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Abstract 

We present the concept of extending the px4 avoid algorithm for more reliable and flexible obstacle avoidance 
of non-cooperating, static obstacles. Besides the hard requirements that the algorithm has to fulfill, several 
soft requirements are presented. As the latter are less stringent, they have to be weighed against one another 
for each mission because their importance differs according to mission type. To fit the needs of different 
mission types, the px4 avoid algorithm is used as a basis and is controlled by a master function adjusting its 
cost parameters. This master function takes importance of the different soft requirements, depending on 
mission time, into account. To improve robustness, the master function additionally contains modules inspired 
by the behavior of bumblebees in challenging obstacle situations. This behavior is achieved by a speed 
controller that adapts the flight speed according to the lateral distance to obstacles, thereby influencing the 
turning radii of the UAV. Additionally, bumblebee behavior inspires a module, which triggers the vertical 
evasion of distant obstacles and the horizontal evasion of close obstacles. Finally, the master function has a 
separate element for goal approaches that overrules the normal flight behavior. This overruling allows different 
speed adaptions and specific obstacle approaches close to the goal. 

Nomenclature 

Δdown = vertical distance between goal and waypoint 
(if the waypoint is lower than the goal point) 

Δup =  vertical distance between goal and waypoint 
(if the waypoint is higher than the goal point) 

Δyaw = horizontal distance between goal and way  
point 

3dVFH* = 3D Vector Field Histogram with integrated A* 
3DVFH+ = improved 3D Vector Field Histogram 
a = deceleration parameter 
cgoal = cost of non-goal oriented behavior 
csmoot = current flight direction deviation cost 
ctotal = total cost 
dgoal = distance between current position and goal 
kdown = weighting factor for Δdown
kgoal = weighting factor for cgoal 

ksmooth = weighting factor for csmooth 

kup = weighting factor for Δup 
LiDAR = Light Detect and Range 
SLAM = Simultaneous Localization And Mapping 
SURF = Speed Up Robust Features 
UAV = Unmanned Aerial Vehicle 
v = velocity 
VFH* = Vector Field Histogram with integrated A* 

1. INTRODUCTION

Unmanned aerial vehicles (UAV) can be used for 
various applications. Nowadays, UAVs usually 
require a pilot, while most use and business cases 
require fully autonomously operating UAV in the long 
run. Even though several obstacle avoidance 
algorithms exist, reliable evasion of static and moving 
obstacles is still a great challenge [1]. Hence, more 
robust and efficient obstacle avoidance algorithms 
are required. One of the main challenges is reliably 
detecting obstacles with lightweight sensor systems 
and low computational effort in real-time. While much 

progress was recently made in this field of research, 
there is still the remaining challenge of choosing 
adequate evasion maneuvers after an obstacle is 
detected [2]. 
In robotics, evading an obstacle is referred to as local 
path planning. Cost functions, which are specially 
designed for local path planning, are often used to 
identify the best possible local path around an 
obstacle. These functions evaluate various waypoints 
under consideration of several different parameters; 
for example, by considering the deviation between 
the new path and the initially planned path regarding 
angle, distance, and velocity. Here, the balance 
between efficiency and robustness is particularly 
challenging as robustness is hardly measurable by 
classical engineering approaches. In this context, 
robustness is defined as resilience towards critical 
failure, e.g., collision with an obstacle or the ability to 
react adequately in novel situations. However, in 
general, biological systems are proven to have a 
good balance between efficiency and robustness. 
The way a biological system solves a novel situation 
is often simple but still convenient and efficient; they 
are flexible by nature. Additionally, many biological 
systems have a limited number of neurons, which 
equals a low computational power of a technical 
system. Nonetheless, biological systems can 
effectively manage accountable resources and 
quickly find viable solutions. One example of a 
successful biological system is the bumblebee. Since 
bumblebees are efficient fliers that need to navigate 
in cluttered environments, they are perfectly suitable 
test objects when seeking avoidance strategies. 
Therefore, the behavior of bumblebees serves as a 
basis for developing a reliable obstacle avoidance 
algorithm.  
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This paper is structured the following way: After this 
introduction, a comprehensive summary of path 
planning and obstacle avoidance algorithms is given, 
together with recent findings in biology and bio-
inspired systems. Section 3 presents the 
requirements of a new control approach, followed by 
a concept to fulfill these requirements in section 4. 
Finally, a comprehensive conclusion is given in 
section 5. 

