
Improving the px4 Avoid Algorithm by Bio-Inspired Flight Strategies

A. Thoma1,2, A. Fisher2, C. Braun1

1 Department of Aerospace Engineering, FH Aachen UAS, Aachen, Germany
2 School of Engineering, RMIT University, Melbourne, Australia

Abstract

We present the concept of extending the px4 avoid algorithm for more reliable and flexible obstacle avoidance
of non-cooperating, static obstacles. Besides the hard requirements that the algorithm has to fulfill, several
soft requirements are presented. As the latter are less stringent, they have to be weighed against one another
for each mission because their importance differs according to mission type. To fit the needs of different
mission types, the px4 avoid algorithm is used as a basis and is controlled by a master function adjusting its
cost parameters. This master function takes importance of the different soft requirements, depending on
mission time, into account. To improve robustness, the master function additionally contains modules inspired
by the behavior of bumblebees in challenging obstacle situations. This behavior is achieved by a speed
controller that adapts the flight speed according to the lateral distance to obstacles, thereby influencing the
turning radii of the UAV. Additionally, bumblebee behavior inspires a module, which triggers the vertical
evasion of distant obstacles and the horizontal evasion of close obstacles. Finally, the master function has a
separate element for goal approaches that overrules the normal flight behavior. This overruling allows different
speed adaptions and specific obstacle approaches close to the goal.

Nomenclature

Δdown = vertical distance between goal and waypoint
(if the waypoint is lower than the goal point)

Δup = vertical distance between goal and waypoint
(if the waypoint is higher than the goal point)

Δyaw = horizontal distance between goal and way
point

3dVFH* = 3D Vector Field Histogram with integrated A*
3DVFH+ = improved 3D Vector Field Histogram
a = deceleration parameter
cgoal = cost of non-goal oriented behavior
csmoot = current flight direction deviation cost
ctotal = total cost
dgoal = distance between current position and goal
kdown = weighting factor for Δdown
kgoal = weighting factor for cgoal

ksmooth = weighting factor for csmooth

kup = weighting factor for Δup
LiDAR = Light Detect and Range
SLAM = Simultaneous Localization And Mapping
SURF = Speed Up Robust Features
UAV = Unmanned Aerial Vehicle
v = velocity
VFH* = Vector Field Histogram with integrated A*

1. INTRODUCTION

Unmanned aerial vehicles (UAV) can be used for
various applications. Nowadays, UAVs usually
require a pilot, while most use and business cases
require fully autonomously operating UAV in the long
run. Even though several obstacle avoidance
algorithms exist, reliable evasion of static and moving
obstacles is still a great challenge [1]. Hence, more
robust and efficient obstacle avoidance algorithms
are required. One of the main challenges is reliably
detecting obstacles with lightweight sensor systems
and low computational effort in real-time. While much

progress was recently made in this field of research,
there is still the remaining challenge of choosing
adequate evasion maneuvers after an obstacle is
detected [2].
In robotics, evading an obstacle is referred to as local
path planning. Cost functions, which are specially
designed for local path planning, are often used to
identify the best possible local path around an
obstacle. These functions evaluate various waypoints
under consideration of several different parameters;
for example, by considering the deviation between
the new path and the initially planned path regarding
angle, distance, and velocity. Here, the balance
between efficiency and robustness is particularly
challenging as robustness is hardly measurable by
classical engineering approaches. In this context,
robustness is defined as resilience towards critical
failure, e.g., collision with an obstacle or the ability to
react adequately in novel situations. However, in
general, biological systems are proven to have a
good balance between efficiency and robustness.
The way a biological system solves a novel situation
is often simple but still convenient and efficient; they
are flexible by nature. Additionally, many biological
systems have a limited number of neurons, which
equals a low computational power of a technical
system. Nonetheless, biological systems can
effectively manage accountable resources and
quickly find viable solutions. One example of a
successful biological system is the bumblebee. Since
bumblebees are efficient fliers that need to navigate
in cluttered environments, they are perfectly suitable
test objects when seeking avoidance strategies.
Therefore, the behavior of bumblebees serves as a
basis for developing a reliable obstacle avoidance
algorithm.

doi: 10.25967/530183CC BY 4.0

Deutscher Luft- und Raumfahrtkongress 2020
DocumentID: 530183

1

https://doi.org/10.25967/530183
https://creativecommons.org/licenses/by/4.0/

This paper is structured the following way: After this
introduction, a comprehensive summary of path
planning and obstacle avoidance algorithms is given,
together with recent findings in biology and bio-
inspired systems. Section 3 presents the
requirements of a new control approach, followed by
a concept to fulfill these requirements in section 4.
Finally, a comprehensive conclusion is given in
section 5.

