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Abstract

In the move towards image processing for Automated Integration and Testing (AIT) we explored defect detec-

tion on reflowed satellite PCBs using deep learning. To this end we utilized a convolutional neural network for

semantic segmentation and subsequent instance segmentation for the detection of surface mounted devices,

pollution and defects. A dataset of 16k labeled instances including devices, solder connections, solderballs,

bridges and tombstoned components was created from our satellite fleet PCBs to train the network. The im-

ages were recorded using microscopes and industrial cameras and labeled using an active learning approach

with human experts annotating the initial data. Then, the partially trained network labeled additional data with

experts supervising the process and correcting predictions where necessary.We explored k-fold cross valida-

tion as well as dropout based uncertainty estimation for the prediction of samples that meaningfully extend our

training data. Further we evaluated the benefits of the implemented procedures and the annotation speedup

from the network assisted annotation. The resulting inspection system was successfully integrated into a

human-robot collaborative workspace to increase its production efficiency.
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1. INTRODUCTION

The system integration process of small satellite sys-

tems is challenging in respect to its requirements for

manufacturing precision, fault tolerance and clean-

ness. As most satellites used to be built in small batch

sizes down to a hand full of engineering models and a

single flight model, the effort of manual inspection of

system components was considerably lower than the

engineering costs, and the expenditure of time small

compared to the system integration process duration.

With the rise of modern small satellite systems which

are produced in larger batches manual inspection

quickly becomes a considerable cost factor. Thus

we developed an AI aided inspection module inte-

grated into a human-robot-collaboration workspace

that automatically detects and labels PCB faults on

satellite subsystems. Our system was trained on a

large dataset of PCB components and defects from

different variants of our satellite subsystem models.

2. RELATED WORK

Various methods for component detection on PCBs

include the detection of defects in copper lanes below

silk screen [1], the detection of components through

depth images [2], the detection of components with

hand-crafted features [3] and object detection of

various components in high-resolution wide-angle

images [4]. Especially the FICS-PCB Dataset [5]

(a)

(b)

FIG 1. Automatic detections of two ICs (blue) with their

solder connections (green) and two capacitors

on the same PCB version. (a) This capacitor is

tombstoned (pink) with surrounding solderballs

(orange). (b) Correctly reflowed capacitor with

surrounding flux and solder connections.
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is tailored towards high-level inspection of PCBs

with object detection methods for identifying different

component types, but contains only images of suc-

cessfully reflowed boards and no information about

defects or solder joints. This enables a system to

identify missing or additional components for fraud

prevention and hardware security evaluation, but

does not enable fault detection during AIT. While

there are many semantic segmentation approaches

with language models and end-to-end instance seg-

mentation models [6] [7] [8] [9] [10] [11], we decided

to use a modernized convolutional architecture [12]

as they are a mature architecture with a well estab-

lished design and training process. ConvNets have

the additional advantage of being well suited for the

detection of small scale objects like solderballs that

often only have a visible size of a few pixels.

3. SYSTEM DESCRIPTION

We developed a visual inspection system using a

semantic segmentation network to create instance

segmentations with a classical computer vision algo-

rithm and corresponding bounding box predictions

from the detected instances. The deep learning

step of our pipeline utilizes ConvNeXt layers in a

UPerNet [13] configuration with the layer and stage

ratios differing slightly from the original approach.

We initially tested a variety of different architectures

including UNet [14], and variations of it with Con-

vNeXt layers making up its backbone and additional

skip-layers following the approach in [15], but found

them to generate less precise predictions or not

generalize as well as the UPerNet described in the

original ConvNeXt paper. Our System is trained on

a single RTX 2070 SUPER. As we were unable to

identify a viable dataset we created one consisting

of 744 images of our satellite PCBs recorded with a

USB microscope and FLIR industrial cameras with

16.100 labeled instances. PCBs from our earth

observation cubesat satellite models are the main

source of inspection data. As the production process

of future satellites in the fleet will be streamlined

significantly the process of submodule inspection

is a prime target for automation. Thus the design

of our system focuses on the inspection of small

satellite modules with a width of less than 15cm.