2. THEORETICAL BACKGROUND

2.1. General Differentiation 

For a technical application, the problem of obstacle 

avoidance is commonly split up into three steps [3]: 
Obstacle detection is the first step in obstacle 
avoidance and the basis of any evasive maneuver. 
While animals mostly rely on passive systems to 
observe their environment, e.g., different kinds of 
eyes, many technical applications rely on active 
systems. The automotive industry is one industry that 
increases the level of autonomy of its products at a 
fast pace. Many modern cars have hundreds or even 
thousands of sensors and assisting systems. LiDAR 
and radar systems are commonly used for obstacle 
detection [4, 5]. However, optical cameras are also 
frequently used for various detection tasks. LiDAR 
systems can provide the most accurate 
representation of an observer’s environment in all 
directions, as those systems can detect even the 
smallest objects at medium distances [4]. 
Unfortunately, this can only be achieved at the cost of 
a relatively heavy system. Radar systems, on the 
other hand, are of lighter weight and work in low 
visibility conditions but generally provide a narrow 
field of view [6]. Finally, cameras can provide the 
most accurate picture of an observer’s surrounding at 
low weight and cost. Unlike radar and LiDAR 
systems, cameras cannot directly measure any 
distances. Complex and usually computationally 
heavy methods are required to estimate the distance 
to an object. SURF and SLAM are two commonly 
used algorithms to estimate the distance between the 
camera and the object [7–10].  
Path Planning is an essential part of obstacle 
avoidance as well. In many applications, path 
planning results are called global paths [11]. The 
global path is the path from the start or current 
position to the goal point. Fix information from maps 
is usually considered when determining the global 
path [11]. However, variable information, for example, 
the position of a movable or unknown obstacle, is not 
considered in global path planning. Different methods 
are available for global path planning. Most of them 
are 2D methods or 2D methods extended to 3D. 
Rapidly-exploring Random Tree (RRT) and different 
variations of this algorithm are most commonly used 
in robotics [11–13]. 

Obstacle evasion is complementary to path 
planning, also frequently called local path planning. 
Here, only local, recently updated information from a 
sensor system is used to determine a specific path 
section [11]. Most of the currently available methods 
are for 2D navigation. The avoidance algorithm 
developed for the px4, the 3DVFH*, is one of the most 
advanced methods for 3D obstacle avoidance [14]. 
This algorithm discretizes the sensor field of view with 
a grid. If a grid contains an obstacle or is close to an 
obstacle, it is marked as unsafe. All other grids are 
marked as safe and evaluated by a cost function. 
Then a waypoint within the safe grid with the lowest 
cost is defined [15]. Unfortunately, this approach is 
not very flexible. Despite the availability of many 
parameters to evaluate the cost of a grid, only view 
control parameters to steer the flying platform are 
used. One of the main drawbacks is constant 
parameters that do not adapt to the current situation. 
Also, only one cost function is used [15]. 
Finally, most local planners define the shortest 
possible path as the best solution [16–18], which 
might be a minimal deviation from a global path or 
directly via the path length of the local path [19]. While 
this assumption might hold for most ground-bound 
applications, this is questionable for flying 
applications. Depending on the environment a drone 
is operating in, increasing the flight level might be 
advantageous compared to horizontal evasion. Even 
if the distance is longer or the energy consumption is 
higher for a single evasion, this might pay off in the 
long run over a whole mission [20]. 

2.2. The px4 avoid algorithm, the 3DVFH* 

The 3DVFH* is one of the most advanced, publicly 
available algorithms for static obstacle avoidance, 
developed explicitly for small drones. 
The algorithm is based on a 3DVHF* [15], which is a 
combination of the 3DVFH+ [21] and the VFH* [22] 
algorithm together with a novel memory strategy. The 
3DVHF* algorithm is a local path planner that reacts 
to obstacles without building a global map. However, 
the memory part keeps track of previously detected 
obstacles by transforming the previous polar 
histogram to the current location. The algorithm 
consists of several submodules designed explicitly for 
certain obstacles: 
The core part of the 3DVFH* is based on a 2D polar 
histogram (Figure 1). The histogram consists of a 
binary occupancy layer, a distance layer, and an age 
layer. Each layer consists of a cell grid. The cells of 
the occupancy layer contain the binary information on 
whether more or less 3D points than a specific 
threshold were detected in this sector; if more points 
are detected within one grid cell, the cell is considered 
occupied. Additionally, a safety margin is added 
around occupied cells. The size of the safety margin 
depends on the obstacle distance and dimension. 
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The distance layer contains information on the 
distance of the closest obstacle point inside each 
sector. The age layer contains the information age in 
each cell of the other layers. The age is required to 
allow an extended field of view, which is greater than 
the actual field of view of the sensor. The data from 
the previous occupancy and distance cells is re-
projected to the current position and fused with the 
current sensor data. If the data outside the current 
field of view is too old, it is discarded. 

Figure 1: A histogram according to the VFH 
approach represents the surrounding world. The 3D 
world around the UAV is rasterized into sectors (left) 
and represented in a 2D grid cell (right), where one 

cell represents one sector.  

Then, the directions of the histogram's free cells are 
considered candidates and evaluated by a cost 
function. The cost function consists of a goal-oriented 
term (cgaol, equation ( 1 )) and a flight path 
smoothness term (csmooth, equation ( 2 )). The goal-
oriented term compares the candidate direction to the 
goal direction by taking the yaw difference Δyaw, and 
the pitch difference Δ𝑝𝑖𝑡𝑐ℎ into account. Both are 

weighted by weighting factors 𝑘𝑦𝑎𝑤 and 𝑘𝑝𝑖𝑡𝑐ℎ. The 

differences are determined by projecting the 
candidate direction to a point with the same distance 
from UAV to goal point. The yaw difference is the 
distance of this point to the goal point in the XY-plane; 
the pitch difference is the distance in Z-direction. The 
smoothness term compares the candidate direction 
with the current one and sums the yaw Δ𝑦𝑎𝑤,𝑝𝑟𝑒𝑣and 

pitch Δ𝑝𝑖𝑡𝑐ℎ,𝑝𝑟𝑒𝑣 difference to the previous path. The 

cell with the lowest total cost under differently 
weighted consideration of the goal, smoothness cost, 
and obstacle cost 𝑐𝑜𝑏𝑠𝑡𝑐𝑎𝑙𝑒 is chosen as the next 

waypoint (equation ( 3 )). The obstacle cost 𝑐𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 
is proportional to the distance of a candidate point to 
the next obstacle. 

