
APPLICATION OF A PROCESS-ORIENTED BUILD TOOL TO THE
DEVELOPMENT OF A BM3 SLAVE CONTROLLER SOFTWARE MODULE

Purav Panchal*, Nina Sorokina §, Stephan Myschik*

*Institute for Aeronautical Engineering
 §Department of Electrical Engineering

Universität der Bundeswehr München, 85521 Neubiberg, Germany

Konstantin Dmitriev†, Florian Holzapfel†
†Institute of Flight System Dynamics, Technische Universität München, 85748 Garching, Germany

Abstract

Software development of safety critical applications like battery controller, flight controller, medical devices,
military weapon systems, etc. requires significant number of verification and validation steps to ensure that
the software is compliant towards certification standards. This results in extensive documentation, strict
methodologies, and verification activities, but also creates a space for researchers to invent automation
techniques to make the software development process simpler. Critical information on how the development
and verification tools are interlinked with each other during the development process is usually a part of
intellectual property of large aerospace companies. Such information is not available publicly and this
hinders the growth of startups and small/medium enterprises. To overcome such hurdles, a process-oriented
build tool based on MathWorks’ MATLAB and Simulink has been already developed and is used in many
flight control applications. In this paper, an application of this build tool to develop a slave controller of a
Battery Modular Multilevel Management (BM3) system while undergoing process development steps
required by aerospace safety standards is presented. The tool provides a development environment with
predefined model templates, block libraries, configuration settings and jobs for executing process-relevant
tasks like automatic code generation, code verification, model verification, etc. The tool also ensures
consistency of model artifacts and compatibility with downstream tools used for verification and validation on
model and code level. The paper presents several verification and development results which authenticates
the mentioned advantages of the build tool.

1. INTRODUCTION

Safety-critical applications refers to systems whose failure
can affect human safety. Example of safety-critical
software include applications in aerospace, automotive,
railway, medical, and nuclear industries. Significance of
safety-critical software development can be realized after
looking at several fatal incidents that have taken place in
the history of humankind. In 2018-2019, Lion Air Flight 610
and Ethiopian Airlines Flight 302 crashed probably due to
reliability of Boeing’s Maneuvering Characteristics
Augmentation System (MCAS) on a single source of
information [1]. In 1997, Korean Air Flight 801 crashed
during landing. One of the possible causes of the crash
was improper configuration of the minimum safe altitude
warning system [2]. In 2015, Toyota recalled 112,500
vehicles due to possible power steering issues and electric
vehicle safety problems [3].

After observing such incidents, lot of importance has been
given to the safety assurance of such software. Hence,
safety-critical software must follow lot of safety measures,
documentation, and strict methodologies according to the
standards. Secondly, large scale companies usually do
not publicize the information on how the toolchain is setup
and interlinked, hence smaller companies struggle to
compete. In industries, software development lifecycle like

V-Model with Model-based Development approach is
applied to develop a structured environment and
accelerate verification and validation steps. However, in
safety-critical applications and specially in aviation, the
implementation of change in requirements, e.g., adding a
new feature after certification is expensive and requires lot
of efforts and time. This problem is known as a ‘big-freeze’
problem [4]. To overcome these several problems, a
process-oriented build tool called ‘mrails’ is already
developed and used in several complex flight control and
avionics software development projects at Institute of
Flight System Dynamics, TUM, and the Institute for
Aeronautical Engineering at Universität der Bundeswehr
München [5].

This build tool provides a structured but flexible
development environment in MATLAB and Simulink
framework [6]. The tool ensures smooth development of
the functionality while maintaining a consistent artifact tree
and traceability [7]. By doing so, tasks for demonstrating
process compliance, e.g., for RTCA DO-178C/331, can be
supported [8,9].