2. THEORETICAL BACKGROUND

2.1. General Differentiation

For a technical application, the problem of obstacle

avoidance is commonly split up into three steps [3]:
Obstacle detection is the first step in obstacle
avoidance and the basis of any evasive maneuver.
While animals mostly rely on passive systems to
observe their environment, e.g., different kinds of
eyes, many technical applications rely on active
systems. The automotive industry is one industry that
increases the level of autonomy of its products at a
fast pace. Many modern cars have hundreds or even
thousands of sensors and assisting systems. LiDAR
and radar systems are commonly used for obstacle
detection [4, 5]. However, optical cameras are also
frequently used for various detection tasks. LiDAR
systems can provide the most accurate
representation of an observer’s environment in all
directions, as those systems can detect even the
smallest objects at medium distances [4].
Unfortunately, this can only be achieved at the cost of
a relatively heavy system. Radar systems, on the
other hand, are of lighter weight and work in low
visibility conditions but generally provide a narrow
field of view [6]. Finally, cameras can provide the
most accurate picture of an observer’s surrounding at
low weight and cost. Unlike radar and LiDAR
systems, cameras cannot directly measure any
distances. Complex and usually computationally
heavy methods are required to estimate the distance
to an object. SURF and SLAM are two commonly
used algorithms to estimate the distance between the
camera and the object [7–10].
Path Planning is an essential part of obstacle
avoidance as well. In many applications, path
planning results are called global paths [11]. The
global path is the path from the start or current
position to the goal point. Fix information from maps
is usually considered when determining the global
path [11]. However, variable information, for example,
the position of a movable or unknown obstacle, is not
considered in global path planning. Different methods
are available for global path planning. Most of them
are 2D methods or 2D methods extended to 3D.
Rapidly-exploring Random Tree (RRT) and different
variations of this algorithm are most commonly used
in robotics [11–13].

Obstacle evasion is complementary to path
planning, also frequently called local path planning.
Here, only local, recently updated information from a
sensor system is used to determine a specific path
section [11]. Most of the currently available methods
are for 2D navigation. The avoidance algorithm
developed for the px4, the 3DVFH*, is one of the most
advanced methods for 3D obstacle avoidance [14].
This algorithm discretizes the sensor field of view with
a grid. If a grid contains an obstacle or is close to an
obstacle, it is marked as unsafe. All other grids are
marked as safe and evaluated by a cost function.
Then a waypoint within the safe grid with the lowest
cost is defined [15]. Unfortunately, this approach is
not very flexible. Despite the availability of many
parameters to evaluate the cost of a grid, only view
control parameters to steer the flying platform are
used. One of the main drawbacks is constant
parameters that do not adapt to the current situation.
Also, only one cost function is used [15].
Finally, most local planners define the shortest
possible path as the best solution [16–18], which
might be a minimal deviation from a global path or
directly via the path length of the local path [19]. While
this assumption might hold for most ground-bound
applications, this is questionable for flying
applications. Depending on the environment a drone
is operating in, increasing the flight level might be
advantageous compared to horizontal evasion. Even
if the distance is longer or the energy consumption is
higher for a single evasion, this might pay off in the
long run over a whole mission [20].

2.2. The px4 avoid algorithm, the 3DVFH*

The 3DVFH* is one of the most advanced, publicly
available algorithms for static obstacle avoidance,
developed explicitly for small drones.
The algorithm is based on a 3DVHF* [15], which is a
combination of the 3DVFH+ [21] and the VFH* [22]
algorithm together with a novel memory strategy. The
3DVHF* algorithm is a local path planner that reacts
to obstacles without building a global map. However,
the memory part keeps track of previously detected
obstacles by transforming the previous polar
histogram to the current location. The algorithm
consists of several submodules designed explicitly for
certain obstacles:
The core part of the 3DVFH* is based on a 2D polar
histogram (Figure 1). The histogram consists of a
binary occupancy layer, a distance layer, and an age
layer. Each layer consists of a cell grid. The cells of
the occupancy layer contain the binary information on
whether more or less 3D points than a specific
threshold were detected in this sector; if more points
are detected within one grid cell, the cell is considered
occupied. Additionally, a safety margin is added
around occupied cells. The size of the safety margin
depends on the obstacle distance and dimension.

CC BY 4.0

Deutscher Luft- und Raumfahrtkongress 2020

2

https://creativecommons.org/licenses/by/4.0/

The distance layer contains information on the
distance of the closest obstacle point inside each
sector. The age layer contains the information age in
each cell of the other layers. The age is required to
allow an extended field of view, which is greater than
the actual field of view of the sensor. The data from
the previous occupancy and distance cells is re-
projected to the current position and fused with the
current sensor data. If the data outside the current
field of view is too old, it is discarded.

Figure 1: A histogram according to the VFH
approach represents the surrounding world. The 3D
world around the UAV is rasterized into sectors (left)
and represented in a 2D grid cell (right), where one

cell represents one sector.

Then, the directions of the histogram's free cells are
considered candidates and evaluated by a cost
function. The cost function consists of a goal-oriented
term (cgaol, equation (1)) and a flight path
smoothness term (csmooth, equation (2)). The goal-
oriented term compares the candidate direction to the
goal direction by taking the yaw difference Δyaw, and
the pitch difference Δ𝑝𝑖𝑡𝑐ℎ into account. Both are

weighted by weighting factors 𝑘𝑦𝑎𝑤 and 𝑘𝑝𝑖𝑡𝑐ℎ. The

differences are determined by projecting the
candidate direction to a point with the same distance
from UAV to goal point. The yaw difference is the
distance of this point to the goal point in the XY-plane;
the pitch difference is the distance in Z-direction. The
smoothness term compares the candidate direction
with the current one and sums the yaw Δ𝑦𝑎𝑤,𝑝𝑟𝑒𝑣and

pitch Δ𝑝𝑖𝑡𝑐ℎ,𝑝𝑟𝑒𝑣 difference to the previous path. The

cell with the lowest total cost under differently
weighted consideration of the goal, smoothness cost,
and obstacle cost 𝑐𝑜𝑏𝑠𝑡𝑐𝑎𝑙𝑒 is chosen as the next

waypoint (equation (3)). The obstacle cost 𝑐𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒
is proportional to the distance of a candidate point to
the next obstacle.