( 1 ) 𝑐𝑔𝑜𝑎𝑙 = kyaw ∙ Δ𝑦𝑎𝑤 + 𝑘𝑝𝑖𝑡𝑐ℎ ∙ Δ𝑝𝑖𝑡𝑐ℎ 

( 2 ) csmooth =  Δ𝑦𝑎𝑤,𝑝𝑟𝑒𝑣 + Δ𝑝𝑖𝑡𝑐ℎ,𝑝𝑟𝑒𝑣 

( 3 ) 𝑐𝑡𝑜𝑡𝑎𝑙 = 𝑐𝑔𝑜𝑎𝑙 + 𝑘𝑠𝑚𝑜𝑜𝑡ℎ ∙ 𝑐𝑠𝑚𝑜𝑜𝑡ℎ

+ 𝑐𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒

Additionally, an A* path planning algorithm is used to 
extend the algorithm to a series of candidate points. 
For any candidate point, the vector field histogram is 
estimated with the available sensor data and the 
predicted movement of the UAV. The prediction 
generates a search tree from the current position with 
a predefined length of nodes. Every note in the tree is 
evaluated by the cost function given in equation ( 3 ). 
The first node of the branch with the lowest total cost 
is then chosen as the next waypoint (Figure 2).  

Figure 2: Tree of the A* algorithm from the current 
position (orange dot) towards the goal (orange star). 

This tree consists of three levels of branches. 
Initially, for every level, the branch with the lowest 

cost is chosen, i.e., the algorithm directly 
approaches the goal until all sub-branches of the 

best branch are invalid or the maximal tree length is 
reached (in this example 3). If a candidate point is 
not valid, e.g., the point is too close to an obstacle, 

this sub-branch is considered impossible (red dot). If 
all sub-branches of a branch are invalid, the 

algorithm starts to expand the tree by following the 
second optimal branch of the previous level of 

branches. This procedure repeats until an 
acceptable path is found (green point). The first 

waypoint of the acceptable path with the lowest cost 
is chosen as the next waypoint 

However, even though a safety margin around the 
obstacle is defined in the 2D histogram, it does not 
ensure a minimum safety distance between UAV and 
the obstacle in flight direction. Therefore, a minimum 
longitudinal distance to obstacles is defined within the 
px4 avoid algorithm. The algorithm defines two three-
dimensional spheres; the UAV sphere, around the 
UAV, and the obstacle sphere, around the obstacles. 
The center of the UAV sphere is the UAV; the center 
of the obstacle sphere is the mean of all detected 
obstacle points within the UAV sphere (Figure 3). A 
minimal distance between the UAV and the obstacle 
sphere is defined to maintain a safe distance between 
UAV and the obstacle. 
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Figure 3: Representation of the UAV sphere and the 
obstacle sphere, which is a sphere around all 

obstacle points inside the UAV sphere. 

Additionally, a ground detection model is 
implemented, which keeps a minimum distance to the 
ground. In a setup with a forward-looking camera, the 
actual distance above the ground is unknown 
because the ground below the UAV is not in the 
current field of view. However, the ground in front of 
the UAV is in the field of view. The vertical distance 
to the UAV is stored in a height map; The height map 
is based on a bounding box, which crops the point 
cloud from the sensor system. A RANSAC algorithm 
estimates a horizontal plane from the point cloud 
inside the bounding box. If the UAV is flying towards 
a ground patch stored inside the height map, it needs 
to adapt its height before reaching the ground patch 
and rising with a UAV-specific maximal rising angle. 
If the UAV is too low, all candidate points from the 
polar histogram lower than the maximum rising angle 
are considered as blocked. If the current altitude is 
close to the minimal altitude, all candidate points 
lower than the horizontal axis are blocked. 

2.3. Recent advances in bio-inspired obstacle 
avoidance 

Honeybees and bumblebees forage between 
rewarding food sources and their hive in often 
complex environments. They must fly through clutter 
consisting of obstacles of different sizes, shapes, 
orientations, and textures. To avoid physical damage 
[23] and to perform the task of food collection as 
efficiently as possible, insects need to move around 
objects obstructing their way [24]. Flying insects, in 
particular, can apply various strategies and flight 
maneuvers to avoid objects and reach their goal 
efficiently, fast, and safely [25–27].  
Currently, much knowledge is available about the 
behavior of bumblebees in specific situations. Several 

