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Abstract 
 

Software development of safety critical applications like battery controller, flight controller, medical devices, 
military weapon systems, etc. requires significant number of verification and validation steps to ensure that 
the software is compliant towards certification standards. This results in extensive documentation, strict 
methodologies, and verification activities, but also creates a space for researchers to invent automation 
techniques to make the software development process simpler. Critical information on how the development 
and verification tools are interlinked with each other during the development process is usually a part of 
intellectual property of large aerospace companies. Such information is not available publicly and this 
hinders the growth of startups and small/medium enterprises. To overcome such hurdles, a process-oriented 
build tool based on MathWorks’ MATLAB and Simulink has been already developed and is used in many 
flight control applications. In this paper, an application of this build tool to develop a slave controller of a 
Battery Modular Multilevel Management (BM3) system while undergoing process development steps 
required by aerospace safety standards is presented. The tool provides a development environment with 
predefined model templates, block libraries, configuration settings and jobs for executing process-relevant 
tasks like automatic code generation, code verification, model verification, etc. The tool also ensures 
consistency of model artifacts and compatibility with downstream tools used for verification and validation on 
model and code level. The paper presents several verification and development results which authenticates 
the mentioned advantages of the build tool.  
 

1. INTRODUCTION 

Safety-critical applications refers to systems whose failure 
can affect human safety. Example of safety-critical 
software include applications in aerospace, automotive, 
railway, medical, and nuclear industries. Significance of 
safety-critical software development can be realized after 
looking at several fatal incidents that have taken place in 
the history of humankind. In 2018-2019, Lion Air Flight 610 
and Ethiopian Airlines Flight 302 crashed probably due to 
reliability of Boeing’s Maneuvering Characteristics 
Augmentation System (MCAS) on a single source of 
information [1]. In 1997, Korean Air Flight 801 crashed 
during landing. One of the possible causes of the crash 
was improper configuration of the minimum safe altitude 
warning system [2]. In 2015, Toyota recalled 112,500 
vehicles due to possible power steering issues and electric 
vehicle safety problems [3].  

After observing such incidents, lot of importance has been 
given to the safety assurance of such software. Hence, 
safety-critical software must follow lot of safety measures, 
documentation, and strict methodologies according to the 
standards. Secondly, large scale companies usually do 
not publicize the information on how the toolchain is setup 
and interlinked, hence smaller companies struggle to 
compete. In industries, software development lifecycle like 

V-Model with Model-based Development approach is 
applied to develop a structured environment and 
accelerate verification and validation steps. However, in 
safety-critical applications and specially in aviation, the 
implementation of change in requirements, e.g., adding a 
new feature after certification is expensive and requires lot 
of efforts and time. This problem is known as a ‘big-freeze’ 
problem [4]. To overcome these several problems, a 
process-oriented build tool called ‘mrails’ is already 
developed and used in several complex flight control and 
avionics software development projects at Institute of 
Flight System Dynamics, TUM, and the Institute for 
Aeronautical Engineering at Universität der Bundeswehr 
München [5].  

This build tool provides a structured but flexible 
development environment in MATLAB and Simulink 
framework [6]. The tool ensures smooth development of 
the functionality while maintaining a consistent artifact tree 
and traceability [7]. By doing so, tasks for demonstrating 
process compliance, e.g., for RTCA DO-178C/331, can be 
supported [8,9].  

This research is intended to develop a slave controller for 
a battery system using the build tool and present several 
advantages of it. The slave controller is a part of battery 
controller consisting of one master controller and several 
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Fig. 1: Overview of the process-oriented build tool 

similar slave controllers for each submodule. The BM3 
system is based on an integrated 3-switch inverter 
topology [10,11] and is proposed for an electric aircraft in 
context of the project ELAPSED [12] which focuses on 
developing an electric powertrain with a new propulsion 
system. 