Although the collected data comes from small boards

the inspection hardware in figure 6 can be utilized for

subsystems of a length of up to 40cm and a width

of 20cm. Although we took care to collect a range

of different satellite PCBs our selection was limited

to in-house options and thus measures were taken

to extend the distribution covered by the collected

instances. To prevent overfitting we created a data

augmentation pipeline including the following meth-

ods:

• global geometric augmentations: zoom, rotations,

affine transformations, horizontal and vertical flip-

ping

(a) (b)

FIG 2. (a) Shows a random selection of 10 unaltered

PCB images. (b) Shows a random selection of

10 augmented samples.

• pixel space augmentations: saturation, brightness,

color channel inversion, color channel shuffle, addi-

tive and multiplicative white noise
• localized augmentations: gaussian blur, coarse

dropout, channelwise coarse dropout
• sample interpolation: Mixup and Cutmix [16] [17]

We do not shift the input data in xy-direction as con-

vnets are translation equivariant. During the initial ex-

perimentation phase we did however train transformer

based networks [18] [19] which are not shift equiv-

ariant, and were trained with and without shift aug-

mentation. The system was deployed to the human-

robot-collaboration workspace seen in figure 6 (a) to

help with the PCB inspection and reworking process.

Figure 2 shows the difference between un-augmented

images in (a) and the randomly augmented samples

in (b). The augmentations alter the size, color and

spatial relation of the input instances so the network

learns more relevant features

4. SEGMENTATION NETWORK

The chosen network architecture seen in figure 3

consists of a UPerNet with a stage ratio of [3x96,

3x192, 27x384, 3x768] for the input feature pyramid

layers and a stage ratio of [2x96, 2x192, 2x384,

2x768] for the upsampling layers. The feature pyra-

mid utilizes ConvNeXt style convolutions to extract

the PCB features and 2x2 strided convolutions with

ReLu activations and a 2x2 kernel for downsampling.

All the downsampling steps are succeeded by a

normalization layer. The pyramid upsampling layers

consist of the same ConvNeXt layers behind 2x2
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FIG 3. The network is identical to the semantic seg-

mentation part of a UPerNet with a modernized

ResNet as a backbone.

transposed convolution layers. After each upsam-

pling step the correspondingly sized feature pyramid

layer is concatenated to the upsampling output.

Figure 3 shows the network architecture. Before

concatenation to the upsampling outputs the feature

maps are linearly projected to the upsampling layers

channel depth. The ConvNeXt layers have depthwise

kernels of size 7x7 and inverse bottleneck layers of

size four times the size of the given number of filters.

The final "Upsampling (Bilinear)" blocks scale their

inputs layer width and height by the specified factors.

They are concatenated and linearly projected to a

96 channel feature map of a quarter of the output

resolution. Finally the feature map is upsampled by a

factor of 4 and projected to the output class channel

number by a 4x4 transpose convolution layer. We

experimented with replacing the ConvNeXt layers

partially or fully with an equal number of transformer

layers, but did not notice a performance increase.

We use a soft-focal-loss [20] formulation to enable

training on interpolated images with soft class la-

bels and to allow the detection of small objects like

solderballs. In samples where most of the input

image consists of PCB background with only a small

number of pixels belonging to the predicted class, the

use of a loss function that empathizes rare classes

over frequent ones is required for the model to train

effectively. Because the default focal loss does not

enable the evaluation of soft labels we decided to use

the modified version from equation (3) to facilitate

the mixup augmentation technique. On its own the

cross-entropy in equation (1) can handle soft labels

but will neither increase the weight of rare classes

nor correct for skewed foreground-background distri-

Training Parameters

optimizer Adam

epochs 1000

batch size 4

learning rate 1.0e-4

gradient clipping 1.0

β1/β2 0.99/0.999

Augmentation Probability

geometric 100%

pixel space 33%

localized 33%

interpolation 33%

FIG 4. The settings for the network training process

butions. The class weights are added by the γ-factor

in equation (2). Finally equation (3) adds a class

density estimation α0 + y(α1 − α0) to extend the

cross-entropy to the soft-target focal loss.