research groups identified critical aspects of bee 
behavior when flying through tunnels. For example, 
bees maintain equidistance to both walls [28, 29] by 
maintaining equivalent optic flow on both eyes [30]. 
Additionally, by keeping the optic flow constant, the 
flight speed is adapted to the width of the tunnel [30, 
31]. Even though the behavior in an empty tunnel is 
understood quite well, none of the above gives 
information on obstacle encounters. 
If challenged with a series of vertical or horizontal 
obstacles within a flight tunnel, bumblebees do not 
show any significant difference in the maneuver when 
avoiding the obstacles horizontally or vertically [32]. 
However, body size has a more significant influence 
on the flight behavior of bumblebees than obstacle 
orientation. With increasing body size, flight 
performance is impaired [32]. However, this work 
investigates only one possibility to evade the obstacle 
in a confined space such that the bee cannot decide 
between several alternatives. 
When bumblebees can decide between two 
horizontally aligned gates, they tend to choose the 
wider gap [33]. However, this situation may change 
when gaps are not horizontally aligned, but the bees 
must avoid an object by moving upward or sideward. 
If bumblebees can choose between avoiding an 
obstacle vertically or horizontally, e.g., flying over the 
obstacle or flying around it, their choice depends on 
the distance to the obstacle when noticing it for the 
first time [34]. If the obstacle is close, bumblebees 
tend to evade horizontally; if the obstacle is far, they 
tend to evade vertically. However, the reason for this 
behavior is not known yet.  
Thus, we want to combine these recent advances in 
biology with recent avoidance algorithms. 

3. REQUIREMENTS AND ASSUMPTIONS

A clear definition of the requirements is key to 
developing any algorithm. We divide requirements 
into hard requirements that must be fulfilled in any 
case and soft requirements that are formulated less 
stringent and allow more flexibility. Additionally, 
assumptions must be made, which will be discussed 
in this chapter. 

3.1. Hard Requirements 

The essential requirement of an obstacle avoidance 
algorithm is that it has to be safe. Therefore, a 
collision has to be avoided in any case. The second 
hard requirement for an obstacle avoidance algorithm 
is to control the UAV, so it flies from the current 
position to a specified goal position. It requires some 
drive or goal-directed behavior, which leads the UAV 
to the goal point until its final position is reached. 
Those two aspects need to be fulfilled in any case. A 
mission is considered failed if one of those two 
aspects is not fulfilled. Another hard requirement is for 
the algorithm to work in real-time because a local 
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planner reacts to local, unforeseen obstacles; it 
needs to react in an adequate time frame to avoid the 
obstacle before it is hit. 

3.2. Soft Requirements 

Unlike the hard requirements, some less stringent or 
specific soft requirements are defined. These 
requirements often contradict each other or are 
derived from hard requirements. A typical example is 
a system that needs to be as light, safe, and cheap 
as possible. These factors must be weighed against 
each other to find an optimal solution for the overall 
system. Similarly, several soft requirements apply to 
an obstacle avoidance algorithm as well. The soft 
requirements considered in this approach are: 

1. The algorithm has to react as fast as
possible.

2. The algorithm has to be as computationally
efficient as possible.

3. The UAV has to maintain an adequate safety
distance to obstacles.

4. The UAV has to fly as far as possible.
5. The UAV has to fly as fast as possible.
6. The UAV has to fly as long as possible.
7. The energy consumption of the maneuvers

has to be as low as possible.
8. The accelerations have to be in a reasonable

range.
The soft requirements must be weighed against each 
other to find an optimal solution. However, what is 
understood by the word “optimal” might be different 
from mission to mission. For a military surveillance 
drone, maximal flight endurance might be more 
important than flight speed. Flight endurance might 
be less critical for a drug delivery drone, but flight 
speed might be critical. A general flight control system 
must adapt to a specific weighting of these soft 
requirements and behave according to the needs of 
the flown mission. Therefore, means have to be 
implemented to optimize for one or another mission 
type flexibly. 

3.3. Assumptions 

Some assumptions must be made to define the 
functional frame of the algorithm. First of all, the 
algorithm has to avoid static, non-cooperating 
obstacles. Non-cooperating means that the obstacle 
does not actively send out any information about its 
size, orientation, position, or presence at all. 
However, the obstacle might be arbitrary in texture, 
shape, size, and position. Additionally, the number of 
obstacles also might be arbitrary. 
It is assumed that the sensor range data of the 
surrounding of the UAV is available. The maximum 
and minimum sensor range is assumed to be known 
and used as input parameters for the algorithm. The 
field of view of the sensor system is assumed to be 
arbitrary but known and constant. Feature 
identification, point tracking, and similar functions are 

not required. It is also assumed that the sensor 
system and flight controller are equipped onboard the 
UAV, and no downlink to a ground station is required. 
The UAV shall be able to navigate autonomously and 
be self-sufficient. 

4. CONCEPT

The obstacle avoidance algorithm has to fulfill all hard 
requirements in any case, while finding the optimal 
trade-off between the different soft requirements 
simultaneously. To achieve both types of 
requirements, the 3DVFH*, implemented in the px4 
avoidance algorithm, is used as a basis and 
combined with an intelligent master function. The 
master function sets the px4 avoidance control 
parameters according to the current situation and the 
importance of a specific soft requirement for the 
current mission. 
Most flying animals face the same problem of finding 
an optimum between several different requirements. 
Therefore, the strategies applied by bumblebees to fly 
through cluttered environments are used as a basis 
for the intelligent master function. Even though more 
research is required to develop a functional algorithm 
based on the behavior of bumblebees, some of the 
strategies applied by bumblebees are presented here 
and possible ways to implement them as a part of an 
existing obstacle avoidance algorithm. 