This research is intended to develop a slave controller for
a battery system using the build tool and present several
advantages of it. The slave controller is a part of battery
controller consisting of one master controller and several

doi: 10.25967/570308

Deutscher Luft- und Raumfahrtkongress 2022
DocumentID: 570308

1

https://doi.org/10.25967/570308

Fig. 1: Overview of the process-oriented build tool

similar slave controllers for each submodule. The BM3
system is based on an integrated 3-switch inverter
topology [10,11] and is proposed for an electric aircraft in
context of the project ELAPSED [12] which focuses on
developing an electric powertrain with a new propulsion
system.

The structure of the paper is as follows: the following
section describes the methodologies that are implemented
in this research; the build tool mrails and the battery
controller. Section 3 presents the controller development
process, the verification and validation results are
mentioned in Section 4. Finally, the future work and
conclusions are discussed in Section 5 and 6 respectively.

2. METHODOLOGIES

2.1. Process-Oriented Build Tool

As the name implies, the build tool is developed to support
the process compliant development of software according
to standards like DO-178C/DO-331 [13]. The tool
incorporates modular model-based design approaches
and provides the developer with a friendly environment to
perform development and verification activities without
bothering about the configuration settings, tools
interlinking and artifacts handling. Model-based design
approach provides advantages like ease in readability,
early detection of defects by unit testing and code reuse
[14]. The tool incorporates a so-called lifecycle package
which provides the necessary artifact containers,
configuration settings, and automated verification jobs.
These containers are used to create model and its
elements like constants, parameters, tests, and buses. An
overview of the build tool is shown in Fig. 1. Results from
the automated code generation and verification tasks are
accumulated and can be accessed by a web-based HTML
report.

2.1.1. Advantages of the build tool

• Automatic Code Generation: The lifecycle package
included in the tool provides code generation task.

The task is divided into two parts – shared code
generation and code generation. Shared code
contains the code for interfaces of the model which
once validated, do not need to change. Code
generation follows a bottom-to-top approach with
incremental build of only required models in the
architecture hierarchy [15].

• Toolchain Setup: The build tool is based on
MATLAB/Simulink and includes use of applications
like Embedded Coder, Simulink Test Manager, Model
Advisor and Design Verifier. Polyspace is used for
code proving and defect analysis. The build tool
configures these applications automatically with
predefined configurations and collects artifacts after
task execution. This relieves the stress of toolchain
setup and maintains consistency in a distributed
team.

• Lifecycle Package: The tool itself provides ability to
incorporate different lifecycle packages. These
packages contain development and verification jobs
for the models and code. Along with artifacts
handling, the package also provides containers to
create model elements like top-level/reusable models,
buses, test cases, parameters, etc. These model
elements are created with settings to comply with DO-
178C/DO-331 standards [13].

• Incremental Verification and Traceability: When a
change is detected in a particular model or code, the
design and code verification tasks are only performed
on those artifacts avoiding re-verification. Consistency
of the artifact is also checked, for e.g., whether the
generated result matches to latest version of model.
The verification results are displayed in a web-based
HTML status report and the jobs can be traced back
to the required model elements. This provides
traceability of the artifacts.

• Integration of Multiple Modules: In case of
modularized software, the distributed team should be
able to integrate their software modules after
development and verification. The build tool provides

Deutscher Luft- und Raumfahrtkongress 2022

2

ability to handle the integration and differentiate the
model elements required to avoid any changes to the
individual modules [15]. This plays an important role
in case of complex software architectures, where the
top-level model consists of several submodules.

2.1.2. Process Workflow

The process flow is divided into three dependent stages:
process setup, design and build, verification and validation
as shown in Fig. 1.

• Process Definition: The process setup phase consists
of setting up the system and software requirements.
This can be done in Polarion which is an ‘Application
Lifecycle Management’ tool used for managing
requirements and achieving agility [16]. The next step
is to create a MATLAB project by using build tool
command ‘mrails create-module’ The user is asked
for the required lifecycle package (e.g., DO-331),
sample time, module id and name. This creates a
project with required configuration settings. The user
can then add other projects as references which will
be treated as dependencies by the tool [15].