(1) 𝑐𝑔𝑜𝑎𝑙 = kyaw ∙ Δ𝑦𝑎𝑤 + 𝑘𝑝𝑖𝑡𝑐ℎ ∙ Δ𝑝𝑖𝑡𝑐ℎ

(2) csmooth = Δ𝑦𝑎𝑤,𝑝𝑟𝑒𝑣 + Δ𝑝𝑖𝑡𝑐ℎ,𝑝𝑟𝑒𝑣

(3) 𝑐𝑡𝑜𝑡𝑎𝑙 = 𝑐𝑔𝑜𝑎𝑙 + 𝑘𝑠𝑚𝑜𝑜𝑡ℎ ∙ 𝑐𝑠𝑚𝑜𝑜𝑡ℎ

+ 𝑐𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒

Additionally, an A* path planning algorithm is used to
extend the algorithm to a series of candidate points.
For any candidate point, the vector field histogram is
estimated with the available sensor data and the
predicted movement of the UAV. The prediction
generates a search tree from the current position with
a predefined length of nodes. Every note in the tree is
evaluated by the cost function given in equation (3).
The first node of the branch with the lowest total cost
is then chosen as the next waypoint (Figure 2).

Figure 2: Tree of the A* algorithm from the current
position (orange dot) towards the goal (orange star).

This tree consists of three levels of branches.
Initially, for every level, the branch with the lowest

cost is chosen, i.e., the algorithm directly
approaches the goal until all sub-branches of the

best branch are invalid or the maximal tree length is
reached (in this example 3). If a candidate point is
not valid, e.g., the point is too close to an obstacle,

this sub-branch is considered impossible (red dot). If
all sub-branches of a branch are invalid, the

algorithm starts to expand the tree by following the
second optimal branch of the previous level of

branches. This procedure repeats until an
acceptable path is found (green point). The first

waypoint of the acceptable path with the lowest cost
is chosen as the next waypoint

However, even though a safety margin around the
obstacle is defined in the 2D histogram, it does not
ensure a minimum safety distance between UAV and
the obstacle in flight direction. Therefore, a minimum
longitudinal distance to obstacles is defined within the
px4 avoid algorithm. The algorithm defines two three-
dimensional spheres; the UAV sphere, around the
UAV, and the obstacle sphere, around the obstacles.
The center of the UAV sphere is the UAV; the center
of the obstacle sphere is the mean of all detected
obstacle points within the UAV sphere (Figure 3). A
minimal distance between the UAV and the obstacle
sphere is defined to maintain a safe distance between
UAV and the obstacle.

CC BY 4.0

Deutscher Luft- und Raumfahrtkongress 2020

3

https://creativecommons.org/licenses/by/4.0/

Figure 3: Representation of the UAV sphere and the
obstacle sphere, which is a sphere around all

obstacle points inside the UAV sphere.

Additionally, a ground detection model is
implemented, which keeps a minimum distance to the
ground. In a setup with a forward-looking camera, the
actual distance above the ground is unknown
because the ground below the UAV is not in the
current field of view. However, the ground in front of
the UAV is in the field of view. The vertical distance
to the UAV is stored in a height map; The height map
is based on a bounding box, which crops the point
cloud from the sensor system. A RANSAC algorithm
estimates a horizontal plane from the point cloud
inside the bounding box. If the UAV is flying towards
a ground patch stored inside the height map, it needs
to adapt its height before reaching the ground patch
and rising with a UAV-specific maximal rising angle.
If the UAV is too low, all candidate points from the
polar histogram lower than the maximum rising angle
are considered as blocked. If the current altitude is
close to the minimal altitude, all candidate points
lower than the horizontal axis are blocked.

2.3. Recent advances in bio-inspired obstacle
avoidance

Honeybees and bumblebees forage between
rewarding food sources and their hive in often
complex environments. They must fly through clutter
consisting of obstacles of different sizes, shapes,
orientations, and textures. To avoid physical damage
[23] and to perform the task of food collection as
efficiently as possible, insects need to move around
objects obstructing their way [24]. Flying insects, in
particular, can apply various strategies and flight
maneuvers to avoid objects and reach their goal
efficiently, fast, and safely [25–27].
Currently, much knowledge is available about the
behavior of bumblebees in specific situations. Several

