
ON THE INITIAL RELATIVE WIND DIRECTION OF DYNAMIC SOARING

A. Zwenig, H. Hong, F. Holzapfel

Technical University of Munich, TUM School of Engineering and Design, Department of Aerospace and
Geodesy, Institute of Flight System Dynamics, 85748 Garching bei München, Germany

Abstract

For enhancing the range and endurance of Remotely Piloted Aircraft Systems (RPAS), vertical wind shears
can be utilized to extract energy from the environment. This technique, known as dynamic soaring, can be
observed in large seabirds, e.g. albatrosses. The natural variation of the environment requires a profound
understanding of how the wind field parameters like wind direction and wind speed affect the dynamic soaring
capability. Therefore, this study illuminates the influence of the initial relative wind direction on the dynamic
soaring performance. With the help of direct optimal control methods, the minimum required wind speed is
quantified, which is an important criterion for energy extraction performance. The results reveal favorable and
unfavorable initial relative wind directions. Furthermore, detailed insights into the sensitivity of the minimum
required wind speed and the travel direction with respect to the initial relative wind direction are given. Thereof,
operational requirements of potential RPAS performing dynamic soaring can be derived. The results are of
guiding value for RPAS operations, offering direct and pertinent information to steer the mission planning.
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1. INTRODUCTION

Enroute, albatrosses hardly require to flap their wings
as they extract energy from the wind to compensate
for the energy dissipation due to aerodynamic drag [1,
2]. This flight technique is known as dynamic soaring.
If the extracted energy equals the dissipated energy,
an energy-neutral dynamic soaring cycle is achieved.
This enables to cover large distances comparatively
fast and nearly effortless [3, 4]. The transfer of this
principle to aircraft systems offers the potential for
more ecological and economical aircraft operations
in the future. To demonstrate the practicability, small
scale Remotely Piloted Aircraft Systems (RPAS) may
be used. Therefore a profound understanding of the
flight physics of dynamic soaring is necessary. Opti-
mal control is widely used to analyze the character-
istics of dynamic soaring [5–8]. The energy transfer
between the wind and the bird was examined in [6,9],
considering different reference frames. Bousquet et
al. [8] studied the influence of the shear layer thick-
ness on the shape of a minimum wind cycle and com-
pared their observations to logged flight data of wan-
dering albatrosses from [3, 4]. In [7] Flanzer et al. in-
vestigated the sensitivity of the energy at the end of
a cycle and of the altitude along the trajectory with
respect to aircraft properties, environmental param-
eters, and initial conditions. In [5, 10] Sachs stud-
ied the minimum required wind shear strength for an
energy-neutral dynamic soaring cycle. The minimum
required wind strength is of particular importance for
planning the optimal dynamic soaring trajectory to be

followed. However, the influence of the relative wind
direction on such a criterion is unknown, and yet it
is crucial as the current aircraft state and wind con-
ditions determine the optimal dynamic soaring trajec-
tory. Hence, to gain further insights on the influence
of the wind conditions on the requirements of dynamic
soaring, in this study the authors illuminate the influ-
ence of the initial relative wind direction. To this end,
we quantify the minimum required wind speed to per-
form an energy-neutral dynamic soaring cycle in dif-
ferent conditions. These results become particularly
important for trajectory planning tasks as the current
aircraft state and wind conditions determine the opti-
mal trajectory to be followed. We analyze the wind
speed requirement by solving a series of paramet-
ric optimal control problems with varying initial rela-
tive wind directions. Note that energy-neutrality refers
to the total mechanical energy only, and does not in-
clude energy demands due to onboard systems, such
as sensors, actuators, and control computers. The
optimal control problems are solved with FALCON.m
[11]. Thereby, the problem is discretized first and then
transcribed into a nonlinear program which is solved
by the interior point optimizer IPOPT [12]. The struc-
ture of this work is as follows: Section 2 outlines the
aircraft model and the point mass equations of motion
(EoM). In section 3 the nominal optimal control prob-
lem is formulated. In section 4 a modification to the
nominal problem to model varying initial relative wind
directions is presented. Subsequently, the results are
presented and a discussion of the influence of differ-
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ent initial relative wind directions on an energy-neutral
dynamic soaring cycle succeeds. The conclusion fol-
lows in section 5.