• Design and Build: The models, interfaces,
parameters, constants, and enums are created using
containers provided by the tool with necessary
settings to comply with guidelines. For requirements
allocation, another tool called SimPol is used which
links Polarion work items to MATLAB/Simulink
elements like models, test cases, data, and code [17].
Models can be then built using a bottom-to-top code
generation approach. This is executed in two stages:
a) shared code generation that generates shared
code for the model interfaces and b) functional code
generation which incrementally generates code for
the models. Detailed description of the code
generation process is described in [15]. The tool
contains custom Simulink block library ‘fsdlib’
containing commonly used blocks with required
parameter settings, for example, a protected division
block is provided which contains switches to prevent
division by zero [18].

Fig. 2: Status Report

• Verification and Validation: The tool provides several
automatic design and code verification jobs. These
jobs are called by tool commands, for example,
‘mrails staticmodelanalysis’ which runs a function
stack that calls Simulink Model Advisor with custom
and MathWorks’ checks on the model. Likewise, code
verification jobs like Code Defect Analysis and Code
Proving use Polyspace tool [19]. Results of all the
design and code verification jobs are available in a
single web-based HTML status report as shown in
Fig. 2. The report also provides uptrace and
downtrace option to trace the affected files.

2.1.3 RELATED WORK

The build tool is continuously being improved and its
capabilities are augmented. Recently, integration of
multiple modules was developed for the build tool and
applied on the same application as concerned in this
paper. This will be presented in DASC 2022 conference
[15]. Another application of this build tool is presented in
[18], where an Incremental Nonlinear Dynamic Inversion
INDI based flight controller is developed and verified using
the build tool. A Continuous Integration (CI) setup is also
being deployed for the improvement of the build tool [13].

2.2. Battery Modular Multilevel Management

The BM3 system is based on an integrated 3-switch
inverter topology [10,11]. The inverter topology has
several features like flexible interconnections between the
battery cells to achieve optimum efficiency, match required
load voltage, increase lifetime, and increase fault
tolerance of the system.

Fig. 3: BM3-Module with MOSFETs [11]

A submodule of BM3 system is shown in Fig. 3 which is
controlled by a slave controller. The battery controller
system structure is shown in Fig. 4. S1, S2 and S3
represent MOSFET switches and terminals ‘A’, and ‘B’ are
connected to ‘C’ and ‘D’ terminals of the adjacent module
respectively. Such kind of topology provides three different
states of the module: serial, parallel and bypass. Principle
advantages of BM3 module is to have a flexible output
batterypack voltage, achieved by dynamically changing
the cells interconnection between series and parallel
states, inherited cell balancing and bypassing defective
cells if needed.

The battery controller for BM3 module consists of two
main components: one master and several slave
controllers as shown in Fig. 4. The number of slave
controllers depend on the number of BM3 modules used.

Deutscher Luft- und Raumfahrtkongress 2022

3

Fig. 4: Battery Controller Structure

The master controller receives all the necessary
information like current state of each cell (temperature and
voltage), current output voltage of the battery pack and DC
required voltage via input and a feedback signal from the
battery modules. Depending on these inputs, the master
calculates required connection configuration of the BM3
modules and generates a configuration array which
contains the configuration selecting value of each module.
This is sent to the first slave controller via ‘bc_slave_Bus’
which also contains the module id. As stated before, three
types of states are available. Series state is identified by
value 1, parallel by value 2 and bypass which is also the
default state by 0.

 S1 S2 S3

Series (1) 0 1 0

Parallel (2) 1 0 1

Bypass (0,
default)

1 0 0

Table 1: Switch configuration according to module
operating condition [20]

Depending on this selection value, the slave controller
selects the configuration for the switches. This

configuration is then sent via bus ‘cl_switch_out_Bus’. The
switch configuration is shown in Table 1 where the states
are followed by a configuration selecting value shown in
rounded brackets.