research groups identified critical aspects of bee
behavior when flying through tunnels. For example,
bees maintain equidistance to both walls [28, 29] by
maintaining equivalent optic flow on both eyes [30].
Additionally, by keeping the optic flow constant, the
flight speed is adapted to the width of the tunnel [30,
31]. Even though the behavior in an empty tunnel is
understood quite well, none of the above gives
information on obstacle encounters.
If challenged with a series of vertical or horizontal
obstacles within a flight tunnel, bumblebees do not
show any significant difference in the maneuver when
avoiding the obstacles horizontally or vertically [32].
However, body size has a more significant influence
on the flight behavior of bumblebees than obstacle
orientation. With increasing body size, flight
performance is impaired [32]. However, this work
investigates only one possibility to evade the obstacle
in a confined space such that the bee cannot decide
between several alternatives.
When bumblebees can decide between two
horizontally aligned gates, they tend to choose the
wider gap [33]. However, this situation may change
when gaps are not horizontally aligned, but the bees
must avoid an object by moving upward or sideward.
If bumblebees can choose between avoiding an
obstacle vertically or horizontally, e.g., flying over the
obstacle or flying around it, their choice depends on
the distance to the obstacle when noticing it for the
first time [34]. If the obstacle is close, bumblebees
tend to evade horizontally; if the obstacle is far, they
tend to evade vertically. However, the reason for this
behavior is not known yet.
Thus, we want to combine these recent advances in
biology with recent avoidance algorithms.

3. REQUIREMENTS AND ASSUMPTIONS

A clear definition of the requirements is key to
developing any algorithm. We divide requirements
into hard requirements that must be fulfilled in any
case and soft requirements that are formulated less
stringent and allow more flexibility. Additionally,
assumptions must be made, which will be discussed
in this chapter.

3.1. Hard Requirements

The essential requirement of an obstacle avoidance
algorithm is that it has to be safe. Therefore, a
collision has to be avoided in any case. The second
hard requirement for an obstacle avoidance algorithm
is to control the UAV, so it flies from the current
position to a specified goal position. It requires some
drive or goal-directed behavior, which leads the UAV
to the goal point until its final position is reached.
Those two aspects need to be fulfilled in any case. A
mission is considered failed if one of those two
aspects is not fulfilled. Another hard requirement is for
the algorithm to work in real-time because a local

CC BY 4.0

Deutscher Luft- und Raumfahrtkongress 2020

4

https://creativecommons.org/licenses/by/4.0/

planner reacts to local, unforeseen obstacles; it
needs to react in an adequate time frame to avoid the
obstacle before it is hit.

3.2. Soft Requirements

Unlike the hard requirements, some less stringent or
specific soft requirements are defined. These
requirements often contradict each other or are
derived from hard requirements. A typical example is
a system that needs to be as light, safe, and cheap
as possible. These factors must be weighed against
each other to find an optimal solution for the overall
system. Similarly, several soft requirements apply to
an obstacle avoidance algorithm as well. The soft
requirements considered in this approach are:

1. The algorithm has to react as fast as
possible.

2. The algorithm has to be as computationally
efficient as possible.

3. The UAV has to maintain an adequate safety
distance to obstacles.

4. The UAV has to fly as far as possible.
5. The UAV has to fly as fast as possible.
6. The UAV has to fly as long as possible.
7. The energy consumption of the maneuvers

has to be as low as possible.
8. The accelerations have to be in a reasonable

range.
The soft requirements must be weighed against each
other to find an optimal solution. However, what is
understood by the word “optimal” might be different
from mission to mission. For a military surveillance
drone, maximal flight endurance might be more
important than flight speed. Flight endurance might
be less critical for a drug delivery drone, but flight
speed might be critical. A general flight control system
must adapt to a specific weighting of these soft
requirements and behave according to the needs of
the flown mission. Therefore, means have to be
implemented to optimize for one or another mission
type flexibly.

3.3. Assumptions

Some assumptions must be made to define the
functional frame of the algorithm. First of all, the
algorithm has to avoid static, non-cooperating
obstacles. Non-cooperating means that the obstacle
does not actively send out any information about its
size, orientation, position, or presence at all.
However, the obstacle might be arbitrary in texture,
shape, size, and position. Additionally, the number of
obstacles also might be arbitrary.
It is assumed that the sensor range data of the
surrounding of the UAV is available. The maximum
and minimum sensor range is assumed to be known
and used as input parameters for the algorithm. The
field of view of the sensor system is assumed to be
arbitrary but known and constant. Feature
identification, point tracking, and similar functions are

not required. It is also assumed that the sensor
system and flight controller are equipped onboard the
UAV, and no downlink to a ground station is required.
The UAV shall be able to navigate autonomously and
be self-sufficient.

4. CONCEPT

The obstacle avoidance algorithm has to fulfill all hard
requirements in any case, while finding the optimal
trade-off between the different soft requirements
simultaneously. To achieve both types of
requirements, the 3DVFH*, implemented in the px4
avoidance algorithm, is used as a basis and
combined with an intelligent master function. The
master function sets the px4 avoidance control
parameters according to the current situation and the
importance of a specific soft requirement for the
current mission.
Most flying animals face the same problem of finding
an optimum between several different requirements.
Therefore, the strategies applied by bumblebees to fly
through cluttered environments are used as a basis
for the intelligent master function. Even though more
research is required to develop a functional algorithm
based on the behavior of bumblebees, some of the
strategies applied by bumblebees are presented here
and possible ways to implement them as a part of an
existing obstacle avoidance algorithm.