4.1. The basis 

The 3DVFH* is used as a basis. The algorithm has 
shown that it can solve various situations reliably if 
the px4 control parameters are chosen correctly. The 
authors tested the performance of the px4 avoid 
algorithm in 3754 different worlds with different 
obstacle situations. The tests were conducted in a 
software in the loop (SITL) environment with 
GAZEBO simulator and ROS. Three types of worlds 
were tested. The first type, 900 worlds, had one to 
forty randomly placed rectangular obstacles with 
different dimensions and positions. One world is 
exemplarily depicted in Figure 4. 
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Figure 4: Example World with 40 obstacles, 6 m x 6 
m in size. The drone's start point (blue) and goal 

point (red) are 6 m away from the first/last obstacle. 

The second type, 254 worlds, consists of cylindrical 
obstacles placed randomly between the start and the 
goal point. These worlds partly had a hill or valley 
between the start and the goal point. The third type, 
2600 worlds, representing cities, had differently sized 
cuboids (buildings), randomly arranged in specified 
distance ranges (streets). This type of world is shown 
in Figure 5. 

Figure 5: Example world with building-like obstacles 
arranged in rows from left to right with spaces typical 
for 3 to 5 lane roads between each row of obstacles. 

The blocks represent buildings with 7 to 50 floors 
and are generated and placed randomly. 

Additionally, several Obstacles have a small space 
(1-5 m) between each other; fewer obstacles have 

wider spaces (5-20 m). Goal and start point position 
are varied from close to buildings (5 m) to far from 

buildings (50m) 

The simulations showed that the goal position of most 
worlds could be reached without crash with at least 
one combination of px4 avoid parameters. However, 
the parameter combination, which leads to a 
successful flight, differed from world to world. 
Additionally, the analysis showed that there is still 
much improvement for the px4 avoid algorithm. An 

average of 20% of the simulations were not 
successful. Here, not successful means the UAV 
does not reach the goal point. The reason might be a 
crash, safe landing, or inability to pass an obstacle 
and reach the goal.  

Figure 6: Proportion of non-successful flights for 
variations of the choosable px4 avoid parameters 
max_sensor_range (max sensor), min_sensor_range 
(min sensor), pitch_cost_param (pitch cost), 
yaw_cost_param (yaw cost), velocitiy_cost_param 
(velocity cost), obstacle_cost_param (obstacle cost), 
smoothing_speed_xy (smooth speed xy), 
smoothing_speed_z (smooth speed z), 
smoothing_margin_degrees (smooth margin) 

Figure 6 shows that some parameters, e.g., the 
variation of the velocity cost parameter or the pitch 
cost parameter, have a more significant influence on 
the success rate of the px4 algorithm than other 
parameters. However, Figure 6 also shows that at 
least 10% of flights were unsuccessful regardless of 
which px4 avoid parameter varies within useful 
bounds. 
Nonetheless, the px4 avoid algorithm already 
contains various features and can prevent the UAV of 
crashes in many cases. It is also able to fulfill its 
mission and reach its goal on the majority of flights. 
Therefore, the current px4 avoid algorithm, release 
0.3.1, is chosen as a basis. 

4.2. Situation-dependent speed adaption 

The compound eyes of insects work differently than 
human eyes and directly measure optic flow. Optic 
flow is the pattern of objects' relative motion in an 
observer's field of view; it equals an angular velocity 
map around an observer [35]. Bees and other insects 
keep the optic flow on their eyes constant to adapt 
their flight speed to any situation. Recently, Dynamic 
Vision Sensors (DVS), also known as event cameras, 
silicon retina, or neuromorphic cameras, were 
developed, which directly measure optic flow and do 
not work like classical cameras or the human eye. If 
the UAV is equipped with such a system, a situation-
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based flight velocity control with a flight controller 
keeping the optic flow constant can be directly 
implemented. The disadvantage of such a system is 
that obstacles in flight direction are hard to detect or 
not detectable at all. 
Therefore, a classic 3D vision system or a 
combination of a DVS camera and an optic range 
detector are considered a more reliable solution. 
Here, careful choice of the available field of view is 
essential. The distance between UAV and the 
obstacle should directly influence flight speed. If 
obstacles are close, the flight speed should be 
adapted to an adequate, lower speed. However, this 
should happen for obstacles in front and around the 
UAV. Taking obstacles lateral to the UAV into account 
allows passing such obstacles at an adequate speed, 
which increases safety and flexibility. The behavior of 
bumblebees can be mimicked by linearly reducing the 
flight speed from cruise velocity to minimal flight 
velocity with decreasing obstacle distance (Figure 7). 
The minimal flight speed and goal distance must be 
chosen according to the UAV's weight. The minimal 
flight speed should be lower at a higher minimal 
distance for heavier UAVs than for lighter UAVs. This 
speed is chosen similarly to the difference in the 
behavior of heavier and larger bumblebees compared 
to lighter and smaller ones.  

Figure 7: the linear relationship between forward 
flight velocity and lateral distance to the closest 

obstacle for lighter UAV (orange, dotted line) and 
heavier UAV (blue, solid line) 

4.3. Differentiation between close and far 
obstacles 

Recent investigation on the behavior of bumblebees 
indicates that bumblebees use two fundamentally 
different obstacle avoidance strategies. Close 
obstacles are evaded horizontally, and far obstacles 
are evaded vertically. The px4 avoid algorithm, on the 
other hand, is often stuck in front of wide obstacles 
and meandering in front of them because the cost to 
evade the obstacle in one direction becomes too high. 