CE(y, p) = −y · log (p)− (1− y) · log (1− p)(1)

FL(x, p) = |y − p|
γ
· CE(y, p)(2)

SFL(x, p) = [α0 + y(α1 − α0)] · FL(x, p)(3)

To make the evaluation of the cross entropy CE(y, p)
stable the value of p is clipped to [1.0e-7, 1.0-1.0e-7]

during training to prevent its log from becoming unde-

fined.

5. INSTANCE SEGMENTATION

Instances are detected in the semantic output by ap-

plying a class-wise probability threshold to create a

binary mask and successive extraction of clusters via

contour following. The minimum and maximum coor-

dinates of the contour polygons define the bounding

rectangle. This approach yields a result consisting

of the pixelwise instance segmentation of an object,

the object boundary in polygon form from the con-

tour detection and the bounding box. Overlapping in-

stances of the same class will be merged. While this

would be a significant drawback in other applications

our dataset contains very few examples like this. Al-

though in such cases a dedicated instance segmen-

tation network might yield better results the training of

such a network on medium to high resolution images

exceeds the capacity of our training hardware. To suc-

cessively extract the contours we are employing bor-

der following algorithms implemented in OpenCV [21]

[22]. The extracted contours are then used to crop

the detected instance from the pre-threshold predic-

tion and to create the bounding boxes by searching

the minimum and maximum coordinates of the con-

tour polygon. For each object its detection probability

is given by the mean of the cropped probability mask.
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(a) (b)

(c) (d)

(e) (f)

FIG 5. (a) The input Image is scaled to a resolution of

640x480. (b) The generated segmentation mask

for the solder connections. (c) The binary mask

for contour detection. (d) The detected polygo-

nal contours . (e) The bounding rectangles of

the given contours. (f) The combined prediction

results after all masks are evaluated.

The process is illustrated for the detection of a set of

solder connections on a faulty PCB in Figure 5. Tile

(f) of Figure 5 shows the final detections after the seg-

mentation masks of all classes have been evaluated.

6. INSPECTION SYSTEM

In the collaborative workspace seen in figure 6 (a), the

manipulator robot automatically grasps PCBs from a

carrier tray, and positions them under the correspond-

ing inspection cameras. The generated images are

then transferred to a server to be analyzed or used as

training data. The acquisition process for each PCB

can automatically be run seperately for each camera.

Each run yields 494 images of which 364 are micro-

scope images from camera (4) in figure 6 (b). A com-

plete scan of a board with all cameras takes a dura-

tion of less than 5 minutes. Due to the very precise

positioning needed to place the PCB in the focal point

of the individual cameras, as well as to be able to

inspect only certain points-of-interest on the boards,

the robot-camera system is calibrated using printed

glass calibration patterns, allowing for localizing fea-

tures with respect to the robot coordinate system and

placing boards accodingly under individual inspection

cameras. The same system used during training is

later employed for inspection during assembly. If a

PCB is classified as polluted or faulty during inspec-

tion, the production process can adaptively be altered

to either allow the human operator to clear the de-

(a)

(b)

FIG 6. (a) Image aquisition station using a robot for po-

sitioning of the components to be inspected. (b)

The four integrated cameras: (1) High resolu-

tion macro camera, (2) High resolution wide an-

gle camera, (3) Low magnification microscope,

(4) High magnification microscope.

fect, or to remove the faulty component from the in-

tegration process. This optical inspection step thus

improves production reliability by detecting potential

defects already during assembly. Detected faults can

be displayed to the human operator and also logged in

a production database, so the whole production net-

work can be improved during future iterations. Be-

cause the same system is used for inspection and

dataset collection a faulty detection that is noticed by

an operator will be stored so the production can be

improved.