4.1. The basis

The 3DVFH* is used as a basis. The algorithm has
shown that it can solve various situations reliably if
the px4 control parameters are chosen correctly. The
authors tested the performance of the px4 avoid
algorithm in 3754 different worlds with different
obstacle situations. The tests were conducted in a
software in the loop (SITL) environment with
GAZEBO simulator and ROS. Three types of worlds
were tested. The first type, 900 worlds, had one to
forty randomly placed rectangular obstacles with
different dimensions and positions. One world is
exemplarily depicted in Figure 4.

CC BY 4.0

Deutscher Luft- und Raumfahrtkongress 2020

5

https://creativecommons.org/licenses/by/4.0/

Figure 4: Example World with 40 obstacles, 6 m x 6
m in size. The drone's start point (blue) and goal

point (red) are 6 m away from the first/last obstacle.

The second type, 254 worlds, consists of cylindrical
obstacles placed randomly between the start and the
goal point. These worlds partly had a hill or valley
between the start and the goal point. The third type,
2600 worlds, representing cities, had differently sized
cuboids (buildings), randomly arranged in specified
distance ranges (streets). This type of world is shown
in Figure 5.

Figure 5: Example world with building-like obstacles
arranged in rows from left to right with spaces typical
for 3 to 5 lane roads between each row of obstacles.

The blocks represent buildings with 7 to 50 floors
and are generated and placed randomly.

Additionally, several Obstacles have a small space
(1-5 m) between each other; fewer obstacles have

wider spaces (5-20 m). Goal and start point position
are varied from close to buildings (5 m) to far from

buildings (50m)

The simulations showed that the goal position of most
worlds could be reached without crash with at least
one combination of px4 avoid parameters. However,
the parameter combination, which leads to a
successful flight, differed from world to world.
Additionally, the analysis showed that there is still
much improvement for the px4 avoid algorithm. An

average of 20% of the simulations were not
successful. Here, not successful means the UAV
does not reach the goal point. The reason might be a
crash, safe landing, or inability to pass an obstacle
and reach the goal.

Figure 6: Proportion of non-successful flights for
variations of the choosable px4 avoid parameters
max_sensor_range (max sensor), min_sensor_range
(min sensor), pitch_cost_param (pitch cost),
yaw_cost_param (yaw cost), velocitiy_cost_param
(velocity cost), obstacle_cost_param (obstacle cost),
smoothing_speed_xy (smooth speed xy),
smoothing_speed_z (smooth speed z),
smoothing_margin_degrees (smooth margin)

Figure 6 shows that some parameters, e.g., the
variation of the velocity cost parameter or the pitch
cost parameter, have a more significant influence on
the success rate of the px4 algorithm than other
parameters. However, Figure 6 also shows that at
least 10% of flights were unsuccessful regardless of
which px4 avoid parameter varies within useful
bounds.
Nonetheless, the px4 avoid algorithm already
contains various features and can prevent the UAV of
crashes in many cases. It is also able to fulfill its
mission and reach its goal on the majority of flights.
Therefore, the current px4 avoid algorithm, release
0.3.1, is chosen as a basis.

4.2. Situation-dependent speed adaption

The compound eyes of insects work differently than
human eyes and directly measure optic flow. Optic
flow is the pattern of objects' relative motion in an
observer's field of view; it equals an angular velocity
map around an observer [35]. Bees and other insects
keep the optic flow on their eyes constant to adapt
their flight speed to any situation. Recently, Dynamic
Vision Sensors (DVS), also known as event cameras,
silicon retina, or neuromorphic cameras, were
developed, which directly measure optic flow and do
not work like classical cameras or the human eye. If
the UAV is equipped with such a system, a situation-

CC BY 4.0

Deutscher Luft- und Raumfahrtkongress 2020

6

https://creativecommons.org/licenses/by/4.0/

based flight velocity control with a flight controller
keeping the optic flow constant can be directly
implemented. The disadvantage of such a system is
that obstacles in flight direction are hard to detect or
not detectable at all.
Therefore, a classic 3D vision system or a
combination of a DVS camera and an optic range
detector are considered a more reliable solution.
Here, careful choice of the available field of view is
essential. The distance between UAV and the
obstacle should directly influence flight speed. If
obstacles are close, the flight speed should be
adapted to an adequate, lower speed. However, this
should happen for obstacles in front and around the
UAV. Taking obstacles lateral to the UAV into account
allows passing such obstacles at an adequate speed,
which increases safety and flexibility. The behavior of
bumblebees can be mimicked by linearly reducing the
flight speed from cruise velocity to minimal flight
velocity with decreasing obstacle distance (Figure 7).
The minimal flight speed and goal distance must be
chosen according to the UAV's weight. The minimal
flight speed should be lower at a higher minimal
distance for heavier UAVs than for lighter UAVs. This
speed is chosen similarly to the difference in the
behavior of heavier and larger bumblebees compared
to lighter and smaller ones.

Figure 7: the linear relationship between forward
flight velocity and lateral distance to the closest

obstacle for lighter UAV (orange, dotted line) and
heavier UAV (blue, solid line)

4.3. Differentiation between close and far
obstacles

Recent investigation on the behavior of bumblebees
indicates that bumblebees use two fundamentally
different obstacle avoidance strategies. Close
obstacles are evaded horizontally, and far obstacles
are evaded vertically. The px4 avoid algorithm, on the
other hand, is often stuck in front of wide obstacles
and meandering in front of them because the cost to
evade the obstacle in one direction becomes too high.