2. AIRCRAFT MODEL

This section presents the aircraft model including its
equations of motion, aerodynamics, and the wind
model. For the aircraft, a model fidelity with three
degrees of freedom is considered. The atmosphere is
based on the standard atmosphere [13] at sea level;
the change of atmospheric conditions with height
is neglected. This assumption is justified since the
aircraft operates in close vicinity to the surface. The
state vector of the aircraft, x ∈ R6×1, comprises its
position and inertial velocity:

(1) x =
[
xN yN zN VK χK γK

]T
.

The aircraft’s controls u ∈ R2×1 are the lift coefficient
CL and the aerodynamic bank angle µA:

(2) u =
[
CL µA

]T
.

Sections 2.1 to 2.4 outline the model in detail. Table
1 gives an overview of the model data.

2.1. Equations of Motion

The model is derived under the simplifying assump-
tions of a non-rotating and flat earth. These are
justified as the aircraft operates at relatively low
speeds and covers only small distances. The po-
sition is specified in a local north-east-down (NED)
coordinate frame denoted by (·)N :

(3)

ẋN = VKcos(γK)cos(χK)

ẏN = VKcos(γK)sin(χK)

żN = −VKsin(γK).

The kinematic velocity is denoted by (·)K :

(4)

V̇K =
(XT )K

m

χ̇K =
(YT )K

mVKcos(γK)

γ̇K = − (ZT )K
mVK

.

The total force acting on the aircraft comprises aero-
dynamic and gravitational forces, FA and FG:

(5) (FT )K =

XT

YT

ZT


K

= (FA)K + (FG)K .

The gravitational force in the kinematic frame is ob-
tained by:

(6) (FG)K = TKN

 0

0

mg0


N

.

The transformation matrix TKN (χK , γK) can be found
in appendix A.

2.2. Wind Model

As in [5, 6, 9], we assume a logarithmic wind shear
profile. Thus, the wind speed is obtained as a function
of the height above surface h = −zN :

(7) VW = VW,ref
ln(h/h0)

ln(href /h0)
.

The surface roughness h0 and the reference height
href influence the shape of the wind profile. The refer-
ence wind speed VW,ref , specified at href determines
the wind strength and wind gradient of the wind field.
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VW=VW;ref
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1.5

h
=h
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f

FIG 1. Logarithmic wind profile according to [5].

Figure 1 illustrates the wind profile. The wind velocity
in local NED coordinates is:

(8) vW =
[
VW 0 0

]T
N
.

2.3. Aerodynamics

From the wind triangle we obtain the aerodynamic ve-
locity:

(9) vA = vK − vW =
[
uA vA wA

]T
and consequentially the air speed:

(10) VA =
√
u2
A + v2A + w2

A.

The lift coefficient CL is chosen as control variable.
For the drag coefficient we assume a quadratic polar:

(11) CD = CD0 + kC2
L.
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The aerodynamic lift and drag forces L and D are
specified by:

(12)
L =

1

2
ρV 2

ASCL

D =
1

2
ρV 2

ASCD.

The aerodynamic side force Q is assumed to be neg-
ligible. The total aerodynamic force is then trans-
formed into the kinematic frame by

(13) (FA)K = TKA (FA)A = TKA

−D

0

−L


A

and

(14) TKA = TKN TNA.

The transformation matrix TNA(χA, γA, µA) can be
found in appendix A.

2.4. Model Data

The model data is specified in table 1 and is based on
the albatross and wind model used by Sachs in [5].

TAB 1. Model data

Parameter Symbol Value

Aircraft data

Mass m 8.5 kg
Wing reference area S 0.65 m2

Wing span b 3.44 m
Max. lift coefficient CL,max 1.5 -
Zero-lift drag coefficient CD,0 0.033 -
Lift-dependant drag factor k 0.019 -

Environmental data

Air density ρ 1.225 kgm-3

Gravitational acceleration g0 9.81 ms-2

Wind reference height href 10 m
Surface roughness h0 0.03 m

We can compute the stall speed from the model data
as follows:

(15) Vstall =

√
2mg0

ρSCL,max
= 11.81m s−1.