7. DATA LABELING

Our training samples were created in an iterative

process of manual annotation, automated label

generation with a pre-trained network and manual

label correction. During the initial labeling phase

245 segmentation maps were created using the

tool "LabelMe" [23] to kickstart the active learning

procedure:w

1 Select data with out-of-fold prediction

• Create N splits of the training dataset without val-

idation data

• Train instances of the network, one for each split

• Predict the segmentation maps on previously un-

seen data with each network
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FIG 7. The training, validation and deployment process.

During the training phase the network is queried

to create labels for new data to assist in its own

training. Blue blocks are data sources. Yellow

blocks are our developments. Green blocks are

manual tasks.

• Calculate the per-class-deviation between the

predicted segmentation maps

• Sort the unseen data by its deviation and select

the M images that have the highest error in each

of the C classes

2 Create labels from predictions and correct man-

ually

• Evaluate the current best Network on the CxM

unlabeled images and create label polygons in

the LabelMe format

• Load the images and predicted labels into La-

belMe and correct errors

• Add the corrected images to the Dataset and go

to step 1

This process requires that the labeling takes place af-

ter each training of the N model instances or that the

individual splits be extended online by new data when

it becomes available. In Step 1.e the new samples

are selected per-class as different classes will have

FIG 8. Blue: Variance curve of the out-of-fold predic-

tion with k = 3. Orange: Variance curve of the

dropout uncertainty for 1% dropout and 10 sam-

ples.

a different magnitude of corresponding pixels per im-

age, leading to an imbalanced dataset with samples

for classes that typically cover large image areas be-

ing overrepresented. Using this procedure we anno-

tated a total of 2.600 components, 9.616 solderpads,

144 bridges, 3.657 solderballs and 60 tombstones.

These instances were labeled with 11.240 rectangles,

3.929 polygons and 931 circles for a total of 16.100

instances. Although there are plenty of instances to

train on we only acquired images from 21 satellite

PCBs, giving us a limited assortment of mostly white

solderscreens and comparably few electrical compo-

nents to work on. We acknowledge the fact that the

PCBs inspected by us are covering only a limited sub-

set of the available PCB options. Nonetheless we

expect the extension of our system to new types of

boards to be a trivial task.

Many solderballs and imperfections are only visible

under high magnification and thus the microscopic

images are suited best for an in-depth inspection of

PCBs. As the runtime of the inspection process can

be reduced greatly by inspecting fewer images from

the cameras with lower magnifications we aimed to

extend its use extend their use during inspection.

Once a defect is detected the analysis can be inter-

rupted to transfer the part into the correction process.

To facilitate this process we made sure around 10%

of the labeled instances come from the lower mag-

nification cameras. Anecdotally, the corresponding

images are only slightly out of fold if the network is

trained purely on high-magnification images when

strong data augmentation is applied. To extend the

usability of the network it was thus trained mainly on

on images from the strongly magnifying microscope
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image #1 image #2 image #3

# Labels 43 58 22

min:sec (M) 3:30 3:17 1:03

s/label (M) 4.9 3.4 2.9

min:sec (A) 1:08 2:07 0:39

s/label (A) 1.6 2.2 1.8

image #4 image #5 image #6

# Labels 53 75 76

min:sec (M) 3:03 5:22 4:22

s/label (M) 3.5 4.3 3.4

min:sec (A) 1:18 3:48 4:32

s/label (A) 1.5 3.0 3.6

image #7 image #8 image #9

# Labels 35 31 28

min:sec (M) 2:10 2:20 1:36

s/label (M) 3.7 4.5 3.4

min:sec (A) 1:59 1:12 1:50

s/label (A) 3.4 2.3 3.9

TAB 1. Timings of the annotation process (M) manual,

(A) assisted.

and with few images from the other three cameras.

This allowed us to detect solderballs at the second

stage of the camera inspection, cutting the runtime of

the process by 74% when all 364 microscope images

are skipped.