Figure 8: Adaption of the px4 avoid algorithm and
limiting the considered candidate points according to

the distance between UAV and obstacle sphere
ddecision. A core section of candidate points will be

evaluated in any case (yellow), while the evaluation
of the surrounding points depends on ddecision

(green).

Implementing a strategy to evade far obstacles
vertically, e.g., flying over them, will solve this
problem partly. This behavior can be achieved by
significantly decreasing the cost of vertical avoidance
kpitch. If the UAV starts increasing flight altitude directly
after identifying the obstacle and if the distance is
higher than the minimal distance for vertical evasion,
ddecision, the obstacle will be overflown when reaching
it (Figure 8). If this is not possible because the
obstacle is too high, the drone is forced to reevaluate
the situation when the UAV is close to the obstacle,
and the obstacle blocks the whole FoV. In this case,
the horizontal avoidance maneuver is performed with
a high cost of vertical avoidance kpitch until the
obstacle is passed. If the obstacle is high and wide,
the UAV will start meandering in front of the obstacle
with the current px4 avoid flight algorithm. If the
horizontal avoidance maneuver is performed for a
specified time, this should be combined with vertical
avoidance (=reduction of kpitch) and decreasing of the
goal cost parameters kgoal such that the UAV starts to
fly longer distances to the left and right and increase
in altitude. By this adaption of parameters, the
searching behavior of bumblebees can be mimicked.
Additionally, this approach can reduce the overall
algorithm's computational effort because the total
number of candidate points can be reduced. If the
closest obstacle is below a certain threshold, ddecision,
is only candidate points in a wide but short corridor
need to be considered. If the distance is greater than
ddecision, points in a high but narrow corridor need to be
considered (Figure 8). The shape of this corridor is
defined by a core section around the goal direction,
which will be evaluated in any case (yellow), and a
distance-dependent section defining the waypoints,
which will be considered around the core section
(green).
However, this approach requires a minimal tree
length longer than ddecision such that the avoidance
strategy is not changed while the UAV is approaching
the obstacle. Alternatively, the corridor of possible

CC BY 4.0

Deutscher Luft- und Raumfahrtkongress 2020

7

https://creativecommons.org/licenses/by/4.0/

candidate points is fixed until the obstacle is passed
or no good candidate point is available.

4.4. Final goal approach

Analysis of the px4 avoid algorithm showed no
difference in behavior if the drone is close to the goal
point. This behavior leads to several different
problems. If the goal is close to a landing platform, the
platform is identified as an obstacle. The wrong
identification either leads to meandering in front of the
goal point or circulation around the goal point. In this
case, the goal is never reached. Therefore, the safety
distance to obstacles needs to be adjusted to allow
landing on platforms or hovering close to buildings.
For a given flight speed, according to equation (4), a
minimally required distance to an obstacle can be
derived from Figure 7.
Another problem is that the UAV changes flight speed
only in specific situations and rates. Flying close to
the goal is none of these cases. Therefore, an
overshooting of the goal point is common, as
visualized in Figure 9.

Figure 9: UAV overshooting the goal point (yellow).
The green dotted line represents the flight path.

In short missions or missions with several dedicated
stop and hover points, e.g., to drop a parcel, the time
and energy consumption required to correct this
overshooting is significant and reduces efficiency.
Therefore, a specified goal approach is required to
improve performance. The px4 algorithm is already
equipped with a save landing assistant. However, this
algorithm is not used to land safely at a specific
position but to land close by the current position.
To adequately approach a specified goal point, a new
algorithm is required. Here again, insects have
developed strategies to land on and in flowers. They
decelerate smoothly during approach, maintaining a
constant image expansion rate. This behavior can be
mimicked by a proportional dependency of the flight
speed v to the goal distance dgoal of the type

(4) 𝑣 = √𝑎 ∙ 𝑑𝑔𝑜𝑎𝑙

In equation (4), 𝑎 has to be chosen according to the
desired mission type because this parameter defines
the energy consumption and duration of the final goal
approach. The following table gives a comprehensive
but not exhaustive overview of recommended values
for 𝑎 for different mission types and situations
independent of the UAV.

Mission Type 𝒂

Time-critical 90% of the maximally
available deceleration

High Endurance Average drag force
during approach over
total mass

Low accelerations Average drag force
during approach over
total mass

High safety and time-
critical

75% of the maximally
available deceleration

Table 1: recommended a values for different mission
types

In order to be able to react to gusts, it is not
recommended to plan for theoretically maximally
available deceleration rates.
Additionally, ksmooth should be decreased with
decreasing distance to the goal to allow fast direction
and velocity changes.

5. CONCLUSION

The conducted studies show that the px4 avoid
algorithm is well suited to solve various challenging
situations and fly autonomously from start to goal
point. However, the parameters controlling the
behavior of the px4 avoid algorithm have to be
chosen with much care. Therefore, an approach is
presented which adapts the flight speed to the current
situation to simplify situations for the px4 algorithm.
Additionally, close obstacles should be avoided
horizontally, while far obstacles should be overflown.
This behavior will diminish the problem of the px4
getting stuck in various cases. Finally, a specific goal
approach is required, which adapts the flight speed
independent of the smoothness parameter ksmooth of
the px4 avoid algorithm to improve the performance
of the goal approach.

