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ABSTRACT2

The fatality rate for flights involving light, fixed-wing aircraft is relatively high, and most accidents3
occur after a loss of thrust in the lower airspace. In these emergency situations, with a lack4
of potential energy, an assistance or automated system could lead the aircraft safely to an5
appropriate landing field. Some solutions for path planning and guidance exist, however most of6
them rely on a simplified model of the environment and the aircraft’s dynamics to generate a path.7
Thus, those solutions tend to be rigid and less reliable during an emergency; especially in the8
occurrence of wind. Moreover, many solutions don’t consider the expected landing direction and9
the heading of the aircraft has to have, when reaching the landing field. In this work, we tackled10
these issues by focusing on the creation of a real-time guidance system for 3D trajectory planning11
after a loss of thrust based on deep reinforcement learning (DRL). In DRL, an agent learns12
through trial and error by interacting with an environment. DRL is especially useful in uncertain13
environments, where many parameters can’t be calculated in advance, which is the case in an14
emergency. Therefore, to train the agent to guide a fixed-wing, engines-off aircraft to an arbitrary15
target position, we developed and implemented multiple simulation environments. Furthermore,16
we incorporated wind into one of these environments. The created software package of the17
environments can be found online 1. Usually, complex calculations are needed to model the18
engines-off flight dynamics and to generate a 3D path (guidance) under wind. With DRL these19
calculations can be avoided. By using shaped reward functions, we trained a neural network to20
successfully select directions and glide angles to lead the aircraft to an arbitrary, chosen landing21
field in real-time while avoiding accidents. The success rate during our experiments was high:22
In most cases, the aircraft reaches the target position from the correct direction and with the23
expected heading.24

Keywords: Deep Reinforcement Learning, Aviation, Flight Guidance, Emergency Landing, Trajectory Planning25

1 INTRODUCTION

Compared to commercial aviation, the fatality rate for flights involving light, fixed-wing aircraft is still26
relatively high (Air safety statistics in the EU - Statistics Explained 2020), where many accidents occur27
after a loss of thrust (Dorr 2018). After a loss of thrust, the pilot has only a short amount of time to find a28
safe path to a nearby landing field. The pilot has to consider multiple things in parallel: The remaining29

1 Flight guidance env https://github.com/lauritowal/guidance_flight_env
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altitude to the ground, other passengers, the aircraft’s velocity and probably even wind. Particularly30
inexperienced pilots might be overwhelmed by the fast-paced emergency situation during the flight. Instead31
of the inexperienced pilot, an automated system could lead the aircraft to a close landing field and ideally32
prevent fatal accidents.33

Such an automated system could be structured as a Guidance, Navigation and Control (GNC) system.34
The guidance system, part of the GNC system, is responsible for generating a path to a specific target,35
a near landing field. The guidance system obtains the aircraft’s location, velocity and attitude from a36
navigation system. From the obtained information, the guidance system generates the path and provides37
desired directions (headings) of the aircraft to a control system. Then, the control system leads the aircraft38
to follow these directions and eventually the aircraft moves along the path. This work focuses mostly on the39
creation of a real-time guidance system. The guidance system generates a 3D path that leads a fixed-wing40
aircraft after a loss of thrust to a near landing field.41

Reinforcement Learning (RL) is a subfield of Machine Learning (ML), which is well suited for uncertain,42
changing environments. In RL, an agent learns directly by interacting with an environment. After learning,43
a successful agent is able to generalize (up to a certain point) to a newly presented situation by the44
environment. This means, the agent is capable of selecting the optimal action for a given observation at45
each time step. The combination of deep neural networks (Goodfellow, Bengio, and Courville 2016) with46
reinforcement learning led to the term Deep Reinforcement Learning (DRL). In the past few years, DRL47
was applied to a variety of complex problems and demonstrated remarkable achievements, for example, in48
the field of robotics (Akkaya et al. 2019; Gu et al. 2016), digital games (Mnih et al. 2013; Berner et al.49
2019 and board games (Schrittwieser et al. 2020; Vinyals et al. 2019). Using DRL for flight guidance has50
the following advantages:51

•Although the training phase of an agent can be relatively long, after the training phase is completed, the52
agent can be used in real-time. The trained agent does not need to perform computationally expensive53
operations to generate a path. During the flight, decisions for the aircraft’s next direction can be made54
nearly instantly.55

•A trained DRL-agent could probably perform better than humans and even reach superhuman perfor-56
mance, as shown for example in (Mnih et al. 2013) and (Silver et al. 2017). Therefore, when combined57
with a conventional control system, DRL could be ideal for guidance in an emergency, since a trained58
agent could reach a landing field where even a human expert pilot would fail.59

•There is no need to have a model of the aircraft, neither of the surroundings. Therefore, the same approach60
must be used to train an agent on different aircraft and environments.61

There are works applying DRL to path planning in aviation. However, to our knowledge, no work exists62
that uses DRL to specifically address the presented problem above: Generating a 3D path to a landing field,63
for a fixed-wing aircraft in case of total loss of thrust. The exceptional achievements in the field of DRL64
and the described advantages to flight guidance, led to the decision of the authors of this work, to study the65
potential of DRL applied to the described problem above.66

In this work, a trained DRL agent acts as the guidance system. To train the agent, three custom OpenAI67
Gym (Brockman et al. 2016) environments were developed. Those environments were created with a68
typical emergency situation in mind: Low remaining altitude, loss of thrust, and additional wind. After the69
training, the agent was evaluated in different experiments. Overall, in many cases, the agent guided the70
aircraft successfully to the target. In one of the experiments, it achieved a high mean success rate of 73 %.71
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For the training, the light Cessna172P aircraft was selected inside the simulation. The reason for this72
selection is stated at the beginning of this section: The fatality rate for flights involving light, fixed-wing73
aircraft is still relatively high (Air safety statistics in the EU - Statistics Explained 2020). Yet, since74
model-free DRL is used, it is not necessary for the DRL-agent to receive information about the specific75
aircraft in advance. The agent learns about the aircraft dynamics from experience during the training phase.76
This has the advantage that the methods developed in this work can easily be extended and applied to other77
types of aircraft, by simply using a different aircraft model during training.78

The main contribution of this work is a first insight into the applicability of DRL to create a flight79
emergency guidance system for fixed-wing aircraft. This guidance system is responsible for generating a80
3D path to a landing field after a loss of thrust. Furthermore, the developed and implemented environments81
used to train and evaluate the DRL agent can be used for future research by others.82

The remainder of this paper is structured as follows: Section 2 states the problem in more detail. Section 383
discusses related works. Section 4 introduces fundamentals and background knowledge. Section 5 presents84
the methods. Section 6 contains the experiments with the setup. Section 7 presents the results, and Section85
8 the discussion. Finally, the last Section 9 provides the conclusion and an outlook for further work.86

2 PROBLEM STATEMENT

In this work, the goal is to study the potential of deep reinforcement learning applied to the creation of a87
flight emergency guidance system. A DRL agent acts as the guidance system and shall have the following88
capabilities:89

•Generating a 3D path from the aircraft position to an arbitrary target position. This is done by the guidance90
system communicating the desired direction (heading) to the control system in each time step.91

•Considering that the initial configuration of the aircraft is arbitrary. This includes the heading, altitude,92
position, etc.93