The structure of the paper is as follows: the following 
section describes the methodologies that are implemented 
in this research; the build tool mrails and the battery 
controller. Section 3 presents the controller development 
process, the verification and validation results are 
mentioned in Section 4. Finally, the future work and 
conclusions are discussed in Section 5 and 6 respectively. 

2. METHODOLOGIES 

2.1. Process-Oriented Build Tool 

As the name implies, the build tool is developed to support 
the process compliant development of software according 
to standards like DO-178C/DO-331 [13]. The tool 
incorporates modular model-based design approaches 
and provides the developer with a friendly environment to 
perform development and verification activities without 
bothering about the configuration settings, tools 
interlinking and artifacts handling. Model-based design 
approach provides advantages like ease in readability, 
early detection of defects by unit testing and code reuse 
[14]. The tool incorporates a so-called lifecycle package 
which provides the necessary artifact containers, 
configuration settings, and automated verification jobs. 
These containers are used to create model and its 
elements like constants, parameters, tests, and buses. An 
overview of the build tool is shown in Fig. 1. Results from 
the automated code generation and verification tasks are 
accumulated and can be accessed by a web-based HTML 
report. 

2.1.1. Advantages of the build tool  

• Automatic Code Generation: The lifecycle package 
included in the tool provides code generation task. 

The task is divided into two parts – shared code 
generation and code generation. Shared code 
contains the code for interfaces of the model which 
once validated, do not need to change. Code 
generation follows a bottom-to-top approach with 
incremental build of only required models in the 
architecture hierarchy [15]. 

• Toolchain Setup: The build tool is based on 
MATLAB/Simulink and includes use of applications 
like Embedded Coder, Simulink Test Manager, Model 
Advisor and Design Verifier. Polyspace is used for 
code proving and defect analysis. The build tool 
configures these applications automatically with 
predefined configurations and collects artifacts after 
task execution. This relieves the stress of toolchain 
setup and maintains consistency in a distributed 
team. 

• Lifecycle Package: The tool itself provides ability to 
incorporate different lifecycle packages. These 
packages contain development and verification jobs 
for the models and code. Along with artifacts 
handling, the package also provides containers to 
create model elements like top-level/reusable models, 
buses, test cases, parameters, etc. These model 
elements are created with settings to comply with DO-
178C/DO-331 standards [13]. 

• Incremental Verification and Traceability: When a 
change is detected in a particular model or code, the 
design and code verification tasks are only performed 
on those artifacts avoiding re-verification. Consistency 
of the artifact is also checked, for e.g., whether the 
generated result matches to latest version of model. 
The verification results are displayed in a web-based 
HTML status report and the jobs can be traced back 
to the required model elements. This provides 
traceability of the artifacts. 

• Integration of Multiple Modules: In case of 
modularized software, the distributed team should be 
able to integrate their software modules after 
development and verification. The build tool provides 
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ability to handle the integration and differentiate the 
model elements required to avoid any changes to the 
individual modules [15]. This plays an important role 
in case of complex software architectures, where the 
top-level model consists of several submodules. 

2.1.2. Process Workflow 

The process flow is divided into three dependent stages: 
process setup, design and build, verification and validation 
as shown in Fig. 1. 

• Process Definition: The process setup phase consists 
of setting up the system and software requirements. 
This can be done in Polarion which is an ‘Application 
Lifecycle Management’ tool used for managing 
requirements and achieving agility [16].  The next step 
is to create a MATLAB project by using build tool 
command ‘mrails create-module’ The user is asked 
for the required lifecycle package (e.g., DO-331), 
sample time, module id and name. This creates a 
project with required configuration settings. The user 
can then add other projects as references which will 
be treated as dependencies by the tool [15]. 