3. SLAVE CONTROLLER DEVELOPMENT

The slave controller logic is shown in Fig. 5. Input of the
slave controller is a bus ‘bc_slave_bus’ containing two
elements: ‘config’ and ‘module_id_in’. A multi-port switch
is used to select the desired switch configuration
depending on the configuration selecting value for the
module id.

According to the selected configuration, the switch out bus
is created with required configuration the
‘cl_switch_out_bus’ then outputs Boolean flags for each
switch and turns respective MOSFET switches on/off. The
submodule index is incremented by 1 with a parameter
‘cl_p_idx_mover’. The configuration array from the master
controller is passed ‘as-is’ to the next slave controller
along with the incremented module id. Following the
process workflow as mentioned in 2.1.2, initially the
system and software requirements are stored in a Polarion
project. Few software requirements for the battery
controller are shown in Fig. 6. These requirements are
derived from the perspective of safety of the battery cells

Fig. 5: Slave Controller Simulink Model

Deutscher Luft- und Raumfahrtkongress 2022

4

and modeling guidelines that were developed along the
build tool [13]. In the design and build stage, a project is
created with a module id ‘cl’, and a top-level model is
created using the create command. This module refers to
another module which has all the required global
interfaces and parameters like ‘bc_slave_Bus’ and
‘bc_p_no_of_modules’, as of now. The use of another
module for common interfaces can be justified by the fact
that these interfaces once validated (design and code), will
not change frequently and will maintain consistency during
the development of master controller in future.

A custom Simulink library ‘fsdlib’ containing commonly
used blocks with required parameter settings is used to
design the top-level ‘cl_slave’ model as shown in Fig. 5.
For each software requirement, a test case is developed.
The tool also provides containers to create low-level and
top-level test cases. The requirements are allocated to
‘cl_slave’ model and respective test cases.

This is done using tool SimPol as shown in Fig. 7 where
requirements are linked to the respective Simulink block

elements. Similarly, the target can be changed to MATLAB
test case and requirements can be then allocated to test
cases. After the designing is finished, code generation can
be executed. Parallelly, design verification can also be
started. The tool provides direct commands to execute
verification jobs, for example, static model analysis can be
performed simply by calling ‘mrails staticmodelanalysis’
command. Similarly other jobs are performed. The results
are then accumulated in the status report as mentioned
before. All available jobs are shown in Fig. 9.

4. VERIFICATION RESULTS
From the different available verification jobs, few important
results from design and code verification along with
traceability are discussed. All the results are available via
an HTML status report of the build tool.

4.1. Design Verification

Design verification jobs include code static model analysis,
design error detection, traceability, and model review.

Fig. 7: Requirements allocation using SimPol

Fig. 6: Software requirements for slave controller

Deutscher Luft- und Raumfahrtkongress 2022

5

4.1.1. Static Model Analysis

Static analysis of the model runs custom and MathWorks’
checks on the model that are derived from the modeling
guidelines and naming conventions [13]. Result of one
custom check is shown in Fig. 10. The warning implies
that the bus creators should inherit the signals name and
avoid naming them again in the bus creator as this would
lead to signal name mismatching. Similarly, all other
warnings are checked and resolved to prevent complete

rework at the end. The status report provides the required
solution to solve warnings and the artifact is also
traceable.

4.1.2. Design Error Detection

Design error detection job runs and accumulates the
results from Design Verifier. Fig. 11 shows the build tool
status window containing the results. The ‘bc_slave_Bus’
contains: config array and module-id parameter.