•Guiding the engines-off aircraft (loss of thrust) to reach the target with the expected heading. During the94
last part of the landing procedure, the final approach, the aircraft needs to turn into line with the runway95
to be able to proceed to the round-out stage smoothly (Crocker 2007). The round-out stage, at around 1596
ft above the runway, is the last phase just before touchdown (United States Department of Transportation97
2016; Allerton 2009, p. 8–6.). In a normal situation, during the round-out stage, the nose of the aircraft is98
raised for some time to reduce the rate of descent before touching the ground (Allerton 2009, p. 194).99
Therefore, to be able to proceed to the round-out stage smoothly, a major weight shall be given to the100
following: The aircraft must end the final approach with the expected heading, which includes the fact101
that the aircraft needs to reach the landing field from the correct side, as can be seen in Figure 1. Reaching102
the landing field from the correct side is especially important for emergency situations, since obstacles103
could be found on the other side of the landing field. Moreover, the influence of existing wind on the104
aircraft affect the choice of the particular direction of the landing field ((ASA) 2017, Chapter 8, p. 14).105

•Leading the aircraft also under the influence of constant wind, since wind can affect the flight path106
significantly. Wind speed in the range of 0 to 3000 ft/min (Beaufort scale 1-7) shall be considered.107
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Figure 1. The image on the left shows a correct path to reach the runway with the expected heading.
The image on the right shows two incorrect paths, where the aircraft would reach the runway with a high
heading error. Here, the red rectangle at the top of the runway indicates the wrong side for landing.

For the agent to obtain the above capabilities, it needs to be trained. Therefore, multiple environments108
need to be created to train the agent in simulation.109

In addition to the guidance system, a control system is essential, which receives the guidance system’s110
instructions (desired heading and pitch angle). Based on those instructions, the control system is responsible111
to output necessary commands to correct the aircraft’s orientation. Furthermore, the control system is used112
for maintaining the best glide speed. The best glide speed, is the speed that allows the aircraft to travel the113
greatest forward distance for each increment of altitude lost (Administration 2004). For the Cessna172P,114
the best glide speed is at around 65 Knots-Indicated Air Speed (KIAS) (Best Glide Speed and Distance115
2018). Only a minimal control system shall be created, since the control system is not the focus of this116
work.117

A navigation system is assumed to be available, which is part of many aircraft, and also available in the118
simulation in this work. Usually, the navigation system obtains information about the aircraft’s location,119
velocity and attitude from the aircraft’s sensors and provides this information to the guidance system120
Allerton 2009, p. 247.121

Success is defined by the aircraft’s distance to the target and the heading error at the end of the episode.122
Furthermore, the difference in altitude of the aircraft to the target position needs to be just above ground123
level.124

The landing field can be a conventional runway or any other quite flat area which can be used for an125
emergency landing (for example, a grass field).126

Guiding the aircraft through the round-out stage and touchdown phase is not part of this work. Moreover,127
considering obstacles on the flight path is left to future research.128
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3 RELATED WORKS

Klein et al. have a proposed the Emergency Landing Assistant (ELA) for an aircraft after a loss of thrust129
(Klein, Klos, Lenhardt, et al. 2018; Klein, Klos, and Schiffmann 2020). There, Dubins paths were generated130
to obtain a flight path from an arbitrary aircraft’s configuration (position, heading, etc.) to an emergency131
landing field, while considering constant wind. The main idea of their approach was the following: Moving132
the landing field’s threshold opposite to the wind direction by a length of the wind speed times the glide133
time. This created a new virtual target position. Next, by following the path to this virtual threshold instead,134
the aircraft would be compensating for the displacement caused by the constant wind. Eventually, the135
aircraft would then reach the threshold of the real landing field on the ground. Klein et al. have inspired the136
author of this thesis to create an alternative solution to ELA, based on DRL. Stephan et al. also used Dubins137
curves successfully to generate 3D paths to an emergency landing field, however they did not consider138
constant wind (Stephan and Fichter 2016).139

The presented works demonstrated solutions for generating paths based on simple Dubins curves, however140
some shortcomings still exist. First, the radius r of the turns (L, R) needs to be provided in advance. The141
turn radius depends on the aircraft’s properties and current flight dynamics (forward speed, turn speed,142
roll angle, etc.). For this reason, a model of the aircraft is needed to select the correct radius. Hence, the143
aircraft’s model has to be quite realistic to ensure that the aircraft in emergency can actually carry out the144
required maneuvers needed to turn and follow the path. This also implies that, inconveniently, for each145
aircraft a different model is required. Furthermore, the necessity to provide the radius in advance for the146
path generation also reduces available maneuvers, because the radius can’t be changed during an aircraft’s147
ongoing turn operation. Moreover, having a fixed radius restricts the aircraft to turn with the same roll148
angle (bank angle) and velocity. This means, that unexpected perturbations (e.g., obstacles, changes in149
wind speed or direction, pilot errors, etc.) could render a generated path useless. Klein et al. tried to solve150
this by recalculating new paths during the flight (Klein, Klos, and Schiffmann 2020), however it could still151
be impossible following these generated paths. Furthermore, the bank angle and speed affects the aircraft’s152
available remaining altitude and time before reaching the ground. Therefore, during an emergency, it is153
of major importance to select an adequate radius. Using a fixed radius for all turns however could mostly154
result in a compromise and not in the optimal solution for a specific situation. Another shortcoming in155
(Klein, Klos, Lenhardt, et al. 2018) is that in some cases the position of the virtual landing field can’t be156
calculated directly and needs to be approximated. This could lead to the aircraft not terminating exactly at157
the correct position of the actual landing field.158

As described above, by creating a solution based on deep reinforcement learning no model in advance159
is needed, which eliminates the problem of creating a model and specifying its parameters. Therefore,160
the same approach based on DRL could easily be applied for training models using different aircraft.161
Furthermore, setting a turn radius in advance is not needed, since a trained DRL agent can decide to adjust162
the turn radius as needed during the flight. The path is generated in real-time and not beforehand, which163
makes the DRL solution more flexible. The DRL agent would be trained on different scenarios to be able164
to generate an optimal path for a specific situation.165

Apart from approaches based on Dubins paths, there are other solutions. One of them is (Váňa et al. 2018).166
Váňa et al. proposed a solution based on Rapidly-exploring Random Trees (RRT*). There, trajectories to167
potential emergency landing fields to the aircraft’s location were generated and collected at any time during168
the flight. In case of a loss of thrust, a path to a landing site was then already available and thus needed not169
to be generated via the computational expensive RRT* algorithm. However, there were cases where not170
enough trajectories could be generated in time, for example in the case of a loss of thrust directly after take171
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off. Furthermore, small changes occurring during the flight were not taken into account. The authors did172
not consider wind, for example, which can have a substantial influence on the quality of a selected path.173

Most literature on using deep reinforcement learning for flight guidance focused on path planning in174
situations where the aircraft’s engines were fully functional. As described before, no previous work was175
found that used DRL to specifically address the presented problem above: Generating a 3D path to a176
landing field for a fixed-wing aircraft after a loss of thrust. Nonetheless, there are of course works which177
addressing the problem of path generation for aircraft in general. Those used a solution based on DRL.178
Some are shortly introduced.179