Figure 8: Adaption of the px4 avoid algorithm and 
limiting the considered candidate points according to 

the distance between UAV and obstacle sphere 
ddecision. A core section of candidate points will be 

evaluated in any case (yellow), while the evaluation 
of the surrounding points depends on ddecision 

(green). 

Implementing a strategy to evade far obstacles 
vertically, e.g., flying over them, will solve this 
problem partly. This behavior can be achieved by 
significantly decreasing the cost of vertical avoidance 
kpitch. If the UAV starts increasing flight altitude directly 
after identifying the obstacle and if the distance is 
higher than the minimal distance for vertical evasion, 
ddecision, the obstacle will be overflown when reaching 
it (Figure 8). If this is not possible because the 
obstacle is too high, the drone is forced to reevaluate 
the situation when the UAV is close to the obstacle, 
and the obstacle blocks the whole FoV. In this case, 
the horizontal avoidance maneuver is performed with 
a high cost of vertical avoidance kpitch until the 
obstacle is passed. If the obstacle is high and wide, 
the UAV will start meandering in front of the obstacle 
with the current px4 avoid flight algorithm. If the 
horizontal avoidance maneuver is performed for a 
specified time, this should be combined with vertical 
avoidance (=reduction of kpitch) and decreasing of the 
goal cost parameters kgoal such that the UAV starts to 
fly longer distances to the left and right and increase 
in altitude. By this adaption of parameters, the 
searching behavior of bumblebees can be mimicked. 
Additionally, this approach can reduce the overall 
algorithm's computational effort because the total 
number of candidate points can be reduced. If the 
closest obstacle is below a certain threshold, ddecision, 
is only candidate points in a wide but short corridor 
need to be considered. If the distance is greater than 
ddecision, points in a high but narrow corridor need to be 
considered (Figure 8). The shape of this corridor is 
defined by a core section around the goal direction, 
which will be evaluated in any case (yellow), and a 
distance-dependent section defining the waypoints, 
which will be considered around the core section 
(green).  
However, this approach requires a minimal tree 
length longer than ddecision such that the avoidance 
strategy is not changed while the UAV is approaching 
the obstacle. Alternatively, the corridor of possible 

CC BY 4.0

Deutscher Luft- und Raumfahrtkongress 2020

7

https://creativecommons.org/licenses/by/4.0/


candidate points is fixed until the obstacle is passed 
or no good candidate point is available. 

4.4. Final goal approach 

Analysis of the px4 avoid algorithm showed no 
difference in behavior if the drone is close to the goal 
point. This behavior leads to several different 
problems. If the goal is close to a landing platform, the 
platform is identified as an obstacle. The wrong 
identification either leads to meandering in front of the 
goal point or circulation around the goal point. In this 
case, the goal is never reached. Therefore, the safety 
distance to obstacles needs to be adjusted to allow 
landing on platforms or hovering close to buildings. 
For a given flight speed, according to equation ( 4 ), a 
minimally required distance to an obstacle can be 
derived from Figure 7. 
Another problem is that the UAV changes flight speed 
only in specific situations and rates. Flying close to 
the goal is none of these cases. Therefore, an 
overshooting of the goal point is common, as 
visualized in Figure 9. 

Figure 9: UAV overshooting the goal point (yellow). 
The green dotted line represents the flight path. 

In short missions or missions with several dedicated 
stop and hover points, e.g., to drop a parcel, the time 
and energy consumption required to correct this 
overshooting is significant and reduces efficiency. 
Therefore, a specified goal approach is required to 
improve performance. The px4 algorithm is already 
equipped with a save landing assistant. However, this 
algorithm is not used to land safely at a specific 
position but to land close by the current position. 
To adequately approach a specified goal point, a new 
algorithm is required. Here again, insects have 
developed strategies to land on and in flowers. They 
decelerate smoothly during approach, maintaining a 
constant image expansion rate. This behavior can be 
mimicked by a proportional dependency of the flight 
speed v to the goal distance dgoal of the type 

( 4 ) 𝑣 =  √𝑎 ∙ 𝑑𝑔𝑜𝑎𝑙 

In equation ( 4 ), 𝑎 has to be chosen according to the 
desired mission type because this parameter defines 
the energy consumption and duration of the final goal 
approach. The following table gives a comprehensive 
but not exhaustive overview of recommended values 
for 𝑎 for different mission types and situations 
independent of the UAV. 

Mission Type 𝒂 

Time-critical 90% of the maximally 
available deceleration 

High Endurance Average drag force 
during approach over 
total mass 

Low accelerations Average drag force 
during approach over 
total mass 

High safety and time-
critical 

75% of the maximally 
available deceleration 

Table 1: recommended a values for different mission 
types 

In order to be able to react to gusts, it is not 
recommended to plan for theoretically maximally 
available deceleration rates. 
Additionally, ksmooth should be decreased with 
decreasing distance to the goal to allow fast direction 
and velocity changes. 