6. REFERENCES

[1] S. Aggarwal and N. Kumar, “Path planning
techniques for unmanned aerial vehicles: A
review, solutions, and challenges,” Computer
communications, vol. 149, pp. 270–299, 2020,
doi: 10.1016/j.comcom.2019.10.014.

[2] T. A. Sarmiento and R. R. Murphy, “Insights on
obstacle avoidance for small unmanned aerial
systems from a study of flying animal
behavior,” Robotics and Autonomous Systems,

CC BY 4.0

Deutscher Luft- und Raumfahrtkongress 2020

8

https://creativecommons.org/licenses/by/4.0/

vol. 99, pp. 17–29, 2018, doi:
10.1016/j.robot.2017.09.002.

[3] X. Zhao, G. Wang, M. Cai, and H. Zhou,
“Stereo-vision based obstacle avoidance by
finding safe region,” International Journal of
Control, Automation and Systems, vol. 15, no.
3, pp. 1374–1383, 2017.

[4] A. Asvadi, C. Premebida, P. Peixoto, and U.
Nunes, “3D Lidar-based static and moving
obstacle detection in driving environments: An
approach based on voxels and multi-region
ground planes,” Robotics and Autonomous
Systems, vol. 83, pp. 299–311, 2016.

[5] R. Thakur, “Scanning LIDAR in Advanced
Driver Assistance Systems and Beyond:
Building a road map for next-generation LIDAR
technology,” IEEE Consumer Electronics
Magazine, vol. 5, no. 3, pp. 48–54, 2016.

[6] W. Song, Y. Yang, M. Fu, F. Qiu, and M.
Wang, “Real-Time Obstacles Detection and
Status Classification for Collision Warning in a
Vehicle Active Safety System,” IEEE
Transactions on Intelligent Transportation
Systems, vol. 19, no. 3, pp. 758–773, 2018.

[7] Wilbert G. Aguilar, Verónica P. Casaliglla, and
José L. Pólit, “Obstacle Avoidance Based-
Visual Navigation for Micro Aerial Vehicles,”
Electronics, vol. 6, no. 1, p. 10, 2017. [Online].
Available: https://doaj.org/article/
4bdb5fca1ae245a9b8c2d8755e5b882e

[8] C.-H. Kim, T.-J. Lee, and D.-I. “. Cho, “An
Application of Stereo Camera with Two
Different FoVs for SLAM and Obstacle
Detection,” IFAC PapersOnLine, vol. 51, no.
22, pp. 148–153, 2018.

[9] R. Renjith, Reshma R., and K. V. Arun, “Design
and implementation of traffic sign and obstacle
detection in a self-driving car using SURF
detector and Brute force matcher,” IEEE
ICPCSI, vol. 2017.

[10] A. J. Davison, I. D. Reid, N. D. Molton, and O.
Stasse, “MonoSLAM: real-time single camera
SLAM,” IEEE transactions on pattern analysis
and machine intelligence, vol. 29, no. 6, pp.
1052–1067, 2007, doi:
10.1109/TPAMI.2007.1049.

[11] M. Pittner, M. Hiller, F. Particke, Patino-
Studencki. L., and J. Thielecke, “Systematic
Analysis of Global and Local Planners for
Optimal Trajectory Planning,” ISR 2018; 50th
International Symposium on Robotics, vol.
2018.

[12] X. Liang, G. Meng, Y. Xu, and H. Luo, “A
geometrical path planning method for
unmanned aerial vehicle in 2D/3D complex
environment,” Intelligent Service Robotics, vol.
11, no. 3, pp. 301–312, 2018.

[13] Kun Wei and Bingyin Ren, “A Method on
Dynamic Path Planning for Robotic Manipulator

Autonomous Obstacle Avoidance Based on an
Improved RRT Algorithm,” Sensors, vol. 18, no.
2, p. 571, 2018. [Online]. Available: https://
doaj.org/article/
f3e03758ca0e41a3b3ba56a45256f25b

[14] J. García and J. M. Molina, “Simulation in real
conditions of navigation and obstacle
avoidance with PX4/Gazebo platform,” Pers
Ubiquit Comput, 2020.

[15] T. Baumann, “Obstacle Avoidance for Drones
Using a 3DVFH Algorithm,” Masters Thesis,
ETH Zürich;, 2018.

[16] E. de Lellis, G. Morani, F. Corraro, and V. Di
Vito, “On-line trajectory generation for
autonomous unmanned vehicles in the
presence of no-fly zones,” Proceedings of the
Institution of Mechanical Engineers, Part G:
Journal of Aerospace Engineering, vol. 227, no.
2, pp. 381–393, 2012, doi:
10.1177/0954410011430173.

[17] J. Gonzalez, A. Chavez, J. Paredes, and C.
Saito, “Obstacle Detection and Avoidance
Device for Multirotor UAVs through interface
with Pixhawk Flight Controller,” in IEEE CASE,
pp. 110–115.