In (Z Wang et al. 2018), a simple Deep Q-Network (DQN) was used to train an agent model for guidance,180
leading the fixed-wing aircraft to a landing field. During the training, the agent was rewarded for landing181
successfully and penalized for leaving a specific sector or if running out of fuel. However, the approach182
was simplified to the 2D space. Moreover, the occurrence of wind was not investigated.183

In (Yan, Xiang, and C Wang 2019), the authors used a Dueling Deep Q Network (D3QN) algorithm184
in a dynamic environment to train an Unmanned Aerial Vehicle (UAV) for path planning while avoiding185
static and moving obstacles. The paper did not provide a solution in a situation with wind. Furthermore,186
the simplification of the environment to a 2D image map makes it difficult to apply the solution during a187
real-world emergency landing.188

In (Xi and Liu 2020), the authors addressed the problem of path planning to a specific target for an UAV189
in dynamically changing environments with obstacles. They proposed a training scheme for reinforcement190
learning based on the Deep Deterministic Policy Gradient (DDPG) algorithm. The purpose of the scheme191
was to train the agent such that the UAV behaved in accordance with the real human intent. However, the192
presented solution was only based on a 2D environment and did not consider wind.193

Bouhamed et al. (Bouhamed et al. 2020) used the technique of transfer learning to train an agent model194
with DDPG to lead an UAV to a static or moving target. As in the case of many other methods mentioned195
before, no wind was considered in the proposed solution.196

Apart from works directed to aviation, two other works are shortly presented, which inspired the use of197
the cross track error in this work. Both following works applied DRL to the path-following problem, where198
a vehicle needs to reach and follow a predefined path. To measure if a vehicle is following the path, the199
cross track error is calculated. The cross track error is the normal from a vehicle to a specific path. The200
objective is to reduce the cross track error to zero. By doing this, the vehicle approaches the path and stays201
on it:202

In (Martinsen and Lekkas 2018b) DRL was applied to the path-following problem for a mariner-class203
vessel. They showed that the trained agent was able to minimize the cross track error to a straight-line path204
also under the presence of ocean currents.205

In (Havenstrøm, Rasheed, and San 2021), DRL was applied to the path-following problem for an206
underwater vehicle. Apart from the horizontal cross track error, they calculated the along-track error and207
an additional error to the path, which they called vertical track error. The additional vertical track error208
allowed the agent to follow the path also in the three-dimensional space.209
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Figure 2. The cross track error

4 FUNDAMENTALS

4.1 Flight Dynamics Model Aircraft210

Flight Dynamics Model (FDM) is used for representing an aircraft in the simulated environments. The211
(FDM) is the mathematical model that determines the physics of a flying aircraft in simulation. It is therefore212
responsible for providing the aircraft’s equations of motion and calculating the forces and moments acting213
upon the aircraft. In this work, the widely used JSBSim library was applied as FDM with the included214
Cesna127P aircraft (J Berndt 2004; Perry 2004; J Berndt and De Marco 2009; J S Berndt et al. 2011).215
The method should work also when training the agent with other types of aircraft, since it is based on216
model-free DRL.217

4.2 Track Errors & Path Following218

In this section, the principles of the cross track error and vertical track error are described, since they219
are used to follow a path in the created environments. In a 3D Cartesian coordinate system, consider a220
straight line path in the XY-plane between two points P1(x1, y1) and P2(x2, y2), as can be seen in Figure221
2. Furthermore, the angle γ of the path and the position of the aircraft at the point A(x, y) are given. The222
cross track error ecross is the normal from the aircraft to the straight line path and is calculated as shown in223
Equation 1, as described in (Martinsen and Lekkas 2018a):224

ecross = −(x− x1) sin(γ) + (y − y1) cos(γ) (1)
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Figure 3. The interaction of the agent with the environment

In this work, the vertical track error is obtained by using a similar calculation as for the cross track error.225
The only real difference is that the path lies in the YZ-plane instead:226

evertical = −(y − y1) sin(γ) + (z − z1) cos(γ) (2)

The angle γ is always known in this work (the runway heading or approach slope), therefore there is no227
need to calculate it from the two points P1 and P2 first.228

4.3 Reinforcement Learning229

Reinforcement learning allows automating decision-making by maximizing a reward signal, a simple230
scalar (Sutton and Barto 2018, p. 1). This is accomplished by a decision maker, called agent. The agent231
learns a specific behavior from experience, which is generated by interacting with an environment.232

A problem in RL is often stated formally as finite horizon Markov Decision Process (MDP), which233
consists of the tuple (S,A,R, P ). At each time step t, the agent interacts with the environment by taking234
an action at ∈ A, where A is a set of actions. After doing so, the environment transitions from the235
current state st ∈ S into a next state st+1 ∈ S, where S is a set of states. The transition probability236
function P (st+1|st, at) represents the probability for that transition, given the current state st and the237
agent’s chosen action at. Subsequently, the agent receives a reward rt+1 produced by the reward function238
R(st, at, smt+ 1). Furthermore, the agent receives the new state st+1. The state st+1 becomes the current239
state st and the reward rt+1 the current reward rt. Based on those received values, once more, the240
agent selects the next action to interact with the environment in the next time step t + 1. In the finite241
MDP, the environment terminates, when a terminal state is reached. There, the time horizon from t0242
to the last time step is called an episode. Tasks with episodes are called episodic tasks. The sequence243
(s0, a0, r0), (s1, a1, r1), ...(sn, an, rn) of an episode is called trajectory. Figure 3 demonstrates the typical244
control loop of RL.245

The goal of the agent is to maximize the received reward. However, the agent tries not to maximize its246
immediate reward, but the cumulative long term reward, called expected return Gt. The agent achieves247
this by taking the actions for a given state that lead to the highest cumulative reward. The function which248
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produces the actions of the agent for a given state is called policy π(a|s). If the agent follows the policy π249
at time step t, then π(a|s) represents the probability for the agent to select action a given state s.250

Gt
.
= rt+1 + γrt+2 + γ2rt+3 + . . . =

∞∑
k=0

γkrt+k+1 (3)

where γ ∈ [0, 1] is the discount rate. The discount rate influences how the agent values future rewards.251

5 METHODS

5.1 Custom Environments252

To apply Deep Reinforcement Learning to the problem of emergency flight guidance, three custom253
environments were created:254

•Default: The Default environment contains no wind. Moreover, the action space has one dimension.255
•Wind: The Wind environment is an extension of the Default environment. It is extended by adding256
constant wind during the training of an agent. The intensity of the wind is increased over the training257
time. As in the Default environment, the action space has one dimension.258

•TwoActions: A third environment was created where the action space consists of two dimensions.259
There is no wind during the training in the TwoActions environment.260

Our software guidance_flight_env, which provides the custom environments, started as a git fork261
of Gordon Rennie’s open-source software Gym-JSBSim (Rennie 2018), but was adapted for flight guidance.262

5.2 Main Components of the Custom Environments263

In this section, the most important components of the custom environments and the interaction with the264
agent are described. The interaction is illustrated in Figure 4.265