• Design and Build: The models, interfaces, 
parameters, constants, and enums are created using 
containers provided by the tool with necessary 
settings to comply with guidelines. For requirements 
allocation, another tool called SimPol is used which 
links Polarion work items to MATLAB/Simulink 
elements like models, test cases, data, and code [17]. 
Models can be then built using a bottom-to-top code 
generation approach. This is executed in two stages: 
a) shared code generation that generates shared 
code for the model interfaces and b) functional code 
generation which incrementally generates code for 
the models. Detailed description of the code 
generation process is described in [15]. The tool 
contains custom Simulink block library ‘fsdlib’ 
containing commonly used blocks with required 
parameter settings, for example, a protected division 
block is provided which contains switches to prevent 
division by zero [18]. 

 
Fig. 2: Status Report 

• Verification and Validation: The tool provides several 
automatic design and code verification jobs. These 
jobs are called by tool commands, for example, 
‘mrails staticmodelanalysis’ which runs a function 
stack that calls Simulink Model Advisor with custom 
and MathWorks’ checks on the model. Likewise, code 
verification jobs like Code Defect Analysis and Code 
Proving use Polyspace tool [19]. Results of all the 
design and code verification jobs are available in a 
single web-based HTML status report as shown in 
Fig. 2. The report also provides uptrace and 
downtrace option to trace the affected files. 

2.1.3 RELATED WORK 

The build tool is continuously being improved and its 
capabilities are augmented. Recently, integration of 
multiple modules was developed for the build tool and 
applied on the same application as concerned in this 
paper. This will be presented in DASC 2022 conference 
[15]. Another application of this build tool is presented in 
[18], where an Incremental Nonlinear Dynamic Inversion 
INDI based flight controller is developed and verified using 
the build tool. A Continuous Integration (CI) setup is also 
being deployed for the improvement of the build tool [13]. 

2.2. Battery Modular Multilevel Management 

The BM3 system is based on an integrated 3-switch 
inverter topology [10,11]. The inverter topology has 
several features like flexible interconnections between the 
battery cells to achieve optimum efficiency, match required 
load voltage, increase lifetime, and increase fault 
tolerance of the system.  

 
Fig. 3: BM3-Module with MOSFETs [11] 

A submodule of BM3 system is shown in Fig. 3 which is 
controlled by a slave controller. The battery controller 
system structure is shown in Fig. 4. S1, S2 and S3 
represent MOSFET switches and terminals ‘A’, and ‘B’ are 
connected to ‘C’ and ‘D’ terminals of the adjacent module 
respectively. Such kind of topology provides three different 
states of the module: serial, parallel and bypass. Principle 
advantages of BM3 module is to have a flexible output 
batterypack voltage, achieved by dynamically changing 
the cells interconnection between series and parallel 
states, inherited cell balancing and bypassing defective 
cells if needed.  

The battery controller for BM3 module consists of two 
main components: one master and several slave 
controllers as shown in Fig. 4. The number of slave 
controllers depend on the number of BM3 modules used. 
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Fig. 4: Battery Controller Structure 

The master controller receives all the necessary 
information like current state of each cell (temperature and 
voltage), current output voltage of the battery pack and DC 
required voltage via input and a feedback signal from the 
battery modules. Depending on these inputs, the master 
calculates required connection configuration of the BM3 
modules and generates a configuration array which 
contains the configuration selecting value of each module. 
This is sent to the first slave controller via ‘bc_slave_Bus’ 
which also contains the module id. As stated before, three 
types of states are available. Series state is identified by 
value 1, parallel by value 2 and bypass which is also the 
default state by 0.  

 S1 S2 S3 

Series (1) 0 1 0 

Parallel (2) 1 0 1 

Bypass (0, 
default) 

1 0 0 

Table 1: Switch configuration according to module 
operating condition [20] 

Depending on this selection value, the slave controller 
selects the configuration for the switches. This 

configuration is then sent via bus ‘cl_switch_out_Bus’. The 
switch configuration is shown in Table 1 where the states 
are followed by a configuration selecting value shown in 
rounded brackets. 