Fig. 8: Highlighted requirements on the model

Fig. 10: Part of Static Model Analysis Result

Fig. 9: Verification jobs provided by the build tool

Deutscher Luft- und Raumfahrtkongress 2022

6

The module-id element has design range of [0 ... 100].
This is defined in the data dictionary during the interface
creation. This implies that the value cannot exceed this
range. However, the Design Verifier derives the ranges of
all the signals using extreme input values and since the
module id is increased by 1, for the maximum value of
100, the new module id will be incremented to 101 which
exceeds the range. Similarly, when subtracting 1 from the
minimum value 0, it creates an integer overflow which is
the second error in the results and is also discussed in
code proving section 4.3.2.

4.1.3. Traceability Review

Once the requirements are allocated to the models,
traceability review can be performed. This is done

manually by an engineer via the status report. Although
many checks are performed automatically, few checks are
difficult to automate, and hence manual review is required.
The tool provides necessary checklist according to the
guidelines which must be reviewed. Fig. 12 shows the
Traceability Review section of the status report. Only few
checklists are shown here due to content limitations.
These checks are based on DO-331 (MB. A 4.1, 4.6) [7,9].
If the checklists are fulfilled, the reviewer must approve the
checks and the report will be saved in the interface itself.

4.2. Simulation Testing

Simulation testing involves running the test cases in
‘normal’ mode. This verification task includes simulation

Fig. 12: Traceability Review Results

Fig. 11: Design Error Detection Results

Deutscher Luft- und Raumfahrtkongress 2022

7

case execution and model coverage analysis. After all the
tests are executed, aggregated model coverage is
calculated. From the aggregated coverage, model
coverage is extracted from the results by creating a
coverage filter [5]. The build tool can also execute
individual test cases or a set of test cases in simulation
mode. Like the manual traceability review task shown in
Fig. 12, simulation review is done using the checklist
defined by the build tool based on DO-331 guidelines after
collecting the model coverage. The result of this job is not
in the scope of this paper.

4.3. Code Verification

Code verification jobs include code inspection, checking
code compliance, code defect analysis, code proving, and
SIL testing. In this paper, code compliance and code
proving results are discussed. Static code analysis helps

in identifying possible run-time errors in source code,
identify dead logic, division by zero and checks if the code
meets the MISRA C 2012 compliance [19,18].

4.3.1. Code Compliance

Polyspace Bug Finder is used to check the code
compliance with MISRA C 2012 guidelines. The build tool
runs the Bug Finder with predefined configuration and all
violations are collected. The result from Polyspace can be
accessed via the status interface. Fig. 13 shows the result
of code compliance check on the slave controller code.

The violation shown is related to MISRA C:2012 8.7
Advisory guideline [21], which requires the external
function and objects that are referenced in only one
translation unit should have internal linkage. In our case,
the external input bus ‘bc_slave_Bus’ is only referenced in

Fig. 14: Code Prover Result - Build Tool

Fig. 13: Code Compliance Result - Polyspace Bug Finder

Deutscher Luft- und Raumfahrtkongress 2022

8

one model and hence the violation occurs. However, this
advisory guideline can be justified by the fact that this
external bus ‘bc_slave_Bus’ will also be used during the
master controller development and hence can have an
external linkage.

4.3.2. Code Proving
Code proving helps in identifying run-time errors such as
division by zero, integer overflow and unreachable code.
The tool uses Polyspace Code Prover and accumulates
the results which are easily accessible via the status
report as shown in Fig. 14. The result states that the code
has three orange issues/thereof unreviewed. Detailed
result can be analyzed by clicking on ‘Review Results’
option in the status interface which opens the Polyspace
Code Prover as shown in Fig. 15.

The warning which is marked in the result is related to the
module-id element of the ‘bc_slave_Bus’. This overflow
was also detected in the Design Error Detection job and is
caused by the incorrect range definition of the module-id
element. The module-id element is of uint16 data type and
has a range of [0 … 100]. The selector used in model has
zero-based indexing mode due to the modeling guidelines
supporting the fact that C language also uses zero based
indexing. Due to this when the minimum value of module-
id i.e., 0 is subtracted by 1, the subtraction block gives -1
which is out of the range of uint16 signal. Hence, an
integer overflow is caused which was also detected during
the design verification stage. To resolve this error, the
limits of the signal elements are correctly defined, and
additional switch is added in the model to check if the
signal is exceeding the limits.