As reported above in Section 4, the agent interacts with the environment by selecting an action at from266
the environment’s action space A at each time step t. For the Default environment and the Wind267
environment the action at is a simple angle value, the desired heading, between 0° and 359°. After the268
agent has selected the heading, it is passed to the environment, where it is then internally processed by a269
heading hold PID controller. The controller, returns the aileron command necessary for pointing the aircraft270
to the desired angle. The aileron command is set in the Flight Dynamics Model (FDM) component, and271
subsequently a number of simulation steps are executed to update the FDM. Next, a new state is obtained,272
and the corresponding reward is calculated. Both are then passed back to the agent. In addition to the273
heading hold PID controller, a second controller, more specifically, a pitch angle hold controller, is used to274
keep also the aircraft’s pitch angle in a fixed position of 0°. The reason for this was shortly described in275
Section 2.276

5.3 Overview of Core Concept277

In this section, the core concept which is common in all three environments is shortly presented. Details278
are then described in the proceeding sections.279

A line, perpendicular to the extended center line of the runway, divides the XY-plane of the Cartesian280
coordinate system into two different areas: Area 1 and Area 2. In the case of the aircraft’s location being in281
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Figure 4. The interaction of the agent with the custom environments

Area 2, the cross track error ecross of the aircraft to the perpendicular line is calculated and is included in282
the environment’s state at time step t. The agent then observes this state and, while trying to maximize283
the reward by reducing the error, it guides the aircraft to Area 1. The described procedure is illustrated in284
Figure 5.285

Figure 5. The aircraft is in Area 2. The cross track error to the perpendicular line (blue) to the extended
center line of the runway (black) is calculated.

Once the aircraft is in Area 1, the cross track error to the extended center line of the runway is added to286
the state instead. Now, the agent is incentivized to guide the aircraft to the target position. See Figure 6287
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Figure 6. The aircraft is in Area 1. The cross track error to the extended center line of the runway (blue) is
calculated and added to the state.

Similar to the cross track error in the XY-plane, the error evertical in the YZ-plane is calculated and288
added to the state. The error evertical is obtained by calculating the vertical distance of the aircraft to an289
imagined line created by a specific approach slope γ (Havenstrøm, Rasheed, and San 2021). An example is290
demonstrated in Figure 7291

Figure 7. Here, the evertical is calculated from the aircraft’s position in the YZ-plane to the line with the
slope angle

The agent receives positive and negative rewards depending on the magnitude of both errors. The rewards292
should motivate the agent to guide the aircraft closer to the target, while maintaining the correct heading and293
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approach slope angle. When the aircraft reaches the target, the episode terminates. It does also terminate294
when the agent has no remaining altitude left before achieving the target.295

5.4 Angles and Discontinuity: TwoActions-Environment296

For humans, it is mostly clear that an angle of 359° is relatively close to an angle of 1°. However, for a297
neural network this relation seem to be hard to learn, since discontinuity occurs between 2π (360°) and 0298
(Zhou et al. 2019); numerically the values 360 and 0 are very far apart. Therefore, the following assumption299
is made: Using angle values in the action and observation space could introduce noise during the training300
process, which would lead to worse performance of the RL agent.301

To avoid this noise, some researchers, (Berner et al. 2019, Xi and Liu 2020), encode an orientation angle302
value α as shown in Equation 4.303

α → (sin(α), cos(α)),where α ∈ [0, 2π]) (4)

They then used the tuple of (sin(α), cos(α)) in the observation- or action space to represent one angle.304
See Figure 8. This implies that the neural network only received the tuple, instead of simply a single angle305
value.306

Figure 8. An angle α can be represented by the two values: sin(α) and cos(α)

To test the above assumptions, the TwoActions environment was created and there all angles in the307
state and action space were encoded as in Equation 5. To obtain the actual angle again, both values were308
decoded in the environment using the arctan2 function as shown in Equation 5309

(sin(α), cos(α)) → arctan2(sin(α), cos(α))),where α ∈ [0, 2π] (5)
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The Default environment, on the other hand, uses the single angle values directly. Later, in Section 6310
the two environments are compared by demonstrating the performance of the trained agent in both.311

5.5 Initial Setup312

At the beginning of each episode, the following steps are executed:313

1.Cartesian Coordinates & Aircraft’s Position: The altitude and geographical coordinates (latitude,314
longitude) of the aircraft are converted into coordinates of the 3D Cartesian coordinate system (x, y, z).315
This conversation simplifies calculations, since now simple vector algebra can be used. The conversation316
is justified, since the resulting conversation errors are kept to a minimum when distances between objects317
are relatively low, which is mostly true in the case of an engine’s failure. After the conversation, the origin318
of the XY-plane (x=0, y=0) represents the aircraft’s initial x, y coordinates. Next, the aircraft’s altitude (z319
coordinate) is chosen arbitrary between a minimum and maximum value. Now, the target position and all320
future positions of the aircraft are calculated relative to the origin. Using relative positions, instead of321
absolute positions, improves the generalization capacities of the agent’s neural network (ibid.).322

2.Aircraft Heading: The heading of the aircraft is chosen arbitrary in the range of [0, 2π].323

3.target position: After setting the origin to the aircraft’s initial position, the position of target position is324
chosen arbitrary in a specified radius from the origin.325

4.Landing Field’s Heading: The heading of the landing field is kept at 0° for all episodes during the326
training. This simplification reduces training time, since the agent does not need to learn to adapt to327
different targets. However, this simplification does not restrict the capabilities of the agent. A simple328
offset to all angles can be added when using the agent after the training, as can be seen in the example329
in Figure 9. The value of the offset is the real heading of the landing field. Since all distances are not330
absolute but relative, after adding the offset everything works as it would for the case of the 0° headings331
during the training.332

5.Approach Slope: The approach slope of the target landing field is set to a fixed value of 4° for all333
episodes, since approach slope angles of most runways are around 3°-5.5° Allerton 2009, p.193.334

6.Engines Off: The simulated aircraft’s engines are turned off to simulate an emergency setting.335

7.Curriculum Learning: The technique of curriculum learning (Florensa et al. 2017) is used to train the336
agent. Curriculum learning was incorporated into the environment by dividing the training into five phases.337
When the agent’s mean reward surpasses a certain threshold, then the phase number is incremented,338
which in turn increases the environment’s difficulty. The difficulty is specifically increased by extending339
the radius of the circle, where the target positions are arbitrarily generated. In addition, in the Wind340
environment, the wind speed is changed in each phase.341
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Figure 9. An example of a landing field with a real heading of 90°: After the training, adding the offset
(real heading of the landing field) of 90° to all angles in the environment, allows the agent to guide the
aircraft to the landing field.