3. SLAVE CONTROLLER DEVELOPMENT 

The slave controller logic is shown in Fig. 5. Input of the 
slave controller is a bus ‘bc_slave_bus’ containing two 
elements: ‘config’ and ‘module_id_in’. A multi-port switch 
is used to select the desired switch configuration 
depending on the configuration selecting value for the 
module id.  

According to the selected configuration, the switch out bus 
is created with required configuration the 
‘cl_switch_out_bus’ then outputs Boolean flags for each 
switch and turns respective MOSFET switches on/off. The 
submodule index is incremented by 1 with a parameter 
‘cl_p_idx_mover’. The configuration array from the master 
controller is passed ‘as-is’ to the next slave controller 
along with the incremented module id. Following the 
process workflow as mentioned in 2.1.2, initially the 
system and software requirements are stored in a Polarion 
project. Few software requirements for the battery 
controller are shown in Fig. 6. These requirements are 
derived from the perspective of safety of the battery cells 

Fig. 5: Slave Controller Simulink Model 
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and modeling guidelines that were developed along the 
build tool [13]. In the design and build stage, a project is 
created with a module id ‘cl’, and a top-level model is 
created using the create command. This module refers to 
another module which has all the required global 
interfaces and parameters like ‘bc_slave_Bus’ and 
‘bc_p_no_of_modules’, as of now. The use of another 
module for common interfaces can be justified by the fact 
that these interfaces once validated (design and code), will 
not change frequently and will maintain consistency during 
the development of master controller in future.  

A custom Simulink library ‘fsdlib’ containing commonly 
used blocks with required parameter settings is used to 
design the top-level ‘cl_slave’ model as shown in Fig. 5. 
For each software requirement, a test case is developed. 
The tool also provides containers to create low-level and 
top-level test cases. The requirements are allocated to 
‘cl_slave’ model and respective test cases. 

This is done using tool SimPol as shown in Fig. 7 where 
requirements are linked to the respective Simulink block 

elements. Similarly, the target can be changed to MATLAB 
test case and requirements can be then allocated to test 
cases. After the designing is finished, code generation can 
be executed. Parallelly, design verification can also be 
started. The tool provides direct commands to execute 
verification jobs, for example, static model analysis can be 
performed simply by calling ‘mrails staticmodelanalysis’ 
command. Similarly other jobs are performed. The results 
are then accumulated in the status report as mentioned 
before. All available jobs are shown in Fig. 9.   

4. VERIFICATION RESULTS 
From the different available verification jobs, few important 
results from design and code verification along with 
traceability are discussed. All the results are available via 
an HTML status report of the build tool. 

4.1. Design Verification 

Design verification jobs include code static model analysis, 
design error detection, traceability, and model review. 

Fig. 7: Requirements allocation using SimPol 

Fig. 6: Software requirements for slave controller 

Deutscher Luft- und Raumfahrtkongress 2022

5



4.1.1. Static Model Analysis 

Static analysis of the model runs custom and MathWorks’ 
checks on the model that are derived from the modeling 
guidelines and naming conventions [13]. Result of one 
custom check is shown in Fig. 10. The warning implies 
that the bus creators should inherit the signals name and 
avoid naming them again in the bus creator as this would 
lead to signal name mismatching. Similarly, all other 
warnings are checked and resolved to prevent complete 

rework at the end. The status report provides the required 
solution to solve warnings and the artifact is also 
traceable.  

4.1.2.  Design Error Detection 

Design error detection job runs and accumulates the 
results from Design Verifier. Fig. 11 shows the build tool 
status window containing the results. The ‘bc_slave_Bus’ 
contains: config array and module-id parameter. 

Fig. 8: Highlighted requirements on the model 

Fig. 10: Part of Static Model Analysis Result 

Fig. 9: Verification jobs provided by the build tool 
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The module-id element has design range of [0 ... 100]. 
This is defined in the data dictionary during the interface 
creation. This implies that the value cannot exceed this 
range. However, the Design Verifier derives the ranges of 
all the signals using extreme input values and since the 
module id is increased by 1, for the maximum value of 
100, the new module id will be incremented to 101 which 
exceeds the range. Similarly, when subtracting 1 from the 
minimum value 0, it creates an integer overflow which is 
the second error in the results and is also discussed in 
code proving section 4.3.2.  