5. FUTURE WORK

As the slave controller is now developed and verified, the
next goal is to test the controller in a hardware-in-the-loop

(HIL) system. This will aid in verifying the failure conditions
in real time. Initially a single slave controller will be tested,
and then complete module stack will be tested. Along with
this, development of master controller is also initiated in a
similar fashion. The master controller will have all the
necessary inputs from the battery which indicates the
current operating condition like temperature and voltage.
In future, a motor controller will also be developed using
the build tool. Currently, a Continuous Integration platform
is being deployed for all the development projects for
ELAPSED [12].

On the build tool side, the tool is continuously improved by
fixing bugs and resolving issues faced by developers. For
example, an issue encountered recently was related to
parameter handling during Code Proving job. As
mentioned in [5], Polyspace Code Prover settings were
changed with a hook to remove ‘Parameter Constant’ data
ranges. However, the implemented function resulted in
empty array elements and was fixed during this
development. Likewise, other issues are also being
resolved. Since the tool is used for various applications;
we must make sure that new developments should not
hinder the existing projects. To do so, a CI server is being
setup for the development of the tool itself.

6. CONCLUSIONS

The paper has presented a model-based design
application of a process-oriented build tool to develop and
verify a battery slave controller for an BM3 module. The
tool is introduced with its key advantages like automatic
code generation, automatic toolchain setup, incremental
verification and traceability, and handling of multiple
modules. The process workflow of the build tool is
described and later applied to develop the slave controller
in MATLAB/Simulink. Important steps like requirement
allocation and analyzing verification results are also

Fig. 15: Code Prover Result - Polyspace Code Prover

Deutscher Luft- und Raumfahrtkongress 2022

9

presented. Polarion and SimPol tool were used to create
and link requirements to Simulink models. Design and
code verification include static model analysis, design
error detection, traceability review, code compliance, and
code proving. Easy creation and accessibility of the results
is possible with the build tool and is realized in this paper.

This research is funded by dtec.bw – Digitization and
Technology Research Center of the Bundeswehr [12].

REFERENCES
[1] Airport-Technology, “Ethiopian Airlines crash:

what’s happened in the last two years?,” URL:
https://www.airport-
technology.com/analysis/ethiopian-airlines-crash-
what-happened-last-two-years.

[2] Wikipedia, “Korean Air Flight 801 Crash,” URL:
https://en.wikipedia.org/wiki/Korean_Air_Flight_801.

[3] TechTimes, “Toyota Recalls 112,500 Vehicles Due
To Power Steering And Software Issues,” URL:
https://www.techtimes.com/articles/39149/20150312
/.

[4] Cleland-Huang, J., Agrawal, A., Vierhauser, M., and
Mayr-Dorn, C., “Visualizing Change in Agile Safety-
Critical Systems,” IEEE Software, Vol. 38, No. 3, 1
Jan. 2021, pp. 43–51.
doi: 10.1109/MS.2020.3000104.

[5] Markus Tobias Hochstrasser, “Modular model-
based development of safety-critical flight control
software,” PhD Thesis, Technischen Universität
München, Munich, Germany, 12 Jun. 2020.

[6] Hochstrasser, M., Myschik, S., and Holzapfel, F., “A
Process-oriented Build Tool for Safety-critical
Model-based Software Development,” Proceedings
of the 6th International Conference on Model-Driven
Engineering and Software Development,
SCITEPRESS - Science and Technology
Publications, 1 Jan. 2018, pp. 191–202.