5.6 Action Space342

To control the flight path of the aircraft, the agent needs to be able to select the desired heading ψ of the343
aircraft. The aircraft’s pitch angle is fixed at 0° and is therefore not part of an action.344

In the case of the default and Wind environment, the action space has one dimension. In every time step345
t, the agent selects a single action a, which represents the angle value for the heading. The action could be346
a value ranging from 0− 2π. However, it is good practice to rescale actions to be in the range of [−1, 1]347
(Raffin et al. 2019). The agent’s selected value is then rescaled again back into the range of [0, 2π] inside348
the environment.349

In Section 5.4, we’ve made the assumption that to avoid problems with discontinuity, the desired angle ψ350
should be encoded using the function in Equation 4. Therefore, to the test the action a in the TwoActions351
environment, is formulated as a tuple of two values a = [x, y],where x, y ∈ [−1, 1]. Inside the environment,352
the actual angle ψ is then obtained by ψ = arctan2(y, x)353

5.7 State Space354

5.8 State Space of the Default environment355

In the case of the Default environment, the state consists of the following 13 elements, shown in Table356
1.357

The state elements are described in detail in the following subsections.358
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State Variable Symbol Unit

cross track error ecross km
vertical track error evertical km

in area a -
difference x xdiff km
difference y ydiff km
difference z zdiff km

distance to target d3D km
remaining altitude h ft

descent rate u ft / s
turn rate tr rad / s

true airspeed vtas ft / s
true heading ψ rad
heading error eψ rad

Table 1. The state space of the Default environment

5.9 State Space of the Wind Environment359

The state space of the Wind environment includes all elements from Table 1. Furthermore, the following360
elements from Table 2 are added.361

State Variable Symbol Unit
total wind north wn ft / s
total wind east we ft / s

drift λ rad

Table 2. The additional state elements of the Wind environment

A total constant wind originating in the East or West is added to the state of the Wind environment.362
Furthermore, the drift angle λ is added. The drift angle is the difference between the aircraft’s true heading363
and the track angle. The track angle is the angle of the lateral track the aircraft actually flies over the ground.364
Under the occurrence of wind, the track angle and aircraft’s true heading differ by a relatively high drift365
value λ, whereas in the case of no wind they should be equal. Figure 10 demonstrates this relationship.366

The total wind values and drift, allow the agent to adjust the heading to react to the wind accordingly.367

5.10 State Space of the TwoActions environment368

The only difference in the TwoActions environment compared to the Default environment is that all369
the angles in the state are represented with two values (sin(α), cos(α)) as described in Section 5.4. For this370
reason, the true heading and the heading error are replaced by two values each. This leads to four additional371
elements in the state space of the TwoActions environment, raising the number of state elements to 17.372

5.11 Terminal States373

A terminal state is reached when one of the following is true:374

•The aircraft’s remaining altitude is lower than zero. This happens when the aircraft’s z-coordinate value375
is lower or equal to the target’s z-coordinate value.376
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Figure 10. The aircraft’s real track angle over the ground differs to its heading by the drift angle λ. (Figure
adapted from Allerton 2009, p.250.)

•The aircraft reaches the target position. This is true, when the Euclidean distance from the aircraft’s377
position to the target position is lower than the threshold θtarget = 0.1 km. The value 0.1 was selected378
during preliminary experiments. A lower value for θtarget could have been selected, but it would have379
increased training times. However, except for longer training times, it is expected that the performance380
of the trained agent would not decline. Nonetheless, using lower values for θtarget should be studied in381
future research.382

•The remaining time t is equal to zero. It should be noted that, in all experiments of this work, the altitude is383
chosen such that the engines-off aircraft reaches the ground before t reaches the value of zero. Therefore,384
in this work, the remaining time t was mostly ignored. However, it could be considered in future research,385
if an aircraft with temporary working engines is investigated or if a higher remaining altitude is chosen.386

When one of the terminal states is reached, the episode ends and the agent is rewarded with sparse387
rewards as described in Section 5.12388

5.12 Reward389

A reward function was developed to motivate the agent to behave in the following way: Leading the390
aircraft to the target position in the 3D space. The target position should be reached with the expected391
heading. The reward function was constructed by combining sparse and dense rewards: r = rsparse+rdense.392

In (Henderson et al. 2018), Henderson et al. showed that reward clipping or reward scaling effected393
learning of the agent significantly, when neural networks and gradient-based methods are used (which is394
the case in most state of the art DRL-algorithms). Therefore, all rewards in the three custom environments395
are kept in the range of [−10, 10].396

5.12.1 Sparse Rewards397

In this section, the different sparse rewards, which are returned on the terminal states, are presented in398
detail.399

Terminal State at Target: When the aircraft reaches the target from the wrong side, coming from Area400
2, then the reward is -10. However, when the aircraft reaches the target from the correct side, coming from401
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Area 1, then a positive reward of 9 is given. Furthermore, the agent is rewarded for the correct heading.402
This is done in the following way: The heading error eh in the range of [xmin, xmax] is rescaled into the403
range of [0, 1], where xmax represent the threshold (the tolerance value) for the correct heading. The value404
xmin is set to 0 and xmax to 10 (degrees). The scaling results in ehscaled405

Then, the bonus reward is calculated in the following way:406

rb = 1− ehscaled ,where rb ∈ [0, 1] (6)

The final reward at the target terminal state is:407

rtarget =

{
9 + rb if area = 1

−10 else
(7)

Remaining Altitude is Zero: When the remaining altitude is lower than zero, then the current episode408
is terminated. The Euclidean distance of the aircraft’s position (x1, y1, z1) to the target (x2, y2, z2) is409
calculated and multiplied by a constant. The negative reward raltitude is calculated as in Equation 8:410

raltitude = −6 ∗
√

(x2 − x1)
2 + (y2 − y1)

2 + (z2 − z1)
2 (8)

Time is Zero: When the time step t is equal to zero, the current episode is terminated. The reward rtime411
is calculated, as in the case of remaining altitude equal to zero. (See Equation 8).412

5.12.2 Dense rewards413

In addition to sparse rewards, dense rewards were incorporated into all the environments to additionally414
encourage the agent to behave as expected. The agent receives a dense reward on each time step t. By415
adding dense rewards, the training time is reduced significantly.416

Reach Track: As described in Section 5.3, depending on the aircraft being in Area 1 or Area 2, different417
track errors are calculated:418

•Aircraft is in Area 2: The cross track error ecross is calculated as described in Equation 1 (Section 4) to419
the line perpendicular to the centerline of the landing field. The vertical track error evertical in Area 2 is set420
to zero, which is done to motivate the agent to set focus on leading the aircraft to Area 1 first.421

•Aircraft is in Area 1: Only now, in Area 1, the aircraft needs to position the aircraft for the final approach,422
where it is important to reduce the vertical track error. Therefore, the vertical track error evertical is423
calculated as in Equation 2 (Section 4). Moreover, the cross track error ecross is calculated relative to the424
extended center line of the landing field.425

Next, eto_track is calculated as in:426

eto_track =

{
ecross + evertical if area = 1
ecross else

(9)

The negative reward rto_track is now derived from eto_track by applying the exponential function to the427
track as in:428
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rto_track = − exp(eto_track) (10)

By doing so, the negative reward increases exponentially for a larger rto_track. This should additionally429
motivate the agent to reach the track without many deviations. Finally, the resulting reward value rto_track is430
then scaled to the range [0, 1].431

In addition, to rto_track, in each time step, the agent receives a constant negative reward rarea2 = −2 when432
the aircraft is in Area 2, else rarea2 = 0. Therefore, the agent receives more negative rewards when the433
aircraft is in Area 2 compared to when it is in Area 1. Whereas, rto_track acts as a helping leading signal for434
the agent to guide the aircraft to the track, the constant rarea2 adds an urgency to reach the Area 1 as soon435
as possible.436

Keep aircraft on-track Once the agent guided the aircraft to reach the desired track, the agent then437
receives additional rewards to continue keeping the aircraft on that track. In this work, the aircraft is438
on-track when the following three conditions hold:439

1.The medium track error et_m is lower than the threshold θon_track = 0.1. The medium track error et_m is440
calculated as in et_m = (|et_last|+ |et|)/2, where et_last is the track error of the previous time step t− 1441
and et the track error of the current time step t.442

