DLRK 2022 - Dresden, Germany

Design and Testing of a Propulsion System for 3U-CubeSat application

TECHNISCHE UNIVERSITÄT DARMSTADT

A. Fombonne¹

S. Leichtfuß¹, M. Börner², H. Jakob¹, J. Albert¹, H.-P. Schiffer¹

TU Darmstadt: German Aerospace Center:

¹ Institute of Gas Turbines and Aerospace Propulsion (GLR) ² Institute of Space Propulsion (DLR)

Motivation:

Problem: \uparrow # of satellites \rightarrow Space debris \uparrow

Goal: Clean space \rightarrow Sustainability

Solution: Satellite Deorbiting System

 \rightarrow Activated at end-of-life

 \rightarrow Limits space debris

GLR's Implementation:

- Application for 3 Units (U) CubeSats
- 1U: H2O propulsion system \bullet
- System validation through tests lacksquare

Test Bench:

- Designed for H2/O2 thrusters
- GH2 / GO2 / GN2
- Operation modes: \bullet
 - Stationary
 - Blow-down \rightarrow Buffer H2/O2 tanks
- Maximum pressure: 20 bar
- Nominal mass flow: 0.2 g/s

Resonance Ignition:

- No active parts needed
- Simple set up: Nozzle & cavity
- \rightarrow Potentially reliable

Key Design Factors:

- Cavity length & geometry
- Ratio cavity / nozzle diameter
- Nozzle cavity distance
- Pressure ratio over nozzle

Aimed Result: Series of cycles filling & emptying cavity

- \rightarrow Formation of underexpanded jet downstream of nozzle

10mm,

Main Thruster:

- Additive manufacturing
- Inconel 718
- Thrust < 1 N
- Burn time < 3 s
- Oxidizer-Fuel ratio: 7
- Comb. pressure: 3.5 bar
- Throat diameter: 1.3 mm

- Diagnostics on thermal management: Thermal camera
- Diagnostics on flow field: Schlieren system

 \rightarrow Loss mechanisms heat up gas up to auto-ignition

temperature

Achievements & Findings:

- Formation of underexpanded jet characterized
- Proper settings detectable through frequency analysis
- Heat generation proven (170°C)
- Additional effects complicate temperature increase due to miniaturization
- \rightarrow Further optimization needed

Acknowledgements:

The work of C. Manfletti, S. Dengler and F. Ebert (now at TU Munich) is greatly acknowledged. We are also thankful for the contribution of S. Berger and E. Sokoll. The ongoing cooperation with T. J. P. Karpowski and K. Henn (TU Darmstadt-STFS) is highly valued.