5. CONCLUSION

The conducted studies show that the px4 avoid 
algorithm is well suited to solve various challenging 
situations and fly autonomously from start to goal 
point. However, the parameters controlling the 
behavior of the px4 avoid algorithm have to be 
chosen with much care. Therefore, an approach is 
presented which adapts the flight speed to the current 
situation to simplify situations for the px4 algorithm. 
Additionally, close obstacles should be avoided 
horizontally, while far obstacles should be overflown. 
This behavior will diminish the problem of the px4 
getting stuck in various cases. Finally, a specific goal 
approach is required, which adapts the flight speed 
independent of the smoothness parameter ksmooth of 
the px4 avoid algorithm to improve the performance 
of the goal approach. 

6. REFERENCES

[1] S. Aggarwal and N. Kumar, “Path planning
techniques for unmanned aerial vehicles: A
review, solutions, and challenges,” Computer
communications, vol. 149, pp. 270–299, 2020,
doi: 10.1016/j.comcom.2019.10.014.

[2] T. A. Sarmiento and R. R. Murphy, “Insights on
obstacle avoidance for small unmanned aerial
systems from a study of flying animal
behavior,” Robotics and Autonomous Systems,

CC BY 4.0

Deutscher Luft- und Raumfahrtkongress 2020

8

https://creativecommons.org/licenses/by/4.0/


vol. 99, pp. 17–29, 2018, doi: 
10.1016/j.robot.2017.09.002. 

[3] X. Zhao, G. Wang, M. Cai, and H. Zhou,
“Stereo-vision based obstacle avoidance by
finding safe region,” International Journal of
Control, Automation and Systems, vol. 15, no.
3, pp. 1374–1383, 2017.

[4] A. Asvadi, C. Premebida, P. Peixoto, and U.
Nunes, “3D Lidar-based static and moving
obstacle detection in driving environments: An
approach based on voxels and multi-region
ground planes,” Robotics and Autonomous
Systems, vol. 83, pp. 299–311, 2016.

[5] R. Thakur, “Scanning LIDAR in Advanced
Driver Assistance Systems and Beyond:
Building a road map for next-generation LIDAR
technology,” IEEE Consumer Electronics
Magazine, vol. 5, no. 3, pp. 48–54, 2016.

[6] W. Song, Y. Yang, M. Fu, F. Qiu, and M.
Wang, “Real-Time Obstacles Detection and
Status Classification for Collision Warning in a
Vehicle Active Safety System,” IEEE
Transactions on Intelligent Transportation
Systems, vol. 19, no. 3, pp. 758–773, 2018.

[7] Wilbert G. Aguilar, Verónica P. Casaliglla, and
José L. Pólit, “Obstacle Avoidance Based-
Visual Navigation for Micro Aerial Vehicles,”
Electronics, vol. 6, no. 1, p. 10, 2017. [Online].
Available: https://doaj.org/article/
4bdb5fca1ae245a9b8c2d8755e5b882e

[8] C.-H. Kim, T.-J. Lee, and D.-I. “. Cho, “An
Application of Stereo Camera with Two
Different FoVs for SLAM and Obstacle
Detection,” IFAC PapersOnLine, vol. 51, no.
22, pp. 148–153, 2018.

[9] R. Renjith, Reshma R., and K. V. Arun, “Design
and implementation of traffic sign and obstacle
detection in a self-driving car using SURF
detector and Brute force matcher,” IEEE
ICPCSI, vol. 2017.

[10] A. J. Davison, I. D. Reid, N. D. Molton, and O.
Stasse, “MonoSLAM: real-time single camera
SLAM,” IEEE transactions on pattern analysis
and machine intelligence, vol. 29, no. 6, pp.
1052–1067, 2007, doi:
10.1109/TPAMI.2007.1049.

[11] M. Pittner, M. Hiller, F. Particke, Patino-
Studencki. L., and J. Thielecke, “Systematic
Analysis of Global and Local Planners for
Optimal Trajectory Planning,” ISR 2018; 50th
International Symposium on Robotics, vol.
2018.

[12] X. Liang, G. Meng, Y. Xu, and H. Luo, “A
geometrical path planning method for
unmanned aerial vehicle in 2D/3D complex
environment,” Intelligent Service Robotics, vol.
11, no. 3, pp. 301–312, 2018.

[13] Kun Wei and Bingyin Ren, “A Method on
Dynamic Path Planning for Robotic Manipulator

Autonomous Obstacle Avoidance Based on an 
Improved RRT Algorithm,” Sensors, vol. 18, no. 
2, p. 571, 2018. [Online]. Available: https://
doaj.org/article/
f3e03758ca0e41a3b3ba56a45256f25b 

[14] J. García and J. M. Molina, “Simulation in real
conditions of navigation and obstacle
avoidance with PX4/Gazebo platform,” Pers
Ubiquit Comput, 2020.

[15] T. Baumann, “Obstacle Avoidance for Drones
Using a 3DVFH Algorithm,” Masters Thesis,
ETH Zürich;, 2018.

[16] E. de Lellis, G. Morani, F. Corraro, and V. Di
Vito, “On-line trajectory generation for
autonomous unmanned vehicles in the
presence of no-fly zones,” Proceedings of the
Institution of Mechanical Engineers, Part G:
Journal of Aerospace Engineering, vol. 227, no.
2, pp. 381–393, 2012, doi:
10.1177/0954410011430173.

[17] J. Gonzalez, A. Chavez, J. Paredes, and C.
Saito, “Obstacle Detection and Avoidance
Device for Multirotor UAVs through interface
with Pixhawk Flight Controller,” in IEEE CASE,
pp. 110–115.