2.The Euclidean distance in time step t is lower than the distance in the previous time step t− 1. In both443
time steps, the Euclidean distance is calculated from the aircraft to the target position. This condition is444
important, since it ensures that the distance of the aircraft to the target is reducing in every time step.445

3.The heading error eh is lower than 90°. The reason is to only allow the agent to receive a positive reward446
if the aircraft reaches the target position from the correct side (from Area 1).447

Therefore, when the aircraft is on-track, the agent receives a positive reward. However, to avoid positive448
reward cycles (or reward hacking) (Randløv and Alstrøm 1998; Ng, Harada, and Russell 1999), it is449
necessary to add additional negative rewards when the above on-track conditions do not hold anymore (i.e.,450
when the aircraft leaves the track). For this reason, the agent receives the reward of ron_track = 1 if the451
aircraft is on-track, else the agent receives a negative reward in the form of ron_track = −etrack_diff, where452
the value of etrack_diff is the difference of the track error etrack at time step t− 1 and the current at time step453
t. Hence, the agent is punished for the aircraft moving away from the track and rewarded for staying on it.454
This is presented in the following Equation 11.455

ron_track =

{
1 if aircraft is on-track
−etrack_diff else

(11)

5.12.3 Heading456

When the aircraft is on-track, it could still occasionally oscillate horizontally in the XY-plane, for a short457
period of time. The oscillating is normally not a problem if the aircraft is still relatively distant. However,458
when close to the landing field it’s important that the aircraft does not oscillate, as is illustrated in Figure 11459
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Figure 11. Given the threshold on_track, the aircraft should fly in a straight line when on-track (right
side), to avoid reaching the landing field with a wrong heading (left side, intentionally shown exaggerated).
To encourage the agent to achieve this, an additional reward is given.

Avoiding oscillation is necessary, to guarantee that when reaching the target position, the heading of the460
aircraft is as expected. Therefore, too additionally minimize the heading error, when on-track, the agent461
should be encouraged to keep the heading fixed on the desired direction.462

A first idea, to avoid oscillation, could be the following: Reducing the threshold θon_track = 0.1 described463
in the first condition in 5.12.2 even further. However, this stricter condition would increase the difficulty for464
the agent to receive any positive reward (ron_track = 1) at all. The increased difficulty could lead to longer465
training times, or even to the issue that the agent does never learn to stay on-track.466

For this reason, the alternative solution is to add an additional reward for the correct (or wrong) heading467
instead. The agent obtains the additional positive or negative reward rheading ∈ [−0.5, 0.5] only when the468
aircraft is on-track. Since the rheading is in [−0.5, 0.5] and ron_track = 1, the agent would, in the worst case469
(heading error around 90°), still receive a reward of 0.5. Therefore, the additional dense heading reward can470
be seen as a kind of bonus reward for the agent. Nonetheless, the agent trying to maximize the reward in471
general will try to maximize both ron_track and rheading, and therefore reaching the target with the expected472
heading, by avoiding oscillating.473

The reward rheading is obtained as follows. First, the difference eheading_diff ∈ [0, π2 ] of the heading error474
in time step t and the heading error in time step t− 1 is calculated. Next, if the difference in time step t is475
smaller than the difference in time step t− 1, then the reward rheading with a positive value is returned, else476
a negative a shown in the following Equation 12:477
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rheading =

{
eheading_diff

π if aircraft is on track
−eheading_diff

π else
(12)

Having an additional negative reward avoids positive reward cycles (Randløv and Alstrøm 1998; Ng,478
Harada, and Russell 1999) as described previously in Section 5.12.2.479

5.13 Final Combined Reward Function480

To obtain the final combined reward function, as shown in the following Equation 13:481

r = rsparse + rdense (13)

it is therefore needed to add all sparse rewards of the preceding sections, as in Equation 14:482

rsparse = rtarget + raltitude + rtime (14)

Whereas the dense rewards of the preceding sections are combined, as in Equation 15:483

rdense = rto_track + ron_track + rarea2 + rheading (15)

6 EXPERIMENTS

As described in Section 5.1 three custom environments were developed and implemented. Experiments484
were conducted in all three environments. In the following sections, first the setup for the experiments are485
described. Then the results of those experiments are presented and interpreted.486

The three experiments have the following setup in common:487

•Training in the cloud: For the training phase, two 2,25 GHz CPUs (AMD EPYC 7B12) and a GPU488
(NVIDIA Tesla K80 24 GB) were used.489

•Algorithm: RLlib’s Twin Delayed DDPG (TD3) was used as the agent’s algorithm, since it is a current490
state-of-the-art algorithm and a successor of the well-studied Deep Deterministic Policy Gradient (DDPG)491
algorithm Lillicrap et al. 2015. Furthermore, TD3 requires less hyperparameter tuning in comparison to492
other algorithms like DDPG. The same hyperparameters of the TD3 were used for all experiments. The493
hyperparameters of the algorithm are presented in the Appendix 1.494

•Environments: The custom environments described in Chapter 5.1 were used for training and evaluating495
the agent.496

•Evaluation: After the agent was trained in one of the environments, the agent was evaluated in the497
same environment. For each experiment or sub-experiment, the evaluation was run thrice, each for 100498
episodes. For each run, a different seed was used. The results of the three runs were then averaged.499

•Aircraft: Since most fatal accidents in aviation occur when small aircraft are used (Air safety statistics in500
the EU - Statistics Explained 2020; Dorr 2018), the light aircraft single-engine Cessna172P was selected501
in the JSBSim FDM. Before starting the experiment, the aircraft’s engine is turned off in the JSBSim502
FDM. Furthermore, throttle and mixture were set to zero. Those steps are needed to simulate broken503
engines and the emergency situation.504
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•Initial Altitude: The initial altitude at the beginning of each episode is selected arbitrarily in the range of505
2500-3500 feet. The reasons for this altitude range are the following: Firstly, at this altitude range, only506
a short amount of time is left to reach the landing field. Therefore, it represents a very dangerous part507
of the remaining flight and simulates the real-world scenario accordingly. Secondly, a practical reason,508
given the relatively low initial altitude, the episodes during simulation are shorter. This led to decreased509
training times. Nonetheless, if needed in future research, higher numbers for the altitude range could be510
chosen. Except for a longer training phase, it is expected that there should be almost no difference in the511
agent’s performance after training.512

•Curriculum Learning: Depending on the average reward received by the agent, one of the five phases,513
described in Section 5.5, is selected. When entering the next phase, the target spawning range widens, as514
can be seen in Table 3.515
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Phase Reward threshold Target Spawn Range (km)
0 -∞ 0.5
1 -900 1
2 -750 1.5
3 -600 2
4 -300 2

Table 3. The radius of the circle, where the target positions are arbitrarily generated, is adapted for each
phase

6.1 Setup Experiment 1: Default environment516

The agent was trained for 10,000 episodes (around 10 Million steps). And in addition, for 15,000 episodes517
(around 15 Million steps).518

6.2 Setup Experiment 2: TwoActions519

The agent was trained for 10,000 episodes (around 10 Million steps) in the TwoActions environment.520

6.3 Setup Experiment 3: Wind Environment521

In the Wind environment, during the training, the wind speed increases in each phase. See Table 4. For522
reducing complexity, the constant wind is set to originate in the East or West only.523