3. NOMINAL OPTIMAL CONTROL PROBLEM

To analyze the influence of the initial relative wind di-
rection on the requirements for an energy-neutral dy-
namic soaring cycle, the following parametric optimal

control problem is solved on the interval t ∈ [t0, tf ]:

(16)

min
u(t),x(t),p

J

subject to ẋ(t) = f(x(t),u(t),p)

xlb ≤ x(t) ≤ xub

ulb ≤ u(t) ≤ uub

plb ≤ p(t) ≤ pub
ψx(x(t0),x(tf )) = 0

ψu(u(t0),u(tf )) = 0.

To quantify the minimum wind requirement for an
energy-neutral cycle we seek to minimize the refer-
ence wind speed:

(17) J = VW,ref .

States and controls were given in (1) and (2). We
obtain the nonlinear state dynamics f : R6×1×R2×1×
R2×1 → R6×1 from the state derivatives in (3) and (4):

(18)
f(x(t),u(t),p) =[

ẋN ẏN żN V̇K χ̇K γ̇K

]T
.

To compensate for the negligence of modeling the ro-
tational dynamics and yet still account for the capa-
bilities of a physical system, control rate limits are im-
posed:

(19)
−2 s−1 ≤ĊL ≤ 2 s−1

−2 rad s−1 ≤µ̇A ≤ 2 rad s−1.

Thereby, erratic controls, numerical chattering, and
solutions with high-frequency control activity are pre-
vented. Such chattering would exert high loads on the
actuators and potentially damage the system. Also,
increasing control activities entail higher onboard
power consumption. This is particularly undesirable
for our application, which aims at minimizing the use
of onboard energy resources, while extracting energy
from the wind for propelling the system.
Problem parameters p ∈ R2×1 are subject to opti-
mization and given by:

(20) p =
[
VW,ref tf

]T
.

Box constraints guarantee that the resulting trajectory
remains within the performance limits of the aircraft.
The lower (LB) and upper bounds (UB) can be found
in table 2. To avoid convergence issues originating
from singularities in (4) induced by γK approach-
ing ±90◦, LB and UB are enforced. Since ground
speeds close to VK = 0ms−1 are not purposeful,
an additional restriction was not necessary. To avoid
impact on the surface, the zN -coordinate is upper
bounded to z0 = −1m. The upper bound for the final
time tf excludes multiple consecutive cycles from the
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TAB 2. State, control, and parameter bounds.

LB Variable UB

States

−∞ ≤ xN ≤ ∞
−∞ ≤ yN ≤ ∞
−∞ ≤ zN ≤ z0

0 ≤ VK ≤ ∞
−∞ ≤ χK ≤ ∞
−80◦ ≤ γK ≤ 80◦

Controls

0 ≤ CL ≤ CL,max

−80◦ ≤ µA ≤ 80◦

Parameters

0 ≤ VW,ref ≤ ∞
0 ≤ tf ≤ 10 s

solution space.

To impose energy-neutral dynamic soaring, the me-
chanical energy after the cycle is enforced to equal
the energy at the start of the cycle by the state bound-
ary constraints ψx : R6×1 × R6×1 → R7×1:

(21) ψx(x(t0),x(tf )) =



xN (t0)

yN (t0)

zN (t0)− z0

zN (t0)− zN (tf )

VK(t0)− VK(tf )

χK(t0)− χK(tf )

γK(t0)− γK(tf )


= 0.

We constrain the initial lateral position without any
loss of generality to coincide with the origin of the lo-
cal NED coordinate frame. The initial zN -coordinate
is set to its upper bound of z0 = −1m. To ensure
periodicity of the maneuver, the controls at the start
and end of the cycle are synchronized by the control
boundary constraints ψu : R2×1 × R2×1 → R2×1:

(22) ψu(u(t0),u(tf )) =

[
CL(t0)− CL(tf )

µA(t0)− µA(tf )

]
= 0.

The described optimal control problem was solved
with FALCON.m [11] which uses direct optimiza-
tion methods with full state and control discretiza-
tion [14, 15]. The solution of the nominal result is
compared to head-, tail-, and crosswind conditions in
the subsequent section.