8. EVALUATION

8.1. Assisted Labeling

In order to test the effectiveness of our assisted la-

beling algorithm we labeled a subset of nine images

twice, once with the pre-trained network and once

fully manually. The images were labeled so that the

assisted annotation always preceded the manual la-

beling. This way the annotator had an advantage on

the full-manual labeling run as they have already seen

the sample before. Thus these timings can be viewed

as a lower bound for the expected speedup. The im-

ages contained 421 individual instances, 83 compo-

nents, 270 solderpads, 5 bridges, 62 solderballs and

one tombstone. From Table 1 we calculate that a sin-

gle sample is labeled in an average of 3.78±0.82 sec-

onds per polygon during the fully manual phase and

2.64 ± 0.77 seconds per polygon during the assisted

phase. This constitutes a speedup of 30% of the as-

sisted labeling over the manual annotations.

The effect of the image selection process in the label-

ing procedure is harder to exemplify. We recognize

out-of-fold prediction as inherently useful to identify

novel datapoints that meaningfully extend the sample

distribution in a similar way that uncertainty estima-

tion can. Ensemble estimation, of which the k-fold

(a) (b)

FIG 9. The top 10 candidates from a new PCB. Starting

with the top-1 from the upper left to lower right

(a) shows the top out-of-fold candidates and (b)

shows the top uncertainty-sampling candidates.

The pictures mostly show microscope images of

a USB connector and a pin connector. The train-

ing data contains only few examples of these

components, making them good candidates to

extend the dataset.

training in our system is a special case, can also be

used to estimate model uncertainty [24] [25]. In figure

8 we identified a power-law behavior of the calculated

loss in that 5% of the novel samples were responsi-

ble for 50% of introduced variance. The difference

between samples on the high end of the spectrum

and the low end is more pronounced in the out-of-

fold prediction curve, separating the best predictions

more clearly from the rest. If the soft-focal-loss is eval-

uated on the ensemble prediction, the mean loss of

the lower two thirds of samples that were evaluated

is 8.1e-4 and thus compares favorably with the loss

value of the training validation loss of 7.7e-4, sug-

gesting that the samples exhibit only residual random

noise and cannot be distinguished by our method. We

compared the process to uncertainty prediction with

random dropout [26] and found they yield comparable

results. The uncertainty estimation was implemented

by randomly dropping 1% of activations from the Input

layer and the first two downsampling layers, evaluat-

ing the network 10 times and tracking the standard

deviation of the output.

Figure 8 shows the resulting sorted samples. The

mean index distance between identical samples in

the two sorted lists of 364 images is 42 and 26 for

the top 50 images, indicating the correlation between

the sorting methods. A uniform random assignment

would be expected to yield a mean index distance

of E(X) = 364 ·
∫

1

0
(x2 − x + 1

2
)dx = 121.3. A

comparison of the generated annotation candidates

can be viewed in figure 9. The selected images all

show components with very few training examples.

The dataset previously contained only a single USB
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(a) (b)

FIG 10. A selection of the top 20 of the solderball class

(a) shows the top out-of-fold candidates and

(b) shows the top uncertainty-sampling candi-

dates. As expected the images show mostly

pollution, which is frequently misidentified as

solderballs.

connector and pin connector of the detected variants,

both with a different appearance and size from the

newly selected instances.

The nature of the k-fold-differencing process intro-

duces a potential risk. The sorting key ei,c for sample

xi in the sorted list of class c is calculated to be:

ei,c =

√

√

√

√

N
∑

a

(µc − fΦa
(xi)c)2

N
(4)

for fΦa
network instances with network weights Φ

trained on the N splits of the dataset, µc the mean

prediction value for class c and fΦa
(xi)c the predic-

tion of the network on sample xi. If the unseen data

contains samples that introduce the same error into

the predictions of all trained instances, the sorting key

is low and the samples will be recognized as explain-

able by the training data and thus not be selected as

a candidate for labeling. Although we were unable to

observe such behavior it is a mathematical property

of the selection process that must be taken into

consideration when designing larger labeling tasks

where the unlabeled data can not be skimmed for

erroneous predictions. Because we could not identify

erroneous candidates in our test data we suggest that

this process is nonetheless an effective method for

selecting new samples to annotate. A clear benefit

of evaluating the k-fold cross-validated networks on

new data is the speed up over the dropout method.