Phase Reward threshold Speed Range [West, East] (ft/min)
0 -∞ 0
1 -900 [−600, 600]
2 -750 [−1200, 1200]
3 -600 [−2100, 2100]
4 -300 [−3000, 3000]

Table 4. In the Wind environment, for each phase additionally the wind speed changes

The agent was trained for 10,000 episodes (around 10 Million steps).524

Later, the agent trained in the Wind environment was evaluated under constant wind originating in the525
East or West. Four sub-experiments were conducted, to test the performance of the agent under the four526
different wind speed ranges: (1) 600 ft/min (2) 1200 ft/min (3) 2100 ft/min (4) 3000 ft/min.527

7 RESULTS

7.1 Experiment 1: Default environment528

Figure 12 shows the average reward for 10 Million steps. The reward curve there might indicate that the529
agent did not conclude its learning process, since a plateau was not yet reached. Therefore, in a second530
sub-experiment, the agent was trained for an additional 5 Million steps, in total for 15 Million steps.531
However, even at 15 Million steps, the reward curve still seemed not to have reached a plateau, which532
implied that further improvements might have been possible. Therefore, probably even longer training533
periods would have been necessary. Yet, both agents were evaluated first, and the results of the evaluations534
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were already quite promising. Hence, the agent was not trained for longer than 15 Million steps, since the535
hardware resources for training were relatively limited. For future research, training periods should be536
prolonged.537
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Figure 12. The interaction of the agent with the custom environments

First, for the agent trained for 10 Million steps, the aircraft reached the target 62.3% of the time on538
average. 69.3% of the time the agent landed on-track (reaching target included), where the agent landed539
with only an average distance of 0.095 km away from the target position. Furthermore, the average heading540
error was quite low at 4.65° (See Table 5).541

At-Target 62.3 %
On-Track (includes at-target) 69.3%

Distance to target (when on-track) 0.095 km ± 0.086 km
Heading error 4.65° ± 7.63°

Reward -122.37 ± 393.59

Table 5. Experiment 1: Evaluation of the agent trained in the Default environment for 10 Million steps.
(All values are averages)

As expected, the agent trained for 15 Million steps, performed mostly better. This can be seen in Table542
6. The agent reaches the target successfully with a high value of 73 % of the cases on average and ends543
on-track (at-target included) even in 81.3% of the cases.544
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At-Target 73%
On-Track (includes at-target) 81.3%

Distance to target (when on-track) 0.1 km ± 0.1 km
Heading error 12.5° ± 9.4°

Reward -133.93 ± 369.357

Table 6. Experiment 1 (sub-experiment): Evaluation of the agent trained in the Default environment for
15 Million steps. (All values are averages)

A typical successful trajectory of the agents, which were trained in the Default environment, can be545
seen in Figure 13. The heading error is only at around the value of 1.7°.546

Figure 13. Experiment 1 - Typical trajectory example: The aircraft reaches the target successfully. The
average heading error is small. (A) 3D view, (B) Top view.

7.2 Experiment 2: TwoActions environment547

The average rewards during training in the TwoActions environment and the Default environment548
were compared. Both were trained for 10 Million steps. Figure 14 shows both reward curves together.549
As expected, the agent in the TwoActions environment seemed to receive much higher rewards earlier550
during training. Still, surprisingly, the learning in the TwoActions environment seemed to have stopped551
and reached a plateau after 8.5 Million steps. On the other hand, the agent trained in the Default552
environment seemed not to have reached a plateau. (Not even at 15 Million steps, as described in Section553
6.1.)554

The trained TwoActions agent was then evaluated and compared to the agent trained in the Default555
environment. As can be seen in Table 7 the agent trained in the Default environment mostly outper-556
forms the TwoActions agent. The TwoActions agent’s average at-target rate reaches only 20.7%,557
furthermore, its average heading error is around twice as high when compared to the heading error of the558
Default agent, and lastly the average distance to the target, when stopping on-track, is also much higher.559
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Figure 14. Comparison of the agent trained in the Default environment (pink curve) with the agent
trained in the TwoActions environment (gray curve). The learning of the TwoActions agent seemed
to have reached a plateau after 8.5 Million steps.

Nonetheless, the TwoActions agent achieved a high reward and on-track rate on average, although the560
on-track rate decreased slightly at around 8.5 Million steps.561

TwoActions Default
At-Target 20.7% 62.3%

On-Track (includes at-target) 77% 69.3%
Distance to target (when on-track) 0.57 ± 0.45 km 0.095 km ± 0.086 km

Heading error 9.43° ± 5.39° 4.65° ± 7.63°
Reward -61.57 ± 394.56 -122.37 ± 393.59

Table 7. Evaluation comparison of the Default agent and the TwoActions-agent (All values are
averages).

In most on-track cases, the agent has led the aircraft first relatively far away from the target and then let562
the aircraft stay on-track for the rest of the episode, as can be seen in Figure 15.563
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Figure 15. Experiment 2 - On-Track: The aircraft lands on-track. The agent seems to have led the aircraft
far away first and then kept the aircraft on-track for the rest of the episode.

7.3 Experiment 3: Wind Environment564

The evaluation results for the different wind speed ranges are presented in Table 8. As can be seen in the565
table, with increasing wind speed, the performance of the agent decreased moderately, since the on-track566
rate and the reward decreased. Moreover, the heading error and the distance to the target (when the aircraft567
terminates on-track) increased.568

Nevertheless, for all wind ranges together, on average, the agent reached the target 26.25% of the time.569
Furthermore, on average, the on-track rate was quite acceptable at 45.25%. This is also true for the heading570
error at 8.71° and the average value of 0.28 km for the distance to the target.571

0-600 ft/min 0-1200 ft/min 0-2100 ft/min 0-3000 ft/min
At-Target 37.0% 30.3% 22.7% 15%
On-Track
(includes
at-target)

53.7% 48% 44% 35.3%

Distance
to target
(if on-track)

0.17 km ± 0.22 km 0.23 km ± 0.28 km 0.30 km ± 0.32 km 0.40 km ± 0.41 km

Heading
error

6.98° ± 9.57° 7.75° ± 8.79° 8.0° ± 8.9° 12.21° ± 11.40°

Reward -49 ± 286 -99.70 ± 330.52 -159.89 ± 374.84 -183.89 ± 370.46

Table 8. Comparison of the wind-agent under different values for the wind speed. The wind is originating
from West or East. (All values are averages)
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8 DISCUSSION

Three environments were developed to train agents via deep reinforcement learning to achieve the following572
goal: Guiding an aircraft to an arbitrary target in the 3D space, after a failure of the aircraft’s engines. After573
the training was concluded, the trained agents were evaluated in different experiments.574

Overall, in the windless case, it was found that the agent successfully generated trajectories that guided575
the aircraft to reach the target; or at least terminating very close to it. This was especially true when576
trained in the Default environment. Even when the agent was trained in the TwoActions environment,577
the aircraft stopped mostly on-track and very close to the target. For the agents, trained in the windless578
environments, the aircraft’s heading error at the end of the episode was very low. This was also true for the579
average distance to the target when ending on-track. These results show that reinforcement learning might580
have the potential to be a useful tool for flight guidance in an emergency situation.581

Experiment 1 showed a relatively high performance after training the agent for around 10 Million steps,582
and even a superior performance when trained for 15 Million steps. Even at 15 Million steps, no plateau583
for the average reward was reached. This suggests that there is probably still more room for improvement.584
For future research, it should be tried to increase the number of training steps.585