4.1.3. Traceability Review 

Once the requirements are allocated to the models, 
traceability review can be performed. This is done 

manually by an engineer via the status report. Although 
many checks are performed automatically, few checks are 
difficult to automate, and hence manual review is required. 
The tool provides necessary checklist according to the 
guidelines which must be reviewed. Fig. 12 shows the 
Traceability Review section of the status report. Only few 
checklists are shown here due to content limitations. 
These checks are based on DO-331 (MB. A 4.1, 4.6) [7,9]. 
If the checklists are fulfilled, the reviewer must approve the 
checks and the report will be saved in the interface itself.  

4.2. Simulation Testing  

Simulation testing involves running the test cases in 
‘normal’ mode. This verification task includes simulation 

Fig. 12: Traceability Review Results 

Fig. 11: Design Error Detection Results 
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case execution and model coverage analysis. After all the 
tests are executed, aggregated model coverage is 
calculated. From the aggregated coverage, model 
coverage is extracted from the results by creating a 
coverage filter [5]. The build tool can also execute 
individual test cases or a set of test cases in simulation 
mode. Like the manual traceability review task shown in 
Fig. 12, simulation review is done using the checklist 
defined by the build tool based on DO-331 guidelines after 
collecting the model coverage. The result of this job is not 
in the scope of this paper. 

4.3. Code Verification 

Code verification jobs include code inspection, checking 
code compliance, code defect analysis, code proving, and 
SIL testing. In this paper, code compliance and code 
proving results are discussed. Static code analysis helps 

in identifying possible run-time errors in source code, 
identify dead logic, division by zero and checks if the code 
meets the MISRA C 2012 compliance [19,18]. 

4.3.1. Code Compliance 

Polyspace Bug Finder is used to check the code 
compliance with MISRA C 2012 guidelines. The build tool 
runs the Bug Finder with predefined configuration and all 
violations are collected. The result from Polyspace can be 
accessed via the status interface. Fig. 13 shows the result 
of code compliance check on the slave controller code. 

The violation shown is related to MISRA C:2012 8.7 
Advisory guideline [21], which requires the external 
function and objects that are referenced in only one 
translation unit should have internal linkage. In our case, 
the external input bus ‘bc_slave_Bus’ is only referenced in 

Fig. 14: Code Prover Result - Build Tool 

Fig. 13: Code Compliance Result - Polyspace Bug Finder 
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one model and hence the violation occurs. However, this 
advisory guideline can be justified by the fact that this 
external bus ‘bc_slave_Bus’ will also be used during the 
master controller development and hence can have an 
external linkage. 

4.3.2. Code Proving 
Code proving helps in identifying run-time errors such as 
division by zero, integer overflow and unreachable code. 
The tool uses Polyspace Code Prover and accumulates 
the results which are easily accessible via the status 
report as shown in Fig. 14. The result states that the code 
has three orange issues/thereof unreviewed. Detailed 
result can be analyzed by clicking on ‘Review Results’ 
option in the status interface which opens the Polyspace 
Code Prover as shown in Fig. 15. 

The warning which is marked in the result is related to the 
module-id element of the ‘bc_slave_Bus’. This overflow 
was also detected in the Design Error Detection job and is 
caused by the incorrect range definition of the module-id 
element. The module-id element is of uint16 data type and 
has a range of [0 … 100]. The selector used in model has 
zero-based indexing mode due to the modeling guidelines 
supporting the fact that C language also uses zero based 
indexing. Due to this when the minimum value of module-
id i.e., 0 is subtracted by 1, the subtraction block gives -1 
which is out of the range of uint16 signal. Hence, an 
integer overflow is caused which was also detected during 
the design verification stage. To resolve this error, the 
limits of the signal elements are correctly defined, and 
additional switch is added in the model to check if the 
signal is exceeding the limits. 

