components about the body fixed x-axis (∆Φ̂xb) and
y-axis (∆Φ̂yb) are used as inputs. They are expected to cor-
relate strongly with the bending and torsion line. This results
in the input vector ûLS1 at LS1 according to Eq. 12. In or-
der to ensure the consideration of the wing’s bending line,
one marker per control surface section of the wing is used in
proximity to the elastic axis (LSC4, LSC8, LSC10 and LSC11).
The target criterion of the training ŷLS1 is the respective load
case of the strain gauge load sensor model (Q̂LSS1

zb , M̂LSS1
xb

or M̂LSS1
yb ). The complexity of the local-model network is

constrained to a maximum model number of nm = 5.

(12) ûLS1 =



∆Φ̂x,C11

∆Φ̂x,C10

∆Φ̂x,C08

∆Φ̂x,C04

∆Φ̂y,C11

∆Φ̂y,C10

∆Φ̂y,C08

∆Φ̂y,C04


, ŷLS1 = L̂k

The training data is a virtual flight test campaign based on
the flight dynamic model of the AdLoNet-Dimona. Hereby,
control surface deflections of the ailerons, flaps, rudder, and
the elevators are commanded at different trim points. In
total, 11 different maneuvers are considered, which form
a representative combination of different maneuver excita-
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tions. However, for future applications to real flight test data,
a significantly larger data basis will be required to account
for the full flight envelope. The calibration result is depicted
in Fig. 19 showing two elevator 3-2-1-1 command at VTAS =
20m s−1 and 25m s−1. With respect to the full database of
11 maneuvers, the mean absolute calibration error of the
bending moment is 0.3Nm, that of the z-shear force is 0.6N
and that of the torsional moment is 0.03Nm. In summary,
high accuracy is achieved when calibrating the camera data
to the structural loads using local model networks. This re-
sult suggests that a real-world application of fusion of IMU
and camera data, and subsequent calibration to structural
loads, could be realizable.
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4.2.3. Data Association and Centralized Fusion

The data association algorithm is supposed to enable early
sensor failure detection, which improves the performance
and robustness of the Kalman filter in the centralized fusion.
In this work, a quadruple-voting scheme is used to deter-
mine a consolidated reference value for the error-free con-
dition. The implementation is based on the weighted me-
dian approach presented by Ossmann et al. [32] according
to Eq. 13. Here ˆ̄Lc describes the consolidated load value
and L̂ the vector of the load quantities of strain gauge, fiber

bragg sensor, MEMS and camera. In the nominal operating
state, the distance to each of the load variables is calculated
with the help of the consolidated load value. This defines the
confidence level of the respective sensor and is accounted
quadratically in the measurement error covariance matrix of
the Kalman Filter (Eq. 15). Thus, allowing adaptive control
of the individual sensor confidence level. Finally, the total
measurement error covariance matrix RT is the sum of ba-
sic sensor measurement error covariance R0 from sensor
noise & accuracy and the calculated value Rk (Eq. 14).

(13) ˆ̄Lc =
1

2
·median(L̂) +

1

4
·
(
min(L̂) + max(L̂)

)
(14) RT = R0 +Rk

Equivalent to Ossmann et al. [32], a tolerance band ±τ is
defined describing the expected value of the sensors with re-
spect to the consolidated load value ˆ̄Lc. Exceeding or falling
below the tolerance band leads to a classification of the sen-
sor as faulty. In this case, its measurement error covariance
Rk is raised to a defined maximum value, whereby it is clas-
sified as untrustworthy in the Kalman filter.

(15) Rk =


(
L̂k − ˆ̄Lc

)2

if | ˆ̄Lc + τ | ≥ |L̂k| ≥ | ˆ̄Lc − τ |

Rmax if |L̂k| > | ˆ̄Lc + τ | or
|L̂k| < | ˆ̄Lc − τ |

In an error case, the faulty sensor must additionally be ne-
glected during the calculation of the consolidated load value.
If two sensors fail, the consolidated load value is calculated
according to Eq. 16 [32]. Here, ik can vary between 0 (kth

sensor is faulty) and 1 (kth sensor is valid). Again, the mea-
surement error covariance of the valid sensors is calculated
using the distance L̂k − ˆ̄Lc.

(16) ˆ̄Lc =
1

2
·

4∑
k=1

L̂k · ik

If a third sensor fails the validity of the remaining sensor
can no longer be proven, so that if the tolerance band is
exceeded, both sensors must be classified as faulty. Never-
theless, a model-based loads observer in the Kalman filter
would still enable a load prediction. In this work, however,
the performance of the pure sensor network is investigated,
which is why a model-based approach in the Kalman filter
is not present. Instead, a simplified integral behavior ac-

M̂
L
S
1

x
b

in
N
m

FBG SG CamS MEMS

0 0.5 1 1.5 2 2.5 3 3.5 4

Time in s

-90

-80

-70

-60

-50

Sensor freeze

FIG 18. Centralized loads fusion results ( ) for bending moment M̂LS1
xb with strain gauge error at T = 0.9 s.

fiber bragg sensor ( ), Strain gauge ( ), CamS ( ), MEMS ( )

10

Deutscher Luft- und Raumfahrtkongress 2023

©2023



cording to Eq. 10 is assumed. Process noise is again mod-
eled as non-additive, unknown acceleration noise. Thus, in
this implementation, a high level of confidence is given to
the measured data and the data association algorithm. To
investigate the robustness of this approach against sensor
failures, again a 3-2-1-1 maneuver simulated in the virtual
test environment is considered. In addition, a sensor freeze
fault case of the strain gauge is assumed, resulting in a con-
stant sensor value at T = 0.9 s. The study results are shown
in Fig. 18. Despite the assumed failure of the strain gauge
a convincing agreement between the fused load signal and
the error-free signals (camera, MEMS and fiber bragg sen-
sors) is achieved.

5. CONCLUSION

In this work, a complementary sensor network is introduced,
which is intended to increase the robustness and accuracy
of structural loads monitoring in the future as part of a
sensor and observer network. The initial design considers
five different measurement principles: strain gauges, fiber
bragg sensors, IMUs, optical deformation measurements,
and MEMS pressure sensors. The installation on a pro-
totype test wing, calibration and initial operation of each
sensor technology was presented. Based on this, a first
design for local and centralized fusion was introduced. The
performance of the sensor network is demonstrated by sim-
ulation studies of a nonlinear 6-degree-of-freedom model
of the reference aircraft. Here, local fusion of camera and
IMU data using a Kalman filter proved useful in reducing
sensor noise and increasing the robustness of the optical
deformation measurements in adverse visibility conditions.
The calibration of the wing deformation to structural loads is
performed using a data-based local model network method
using the rotatory deformations as input signals. In this
way, good accuracy could be achieved, so the approach
is considered as a promising option for real measurement
campaigns in the future. Based on a quadruple-voting
scheme and a centralized fusion of the available sensor
signals, robustness against a simple sensor failure was
demonstrated. In the future, the sensor network will be
optimized, so that only a minimum of sensors are used
and thus the full potential is achieved in combination with a
model-based loads observer. In addition, further exploration
in wind tunnel and real flight tests is intended.
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