4. INFLUENCE OF THE INITIAL RELATIVE WIND
DIRECTION

To investigate the influence of the initial relative wind
direction, the nominal optimal control problem from

section 3 is slightly modified. The state boundary con-
straints in (21) are replaced by:

(23) ψx(x(t0),x(tf )) =



xN (t0)

yN (t0)

zN (t0)− z0

zN (t0)− zN (tf )

VK(t0)− VK(tf )

χK(t0)− χK,0

χK(t0)− χK(tf )

γK(t0)− γK(tf )


= 0.

The additional state constraint of the initial course
angle χK(t0) allows to specify an initial relative wind
direction of χK,0. Due to the symmetry, the problem
is solved only for χK,0 ∈ [0◦, 180◦] with a step size of
1◦.

TAB 3. Nominal results compared to head- and tailwind
condition.

Tailwind Nominal Headwind

χK(t0) 0 ◦ 82.55 ◦ 180 ◦

VW,ref 8.32m s−1 7.35m s−1 8.30m s−1

χK,Travel 38.68 ◦ 56.39 ◦ 60.18 ◦

VK,Travel 11.99m s−1 11.23m s−1 8.56m s−1

D 94.70m 77.66m 67.87m

TCycle 7.90 s 6.92 s 7.93 s

The trajectories of the nominal, headwind, and tail-
wind condition are illustrated in figure 2. The direction
of the wind field is indicated by the wind profile in the
xz-plane. For the nominal trajectory the lift coefficient
history is color-coded along the trajectory. During the
lower and upper turn the maximum lift coefficient is
utilized to achieve a curvature of the flight path; how-
ever, in the windward climb and leeward descent the
lift coefficient decreases significantly. The angle be-
tween the positive xN -axis and the travel direction is
defined as χK,Travel . For the nominal and headwind
condition the travel direction is similar, whereas to-
wards tailwinds it increases considerably. The travel
speed VK,Travel is the downrange D (lateral euclidean
distance from the initial position to the final position)
per cycle time TCycle = tf − t0 and is calculated ac-
cordingly:

(24) VK,Travel =

√
xN (tf )2 + yN (tf )2

tf − t0
=

D

TCycle
.

Table 3 summarizes relevant characteristic values
of an energy-neutral dynamic soaring cycle for the
nominal, headwind, and tailwind condition. Since the
initial course angle is unconstrained in the nominal
problem, the solution reveals an optimal initial course
angle of χK(t0) = 82.55◦ with respect to the given
cost function in (17). Be reminded that in contrast
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FIG 2. Trajectory of the nominal, headwind, and tailwind condition.

to the nominal case, for head- and tailwind condi-
tions the initial course angle is prescribed and not
subject to optimization. Figure 3 shows the phase
diagram for the height above surface and the course
angle. In the nominal case, during the lower turn for
heights corresponding to h = −z0, the course angle
changes from roughly 49◦ to 104◦, indicated by the
blue circles. Let N = {χK(t) | t ∈ [t0, tf ], zN (t) = z0}
contain all course angles of the nominal trajectory for
zN (t) = z0. Due to the periodicity of the maneuver,
we can shift the nominal trajectory in time such that
χK(t0) = χK,N and simultaneously (22) and (23) are
satisfied for all χK,N ∈ N . This indicates that the time
shifted solution of the nominal problem is a solution
to (16) for all χK,0 ∈ N . And indeed, it can be shown
that the state and control histories are up to insignifi-
cant numerical deviations identical. Figure 4 shows
clearly that for χK,0 ∈ N the reference wind speed is
minimized to the same value of VW,ref = 7.35m s−1

as in the nominal case.

Although the head- and tailwind conditions yield
nearly equal reference wind speeds, their trajectories
strongly diverge (see figure 2 and table 3). However,
from figure 4 it is evident that tailwind conditions are
generally more favorable as they require lower wind
speeds for increasing crosswind components. Also,
for tailwinds the travel direction changes significantly
towards crosswinds, whereas for headwinds the
change in travel direction is moderate (see figure 5).
This becomes particularly important if it is required to
travel in a certain direction relative to the wind.
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FIG 3. Height above surface over course angle for the
nominal, headwind, and tailwind condition.
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FIG 4. Minimum reference wind speed over initial rela-
tive wind direction.
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FIG 5. Travel direction over initial relative wind direc-
tion.