5. FUTURE WORK 

As the slave controller is now developed and verified, the 
next goal is to test the controller in a hardware-in-the-loop 

(HIL) system. This will aid in verifying the failure conditions 
in real time. Initially a single slave controller will be tested, 
and then complete module stack will be tested. Along with 
this, development of master controller is also initiated in a 
similar fashion. The master controller will have all the 
necessary inputs from the battery which indicates the 
current operating condition like temperature and voltage. 
In future, a motor controller will also be developed using 
the build tool. Currently, a Continuous Integration platform 
is being deployed for all the development projects for 
ELAPSED [12].  

On the build tool side, the tool is continuously improved by 
fixing bugs and resolving issues faced by developers. For 
example, an issue encountered recently was related to 
parameter handling during Code Proving job. As 
mentioned in [5], Polyspace Code Prover settings were 
changed with a hook to remove ‘Parameter Constant’ data 
ranges. However, the implemented function resulted in 
empty array elements and was fixed during this 
development. Likewise, other issues are also being 
resolved. Since the tool is used for various applications; 
we must make sure that new developments should not 
hinder the existing projects. To do so, a CI server is being 
setup for the development of the tool itself.  

6. CONCLUSIONS 

The paper has presented a model-based design 
application of a process-oriented build tool to develop and 
verify a battery slave controller for an BM3 module. The 
tool is introduced with its key advantages like automatic 
code generation, automatic toolchain setup, incremental 
verification and traceability, and handling of multiple 
modules. The process workflow of the build tool is 
described and later applied to develop the slave controller 
in MATLAB/Simulink. Important steps like requirement 
allocation and analyzing verification results are also 

Fig. 15: Code Prover Result - Polyspace Code Prover 
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presented. Polarion and SimPol tool were used to create 
and link requirements to Simulink models. Design and 
code verification include static model analysis, design 
error detection, traceability review, code compliance, and 
code proving. Easy creation and accessibility of the results 
is possible with the build tool and is realized in this paper.  

This research is funded by dtec.bw – Digitization and 
Technology Research Center of the Bundeswehr [12]. 

REFERENCES 
[1] Airport-Technology, “Ethiopian Airlines crash: 

what’s happened in the last two years?,” URL: 
https://www.airport-
technology.com/analysis/ethiopian-airlines-crash-
what-happened-last-two-years. 

[2] Wikipedia, “Korean Air Flight 801 Crash,” URL: 
https://en.wikipedia.org/wiki/Korean_Air_Flight_801. 

[3] TechTimes, “Toyota Recalls 112,500 Vehicles Due 
To Power Steering And Software Issues,” URL: 
https://www.techtimes.com/articles/39149/20150312
/. 

[4] Cleland-Huang, J., Agrawal, A., Vierhauser, M., and 
Mayr-Dorn, C., “Visualizing Change in Agile Safety-
Critical Systems,” IEEE Software, Vol. 38, No. 3, 1 
Jan. 2021, pp. 43–51. 
doi: 10.1109/MS.2020.3000104. 

[5] Markus Tobias Hochstrasser, “Modular model-
based development of safety-critical flight control 
software,” PhD Thesis, Technischen Universität 
München, Munich, Germany, 12 Jun. 2020. 

[6] Hochstrasser, M., Myschik, S., and Holzapfel, F., “A 
Process-oriented Build Tool for Safety-critical 
Model-based Software Development,” Proceedings 
of the 6th International Conference on Model-Driven 
Engineering and Software Development, 
SCITEPRESS - Science and Technology 
Publications, 1 Jan. 2018, pp. 191–202. 

[7] Hochstrasser, M., Myschik, S., and Holzapfel, F., 
“Application of a Process-Oriented Build Tool for 
Flight Controller Development Along a DO-
178C/DO-331 Process,” Model-Driven Engineering 
and Software Development, edited by S. 
Hammoudi, L. F. Pires and B. Selic, Springer 
International Publishing, Cham, 1 Jan. 2019, 
pp. 380–405. 