The findings of experiment 2 were quite surprising. As described in Section 5.4 in detail, the586
TwoActions environment was created to test the following assumption: It was assumed that the agent587
trained in the TwoActions environment should be superior to the agent trained in the Default en-588
vironment. However, the results of experiment 2, unexpectedly, demonstrated the contrary. The agent589
trained in the Default environment (for 10 Million steps) performed better than the TwoActions agent.590
Nevertheless, the TwoActions agent reached a higher average reward and high on-track rate after 10591
Million steps. When stopping on-track, the distance to the target was relatively low (Table 7), which means592
that the TwoActions agent was capable of successfully leading the aircraft closely to the target position.593

To further investigate the reason for this, the generated on-track trajectories were carefully examined,594
and the following was observed: The TwoActions agent first guided the aircraft away from the target595
and then led it to stay as long as possible on-track, as can be seen in Figure 15 above. This could suggest596
that the TwoActions agent did indeed learn how to receive higher rewards sooner than the agent of the597
Default environment. Interestingly, the TwoActions agent probably did this by exploiting the fact598
that additional rewards were obtained when keeping the aircraft on-track (See Section 5.12). Hence, the599
TwoActions agent could have learned to collect more rewards by staying on-track as long as possible600
instead of ever reaching the target.601

The agent’s learned behavior could be a typical example of reward hacking (Ibarz et al. 2018), where the602
intended behavior, specified by the designer of the reward function, differs from the behavior of the agent603
(Amodei et al. 2016). Some further research would be needed to confirm this assumption. However, if it is604
true, then the reward function needs further adjustments. Solving the problem of reward hacking is by itself605
still an open research question (Clark and Amodei 2016; Amodei et al. 2016). Therefore, for now, there is606
no simple answer to tackle the issues of reward hacking. Nevertheless, in future research, potential-based607
reward shaping (Ng, Harada, and Russell 1999) could be applied to adjust the reward function and to608
probably prevent reward hacking by the agent in this work.609

When wind was involved, disappointingly, the agent’s performance dropped. An explanation for the drop610
could be that more training time was necessary, since the Wind environment has an elevated difficulty.611
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Moreover, this indicates, that probably wind-specific dense rewards should be added to the reward function.612
The added dense rewards could improve the learning process of the agent and reduce training time.613

9 CONCLUSION

This work has studied the potential of applying Deep Reinforcement Learning (DRL) to emergency flight614
guidance after a complete engines-failure of a fixed-wing aircraft. A DRL agent was trained to act as the615
real-time guidance system in a previously unknown environment. The agent learned to generate a 3D path616
that led the aircraft from the point of failure to a near, arbitrary-selected landing field.617

Three different environments were developed and implemented to train the DRL agent. The integration of618
curriculum learning and a carefully constructed reward system, which combined sparse and dense rewards,619
exceedingly improved the agent’s learning performance and reduced training times.620

Subsequently, the performance of the trained agents were evaluated in the same environments. The621
results of the evaluation showed the following: In the windless environments, the agents were capable of622
successfully guiding the aircraft to reach the target in a high number of cases. On the other hand, when623
wind was involved, the aircraft reached the target successfully in a lower but still significant number of624
cases. Furthermore, in around half of all cases the aircraft still landed on-track, meaning, mostly in line625
with the runway center line and with a relatively low heading error.626

The results imply that a guidance system based on Deep Reinforcement Learning is potentially a627
valuable instrument, for guiding an aircraft to a landing field after a complete engines-failure. It could628
be a significant alternative to systems based on conventional methods. Still, further research is needed,629
especially in situations where wind is involved. Nonetheless, the results of this work give a first hint of the630
correct direction.631

To our knowledge, no previous work exists that uses DRL to specifically address the presented problem632
above: Generating a 3D path to a landing field, for a fixed-wing aircraft in case of total loss of thrust.633
Therefore, the work’s presented method and results should contribute to this particular field of study.634
Furthermore, the developed environments are available as open-source package and can be used for further635
research 2.636

Future research should focus on improving the performance of the agent in occurrence of constant wind.637
This could be achieved by adapting the reward system and the curriculum learning phases. Moreover, wind638
coming from different directions and with changing intensities (e.g., wind gradients) should be investigated,639
to imitate the real-world more precisely.640

As described above, the agent was trained using a lightweight aircraft in simulation. Training another641
agent using the here presented method on other aircraft is relatively easy. Nonetheless, future work could642
focus on extending the training method to improve the generalization capabilities of one single agent model.643
By doing so, different aircraft types could be used during deployment, without the need of training and644
using different agent models for every aircraft.645

In this work, the default hyperparameters of the RLlib’s TD3 algorithm were mostly left unchanged.646
Although the used TD3 algorithm requires less parameter hyperparameter tuning than it’s predecessor647
DDPG, future research should study different hyperparameter settings. Automatic hyperparameter search648
frameworks like Ray Tune (Liaw et al. 2018) or Optuna (Akiba et al. 2019) could be used.649

2 https://github.com/lauritowal/guidance_flight_env
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Furthermore, a different algorithm, for example Proximal Policy Optimization (PPO) algorithm (Schul-650
man et al. 2017), could be investigated to improve the agent’s performance. PPO is another popular651
state-of-the-art algorithm, that performed exceptional in many other domains.652

Lastly, in a real-world flight, static and dynamic obstacles (mountains, other aircraft, etc.) might be653
present. For this reason, future work should additionally focus on extending the environments to include654
obstacles.655

1 APPENDIX 1

The hyperparameters of the Rllib’s TD3 algorithm used for the agent.656

"twin_q": False,
"policy_delay": 1,
"smooth_target_policy": False,
"target_noise": 0.2,
"target_noise_clip": 0.5,
"evaluation_interval": None,
"evaluation_num_episodes": 10,
"use_state_preprocessor": False,
"actor_hiddens": [400, 300],
"actor_hidden_activation": "relu",
"critic_hiddens": [400, 300],
"critic_hidden_activation": "relu",
"n_step": 1,
"exploration_config": {

"type": "OrnsteinUhlenbeckNoise",
"random_timesteps": 1000,
"ou_base_scale": 0.1,
"ou_theta": 0.15,
"ou_sigma": 0.2,
"initial_scale": 1.0,
"final_scale": 1.0,
"scale_timesteps": 10000,

},
"timesteps_per_iteration": 1000,
"evaluation_config": {

"explore": False
},
"buffer_size": 50000,
"prioritized_replay": True,
"prioritized_replay_alpha": 0.6,
"prioritized_replay_beta": 0.4,
"prioritized_replay_beta_annealing_timesteps": 20000,
"final_prioritized_replay_beta": 0.4,
"prioritized_replay_eps": 1e-6,
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"compress_observations": False,
"training_intensity": None,
"critic_lr": 1e-3,
"actor_lr": 1e-3,
"target_network_update_freq": 0,
"tau": 0.002,
"use_huber": False,
"huber_threshold": 1.0,
"l2_reg": 1e-6,
"grad_clip": None,
"learning_starts": 1500,
"rollout_fragment_length": 1,
"train_batch_size": 256,
"num_workers": 0,
"worker_side_prioritization": False,
"min_iter_time_s": 1,
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