The evaluation of the three ensemble networks for

uncertainty prediction is 70% faster than evaluating

the same network ten times with dropout.

FIG 11. Precision-Recall plot for the final network

8.2. Network Accuracy

From the Precision-Recall (PR) metric depicted in fig-

ure 11 it is clear that the model can identify most

classes well. The only unexpected behavior is the low

PR curve for the "Solderball" class. Upon inspecting

a set of unlabeled test images in figure 10 the issue

can be explained. The chosen focal-loss results in

a strong weight for this class during training, as pos-

itive samples often contain > 99% background pix-

els. This results in a network that is highly sensitive to

solderballs and generates a lot of false-positive sam-

ples on non-solderball objects. Additionally the sol-

derball class is the least precisely labeled class in the

dataset, with annotators frequently overlooking sam-

ples or labeling dust particles or solder-flux residue.

As dust and grainy surfaces are often falsely identified

as solderballs by the labeling workers the network will

also be overly sensitive to these features. Figure 10

also shows very clearly that the active learning proce-

dure picked up on this issue, suggesting images with

dirty surfaces as labeling candidates. Because sol-

derballs are frequently only single pixels in size the

dropout process can produce features reminiscent of

solderballs, misleading the segmentation network into

identifying the dropout itself as solderballs. As a re-

sult the dropout method is less useful for the solder-

ball class uncertainty. Even though the instance seg-

mentation algorithm typically filters those detections

through the class-specific threshold the samples will

likely increase the model precision. We were able to

produce a false positive rate of 1.7% in our demon-

stration system while maintaining a detection rate of

99.3% for all classes except the solder balls. Includ-

ing the detected pollution on the PCBs the solderball

class produces 23.7% false positives at a detection

rate of 75.4%.
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FIG 12. Mean training and validation loss values of the

k-fold validated training. The validation loss

values are calculated without image augmenta-

tions and as a result are slightly lower.

There are no signs of overfitting in Figure 12. It shows

neither increase nor a stagnation of the validation

loss, indicating that the applied data augmentation

prohibits this kind of behavior up to the trained

accuracy. We determined that only the geometric

augmentations, rotation, zoom and shear are needed

to prevent overfitting. We hypothesize this is due

to the non-repeating nature of the input image fea-

tures under transformation creating the necessity

for transformation invariant kernels to be learned by

the network. Under random affine transformation

samples with distance and orientation dependent

labels will create continuous distributions of training

data from a discreet number of samples. As almost

all of the labels in the dataset depend upon some

orientational relationship, for example between sol-

der pads and components, solder pads and solder

balls or bridges and solder pads, there will be many

continuous sample spaces for the network to learn.

9. CONCLUSION

We demonstrated a practical approach for data selec-

tion using k-fold cross-validation resulting in a novel

dataset of PCBs with object segmentations for com-

mon defects. A comparison of uncertainty sampling

and cross-validation approaches indicates the pro-

cess is similarly useful and produces interesting new

samples for the model training. Assisted annotation

was tested during the labeling process and provided

a significant speedup of the process. While these

approaches are individually useful the integration

of uncertainty estimation via dropout with both the

cross-validation procedure and the assisted labeling

process will be an interesting system to explore. It

may not just be able to identify hard samples, but also

pre-sample the easy parts of any hard sample image

to further speed up the annotation. Another open

question is the relationship between the predicted un-

certainty of the unlabeled samples and the evaluated

model type and size. If the sample space exploration

can be facilitated by a smaller model that can be

trained with less effort the active learning procedure

might be significantly accelerated. The resulting

system was tested in a human-robot collaborative

workspace and determined to be sufficient for our

use-case. Despite its minor limitations, the trained

segmentation network was successful in detecting

surface defects and PCB pollution on new satellite

components. It was integrated into our AIT process

to improve its reliability and efficiency.

Contact address:

david.bohlig@telematik-zentrum.de
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