[18] A. Alexopoulos, A. Kandil, P. Orzechowski, and
E. Badreddin, “A Comparative Study of
Collision Avoidance Techniques for Unmanned
Aerial Vehicles,” in IEEE Syst Man Cy C, pp.
1969–1974.

[19] R. He, R. Wei, and Q. Zhang, “UAV
autonomous collision avoidance approach,”
Automatika, vol. 58, no. 2, pp. 195–204, 2017,
doi: 10.1080/00051144.2017.1388646.

[20] S. Ahmed, A. Mohamed, K. Harras, M. Kholief,
and S. Mesbah, “Energy efficient path planning
techniques for UAV-based systems with space
discretization,” in 2016 IEEE Wireless
Communications and Networking Conference,
2016, pp. 1–6.

[21] I. Ulrich and J. Borenstein, “VFH+: Reliable
Obstacle Avoidance for Fast Mobile Robots,” in
Proceedings. 1998 IEEE International
Conference on Robotics and Automation (Cat.
No.98CH36146), 1998.

[22] I. Ulrich and J. Borenstein, Eds., VFH*: Local
Obstacle Avoidance with Look-Ahead
Verification, 2000.

[23] A. M. Mountcastle, T. M. Alexander, C. M.
Switzer, and S. A. Combes, “Wing wear
reduces bumblebee flight performance in a
dynamic obstacle course,” Biology letters, vol.
12, no. 6, 2016, doi: 10.1098/rsbl.2016.0294.

[24] J. L. Osborne et al., “The ontogeny of
bumblebee flight trajectories: from naïve
explorers to experienced foragers,” PloS one,
vol. 8, no. 11, e78681, 2013, doi:
10.1371/journal.pone.0078681.

CC BY 4.0

Deutscher Luft- und Raumfahrtkongress 2020

9

https://creativecommons.org/licenses/by/4.0/

[25] F. A. Zabala, G. M. Card, E. I. Fontaine, M. H.
Dickinson, and R. M. Murray, “Flight Dynamics
and Control of Evasive Maneuvers: The Fruit
Fly’s Takeoff,” IEEE T Bio-Med Eng, vol. 56,
no. 9, pp. 2295–2298, 2009.

[26] F. T. Muijres, M. J. Elzinga, J. M. Melis, and M.
H. Dickinson, “Flies evade looming targets by
executing rapid visually directed banked
turns.,” Science, vol. 344, no. 6180, p. 172,
2014.

[27] R. Kern, N. Boeddeker, L. Dittmarand, and M.
Egelhaaf, “Blowfly flight characteristics are
shaped by environmental features and
controlled by optic flow information.,” J Exp
Biol, vol. 215, no. 14, p. 2501, 2012.

[28] J. Serres, G. P. Masson, F. Ruffier, and N.
Franceschini, “A bee in the corridor: centering
and wall-following,” The Science of Nature
Naturwissenschaften, vol. 95, no. 12, pp.
1181–1187, 2008. [Online]. Available: https://
hal-amu.archives-ouvertes.fr/hal-02294572

[29] G. Portelli, J. R. Serres, and F. Ruffier, “Altitude
control in honeybees: joint vision-based
learning and guidance,” Sci Rep, vol. 7, no. 1,
p. 9231, 2017.

[30] M. V. Srinivasan, S. W. Zhang, M. Lehrer, and
T. S. Collett, “Honeybee navigation en route to
the goal- Visual flight control and odometry,” J
Exp Biol, vol. 199, pp. 237–244, 1996, doi:
10.1242/jeb.199.1.237.

[31] M. V. Srinivasan, S. W. Zhang, J. S. Chahl, G.
Stange, and M. Garratt, “An overview of insect-
inspired guidance for application in ground and
airborne platforms,” Proceedings of the
Institution of Mechanical Engineers, Part G:
Journal of Aerospace Engineering, vol. 218, no.
6, pp. 375–388, 2004, doi:
10.1243/0954410042794966.

[32] J. D. Crall, S. Ravi, A. M. Mountcastle, and S.
A. Combes, “Bumblebee flight performance in
cluttered environments: effects of obstacle
orientation, body size and acceleration,” J Exp
Biol, vol. 218, Pt 17, pp. 2728–2737, 2015, doi:
10.1242/jeb.121293.

[33] M. Ong, M. Bulmer, J. Groening, and M. V.
Srinivasan, “Obstacle traversal and route
choice in flying honeybees: Evidence for
individual handedness,” PloS one, vol. 12, no.
11, e0184343, 2017, doi:
10.1371/journal.pone.0184343.

[34] A. Thoma, A. Fischer, O. Bertrand, and C.
Braun, “Evaluation of Possible Flight Strategies
for Close Object Evasion From Bumblebee
Experiments,” in Lecture Notes in Artificial
Intelligence: Springer, 2020.

[35] M. V. Srinivasan, “Visual control of navigation
in insects and its relevance for robotics,”
Current Opinion in Neurobiology, vol. 21, no. 4,

pp. 535–543, 2011, doi:
10.1016/j.conb.2011.05.020.

CC BY 4.0

Deutscher Luft- und Raumfahrtkongress 2020

10

https://creativecommons.org/licenses/by/4.0/