[7] Hochstrasser, M., Myschik, S., and Holzapfel, F.,
“Application of a Process-Oriented Build Tool for
Flight Controller Development Along a DO-
178C/DO-331 Process,” Model-Driven Engineering
and Software Development, edited by S.
Hammoudi, L. F. Pires and B. Selic, Springer
International Publishing, Cham, 1 Jan. 2019,
pp. 380–405.

[8] RTCA, “DO-178C - Software Considerations in
Airborne Systems and Equipment Certification,”
RTCA, Incorporated, 1 Jan. 2011.

[9] RTCA, “DO-331 - Model-Based Development and
Verification Supplement to DO-178C and DO-
278A,” RTCA, Incorporated, 1 Jan. 2011.

[10] Manuel Kuder, Julian Schneider, Anton Kersten,
Torbjörn Thiringer, Richard Eckerle, Thomas Weyh,
“Battery Modular Multilevel Management (BM3)
Converter applied at Battery Cell Level for Electric
Vehicles and Energy Storages,” 1 Jan. 2020.

[11] Sorokina, N., Estaller, J., Kersten, A., Buberger, J.,
Kuder, M., et al., “Inverter and Battery Drive Cycle
Efficiency Comparisons of Multilevel and Two-Level
Traction Inverters for Battery Electric Vehicles,”
2021 IEEE International Conference on
Environment and Electrical Engineering and 2021
IEEE Industrial and Commercial Power Systems
Europe (EEEIC / I&CPS Europe), IEEE, 1 Jan.
2021, pp. 1–8.

[12] dtec.bw, “Electric Aircraft Propulsion – die Zukunft
der Flugzeugantriebe,” URL:
https://dtecbw.de/home/forschung/unibw-m/projekt-
elapsed.

[13] Dmitriev, K., Zafar, S. A., Schmiechen, K., Lai, Y.,
Saleab, M., et al., “A Lean and Highly-automated
Model-Based Software Development Process
Based on DO-178C/DO-331,” 2020 AIAA/IEEE 39th
Digital Avionics Systems Conference (DASC),
IEEE, 1 Jan. 2020, pp. 1–10.

[14] Broy, M., Kirstan, S., Krcmar, H., and Schätz, B.,
“What is the Benefit of a Model-Based Design of
Embedded Software Systems in the Car Industry?,”
Emerging Technologies for the Evolution and
Maintenance of Software Models, edited by J. Rech
and C. Bunse, IGI Global, 1 Jan. 2012, pp. 343–
369.

[15] Panchal, P., Myschik, S., Dmitriev, K., Bhardwaj, P.,
and Holzapfel, F. (eds.), Handling Complex System
Architectures with a DO-178C/DO-331 Process-
Oriented Build Tool, 2022, 1 Jan. 2022.

[16] Siemens, Polarion PLM Automation,
https://polarion.plm.automation.siemens.com/.

[17] FSD, SimPol - Simulink® – Polarion® Connector,
https://www.fsd.lrg.tum.de/software/simpol/.

[18] Panchal, P., Myschik, S., Dmitriev, K., and
Holzapfel, F., “Application of a Process-Oriented
Build Tool to an INDI-Based Flight Control
Algorithm,” AIAA AVIATION 2022 Forum, American
Institute of Aeronautics and Astronautics, Reston,
Virginia, 1 Jan. 2022.

[19] MathWorks, Polyspace,
https://www.mathworks.com/products/polyspace.ht
ml.

[20] Grupp Wolfgang, Hoegerl Tobias, Wiedenmann
Andreas, Estaller Julian, Sorokina Nina, et al.,
“Investigation of Different Driver Topologies for
Application in Modular Multilevel Systems,” PCIM
Europe 2022; International Exhibition and
Conference for Power Electronics, Intelligent
Motion, Renewable Energy and Energy
Management, 1 Jan. 2022, pp. 1–9.

[21] MISRA, “MISRA C:2012 Amendment 2,”.

Deutscher Luft- und Raumfahrtkongress 2022

10

	REFERENCES