[8] RTCA, “DO-178C - Software Considerations in 
Airborne Systems and Equipment Certification,” 
RTCA, Incorporated, 1 Jan. 2011. 

[9] RTCA, “DO-331 - Model-Based Development and 
Verification Supplement to DO-178C and DO-
278A,” RTCA, Incorporated, 1 Jan. 2011. 

[10] Manuel Kuder, Julian Schneider, Anton Kersten, 
Torbjörn Thiringer, Richard Eckerle, Thomas Weyh, 
“Battery Modular Multilevel Management (BM3) 
Converter applied at Battery Cell Level for Electric 
Vehicles and Energy Storages,” 1 Jan. 2020. 

[11] Sorokina, N., Estaller, J., Kersten, A., Buberger, J., 
Kuder, M., et al., “Inverter and Battery Drive Cycle 
Efficiency Comparisons of Multilevel and Two-Level 
Traction Inverters for Battery Electric Vehicles,” 
2021 IEEE International Conference on 
Environment and Electrical Engineering and 2021 
IEEE Industrial and Commercial Power Systems 
Europe (EEEIC / I&CPS Europe), IEEE, 1 Jan. 
2021, pp. 1–8. 

[12] dtec.bw, “Electric Aircraft Propulsion – die Zukunft 
der Flugzeugantriebe,” URL: 
https://dtecbw.de/home/forschung/unibw-m/projekt-
elapsed. 

[13] Dmitriev, K., Zafar, S. A., Schmiechen, K., Lai, Y., 
Saleab, M., et al., “A Lean and Highly-automated 
Model-Based Software Development Process 
Based on DO-178C/DO-331,” 2020 AIAA/IEEE 39th 
Digital Avionics Systems Conference (DASC), 
IEEE, 1 Jan. 2020, pp. 1–10. 

[14] Broy, M., Kirstan, S., Krcmar, H., and Schätz, B., 
“What is the Benefit of a Model-Based Design of 
Embedded Software Systems in the Car Industry?,” 
Emerging Technologies for the Evolution and 
Maintenance of Software Models, edited by J. Rech 
and C. Bunse, IGI Global, 1 Jan. 2012, pp. 343–
369. 

[15] Panchal, P., Myschik, S., Dmitriev, K., Bhardwaj, P., 
and Holzapfel, F. (eds.), Handling Complex System 
Architectures with a DO-178C/DO-331 Process-
Oriented Build Tool, 2022, 1 Jan. 2022. 

[16] Siemens, Polarion PLM Automation, 
https://polarion.plm.automation.siemens.com/. 

[17] FSD, SimPol - Simulink® – Polarion® Connector, 
https://www.fsd.lrg.tum.de/software/simpol/. 

[18] Panchal, P., Myschik, S., Dmitriev, K., and 
Holzapfel, F., “Application of a Process-Oriented 
Build Tool to an INDI-Based Flight Control 
Algorithm,” AIAA AVIATION 2022 Forum, American 
Institute of Aeronautics and Astronautics, Reston, 
Virginia, 1 Jan. 2022. 

[19] MathWorks, Polyspace, 
https://www.mathworks.com/products/polyspace.ht
ml. 

[20] Grupp Wolfgang, Hoegerl Tobias, Wiedenmann 
Andreas, Estaller Julian, Sorokina Nina, et al., 
“Investigation of Different Driver Topologies for 
Application in Modular Multilevel Systems,” PCIM 
Europe 2022; International Exhibition and 
Conference for Power Electronics, Intelligent 
Motion, Renewable Energy and Energy 
Management, 1 Jan. 2022, pp. 1–9. 

[21] MISRA, “MISRA C:2012 Amendment 2,”. 
 

Deutscher Luft- und Raumfahrtkongress 2022

10


	REFERENCES