In headwind conditions the initial ground speed is
significantly lower than in tailwind conditions (see
figure 6). For the air speed the inverse analogy
applies, however the differences in magnitude are
less. Interestingly, the minimum air speed is almost
equal for all initial relative wind directions at an air
speed of approximately VA = 8ms−1, lower than the
stall speed of Vstall = 11.81m s−1. The minimum
ground speed in tailwind conditions is slightly higher
than in headwind conditions.

The control histories are shown in figure 7. It is
noticeable that the structure of the lift coefficient and
the bank angle does not change for different initial
relative wind directions and for χK,0 ∈ N the controls
equal the time shifted nominal controls.

Analogously, the cycle time, downrange, and conse-
quently the travel speed are equivalent for χK,0 ∈ N
(see figures 8a-8c). While the cycle time (see figure
8a) increases monotonically from the minima towards
head- and tailwinds, the downrange and travel speed
increase monotonically from headwinds to tailwinds
(see figure 8b - 8c). Despite the considerable in-
crease in downrange towards tailwinds, the gain in
travel speed is alleviated by longer cycle times. While
the maximum load factor hardly changes for different
initial wind directions (see figure 8e), the specific
energy extracted from the surrounding airflow grows
towards steep head- and tailwind directions (see
figure 8f).

The total specific power of the aircraft describes the
energy transfer between wind and aircraft:

(25) pT (t) = VK

(
V̇K(t)

g0
+ sin(γK(t))

)
.

If pT (t) > 0 energy is extracted and for pT (t) < 0 en-
ergy is dissipated. The total energy exchange eT is
the amount of extracted specific energy ee plus dissi-
pated specific energy ed:

(26) eT = |ee|+ |ed| .
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FIG 6. Ground and air speeds for varying initial relative
wind directions.
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FIG 7. Controls for varying initial relative wind direc-
tions.
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direction.
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(b) Downrange over initial relative wind
direction.
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(c) Travel speed over initial relative
wind direction.
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(d) Reference wind speed over initial
relative wind direction.
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(e) Load factor over initial relative wind
direction.
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(f) Specific extracted energy over initial
relative wind direction.

FIG 8. Characteristic values for varying initial relative wind directions. The dashed and chain line represent the
respective maximum and minimum values.

Thus, for an energy-neutral dynamic soaring cycle the
extracted specific energy is:

(27) ee = −ed =
1

2
eT =

1

2

∫ tf

t0

|pT (t)| dt.

5. CONCLUSION

In this work, we studied the influence of the initial
relative wind direction on the wind requirements of
energy-neutral dynamic soaring. The investigation
was accomplished by formulating a parametric op-
timal control problem for determining the minimum
required wind reference speed for numerous initial
relative wind directions and solving it numerically.
The solution identified some characteristics that are
helpful for the dynamic soaring practice of RPAS:
The wind reference speed does not have a single
optimum with respect to the initial relative wind direc-
tion. A certain range of initial directions minimizes the
reference wind speed, while beyond this range, the
required wind speed is higher. Besides, initial tailwind
conditions are found to be more favorable in terms
of downrange and travel speed. Future research
will be dedicated to analyzing the influence of initial
conditions for different parameters on energy-neutral
dynamic soaring with higher-fidelity models and
additional operational constraints.
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A. TRANSFORMATIONS

TKN = cos (χK) cos (γK) cos (γK) sin (χK) − sin (γK)

− sin (χK) cos (χK) 0

cos (χK) sin (γK) sin (χK) sin (γK) cos (γK)



TNA =

a11 a12 a13

a21 a22 a23

a31 a32 a33


a11 = cos (χA) cos (γA)

a12 = cos (χA) sin (γA) sin (µA)− cos (µA) sin (χA)

a13 = sin (χA) sin (µA) + cos (χA) cos (µA) sin (γA)

a21 = cos (γA) sin (χA)

a22 = cos (χA) cos (µA) + sin (χA) sin (γA) sin (µA)

a23 = cos (µA) sin (χA) sin (γA)− cos (χA) sin (µA)

a31 = − sin (γA)

a32 = cos (γA) sin (µA)

a33 = cos (γA) cos (µA)

The aerodynamic velocity in the local reference coor-
dinate frame is:

vA =
[
uA vA wA

]T
N

and the aerodynamic angles are determined as fol-
lows:

χA = arctan

(
vA
uA

)
γA = arcsin

(
−wA

VA

)
.
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