[18] A. Alexopoulos, A. Kandil, P. Orzechowski, and
E. Badreddin, “A Comparative Study of
Collision Avoidance Techniques for Unmanned
Aerial Vehicles,” in IEEE Syst Man Cy C, pp.
1969–1974.

[19] R. He, R. Wei, and Q. Zhang, “UAV
autonomous collision avoidance approach,”
Automatika, vol. 58, no. 2, pp. 195–204, 2017,
doi: 10.1080/00051144.2017.1388646.

[20] S. Ahmed, A. Mohamed, K. Harras, M. Kholief,
and S. Mesbah, “Energy efficient path planning
techniques for UAV-based systems with space
discretization,” in 2016 IEEE Wireless
Communications and Networking Conference,
2016, pp. 1–6.

[21] I. Ulrich and J. Borenstein, “VFH+: Reliable
Obstacle Avoidance for Fast Mobile Robots,” in
Proceedings. 1998 IEEE International
Conference on Robotics and Automation (Cat.
No.98CH36146), 1998.

[22] I. Ulrich and J. Borenstein, Eds., VFH*: Local
Obstacle Avoidance with Look-Ahead
Verification, 2000.

[23] A. M. Mountcastle, T. M. Alexander, C. M.
Switzer, and S. A. Combes, “Wing wear
reduces bumblebee flight performance in a
dynamic obstacle course,” Biology letters, vol.
12, no. 6, 2016, doi: 10.1098/rsbl.2016.0294.

[24] J. L. Osborne et al., “The ontogeny of
bumblebee flight trajectories: from naïve
explorers to experienced foragers,” PloS one,
vol. 8, no. 11, e78681, 2013, doi:
10.1371/journal.pone.0078681.

CC BY 4.0

Deutscher Luft- und Raumfahrtkongress 2020

9

https://creativecommons.org/licenses/by/4.0/


[25] F. A. Zabala, G. M. Card, E. I. Fontaine, M. H.
Dickinson, and R. M. Murray, “Flight Dynamics
and Control of Evasive Maneuvers: The Fruit
Fly’s Takeoff,” IEEE T Bio-Med Eng, vol. 56,
no. 9, pp. 2295–2298, 2009.

[26] F. T. Muijres, M. J. Elzinga, J. M. Melis, and M.
H. Dickinson, “Flies evade looming targets by
executing rapid visually directed banked
turns.,” Science, vol. 344, no. 6180, p. 172,
2014.

[27] R. Kern, N. Boeddeker, L. Dittmarand, and M.
Egelhaaf, “Blowfly flight characteristics are
shaped by environmental features and
controlled by optic flow information.,” J Exp
Biol, vol. 215, no. 14, p. 2501, 2012.

[28] J. Serres, G. P. Masson, F. Ruffier, and N.
Franceschini, “A bee in the corridor: centering
and wall-following,” The Science of Nature
Naturwissenschaften, vol. 95, no. 12, pp.
1181–1187, 2008. [Online]. Available: https://
hal-amu.archives-ouvertes.fr/hal-02294572

[29] G. Portelli, J. R. Serres, and F. Ruffier, “Altitude
control in honeybees: joint vision-based
learning and guidance,” Sci Rep, vol. 7, no. 1,
p. 9231, 2017.

[30] M. V. Srinivasan, S. W. Zhang, M. Lehrer, and
T. S. Collett, “Honeybee navigation en route to
the goal- Visual flight control and odometry,” J
Exp Biol, vol. 199, pp. 237–244, 1996, doi:
10.1242/jeb.199.1.237.

[31] M. V. Srinivasan, S. W. Zhang, J. S. Chahl, G.
Stange, and M. Garratt, “An overview of insect-
inspired guidance for application in ground and
airborne platforms,” Proceedings of the
Institution of Mechanical Engineers, Part G:
Journal of Aerospace Engineering, vol. 218, no.
6, pp. 375–388, 2004, doi:
10.1243/0954410042794966.

[32] J. D. Crall, S. Ravi, A. M. Mountcastle, and S.
A. Combes, “Bumblebee flight performance in
cluttered environments: effects of obstacle
orientation, body size and acceleration,” J Exp
Biol, vol. 218, Pt 17, pp. 2728–2737, 2015, doi:
10.1242/jeb.121293.

[33] M. Ong, M. Bulmer, J. Groening, and M. V.
Srinivasan, “Obstacle traversal and route
choice in flying honeybees: Evidence for
individual handedness,” PloS one, vol. 12, no.
11, e0184343, 2017, doi:
10.1371/journal.pone.0184343.

[34] A. Thoma, A. Fischer, O. Bertrand, and C.
Braun, “Evaluation of Possible Flight Strategies
for Close Object Evasion From Bumblebee
Experiments,” in Lecture Notes in Artificial
Intelligence: Springer, 2020.

[35] M. V. Srinivasan, “Visual control of navigation
in insects and its relevance for robotics,”
Current Opinion in Neurobiology, vol. 21, no. 4,

pp. 535–543, 2011, doi: 
10.1016/j.conb.2011.05.020. 

CC BY 4.0

Deutscher Luft- und Raumfahrtkongress 2020

10

https://creativecommons.org/licenses/by/4.0/

