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Abstract

High-fidelity simulations play a key role for aircraft design, virtual flight testing and simulation based certifica-
tion. As computational resources increase and numerical methods progress, highly detailed geometries can be
investigated and complex multi-physics models can be applied. Research projects of the past decades have
demonstrated the capabilities towards virtual design and virtual testing of aircraft. To channel the experience
and software developments from the past years, a new software framework for high-fidelity, multidisciplinary
analyses with a focus on loads computation has been developed. The backbone is the FlowSimulator and
FSDataManager (FSDM) jointly developed by DLR, Airbus and ONERA. The FSDM provides a comprehen-
sive HPC library for the management of multiple parallel processes and data objects. This work focuses on
the architecture of the new loads analysis software, which features a base class for all analyses, a centralized
data model and a registry to inject user-defined scenarios. The capabilities are demonstrated by comparing
a steady turn maneuver of a free-flying, fully elastic transport aircraft to real flight test data, showing good
agreement for the resulting displacements.
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1. INTRODUCTION

High-fidelity methods for gust and maneuver loads
computation enrich modern aircraft design, as less
assumptions like inviscid, subsonic flow have to be
made. Compared to industrialized lower fidelity meth-
ods, those simulations quickly become complex, time
consuming and therefore need to be solved in a mul-
tiprocessing environment on high performance com-
puters (HPC).
In the past decade a prototypical code has demon-
strated and progressed the capability of high-fidelity
loads simulation [1,2]. Now, this predecessor is being
replaced by a new software for high-fidelity loads
analysis within DLR. The software must be flexible
as modifications and new methods are developed
or investigated in a scientific research environment.
The requirements for the new loads framework com-
prise multiple sets of simulations like trimmed steady
maneuver loads, unsteady maneuvers and gust
encounters. For all of those scenarios, aerodynamic
solvers of various fidelity levels, trim algorithms
and coupling strategies should be available. Also,
researchers frequently need to implement new meth-
ods to answer new questions. Thus prototypical
programming must be possible using the framework.
As multiple levels of fidelities are requested for loads
computation, the name of the framework is ultra fi-
delity loads or short UltraFLoads. The framework has

already been used for high-fidelity loads computation
for quasi-steady pull-up and roll-maneuvers [3].
The solver for high-fidelity aerodynamic simulations
is currently the DLR TAU code [4]. In the near future
the solver will be replaced by the next-generation
CFD solver CODA, which descends from DLR’s
solver prototype implementation Flucs [5]. CODA is
currently being diligently developed in a joint effort
by DLR, Airbus and ONERA. The FlowSimulator
DataManager (FSDM) [6], jointly developed by DLR,
Airbus and ONERA, provides an HPC library for
CFD-based simulation workflows, data models, data
manipulation and multiprocessing. As the core library
includes Python interfaces, additional convenient
control layers (FSDLRControl) have been developed
to organize data and workflows in Python. Those
layers simplify the volume mesh deformation, inter-
action with TAU, MSC.Nastran and many more. As
the FSDM is highly modularized and a centralized
data model is available, each user or researcher can
combine the data and methods individually for their
needs. This was used for example in a proposed ap-
proach by Backhaus et al. [7], where the optimization
capabilities of OpenMDAO1 [8] are combined with the
FSDM.
With a focus on multidisciplinary analysis, Ul-
traFLoads depends heavily on the FSDM and

1https://openmdao.org/
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FSDLRControl to increase code robustness and
reduce duplicate, additional work. As all of the simu-
lations can be interpreted as some kind of analysis,
object oriented programming is used for all analysis
classes. There are abstract analysis classes to solve
explicit or implicit problems. All analysis classes are
based on the explicit analysis class.
This paper provides an architecture documentation
of UltraFLoads, containing the functional and user
requirements, the architecture constraints, the archi-
tecture solution, and implementation details of the
generic scenarios. A demonstration is provided for
a fully elastic, free flying aircraft in a steady 2-g turn
maneuver.

2. REQUIREMENTS

The requirements for the new framework were de-
rived from user stories of the type: "As a ...., I want
...., such that ...". The stories were written by the
scientists at the department of Loads and Aeroelas-
tic Design and then categorized. The functional re-
quirements list all the analyses and simulations the
user wants to run. Further expectations towards in-
put/output and process management are combined in
the user expectations. Furthermore, constraints, the
research context and the technical context have to be
considered for the new framework.

2.1. Functional

The main objective is to compute loads using high-
fidelity methods. The aerodynamic, inertia, external
and other loads need to be distinct from each other
and a cut-loads computation should be available. The
loads should be provided for steady maneuvers, dy-
namic maneuvers and gust encounters in the time do-
main. Also, flight control should be considered for the
dynamic simulations.
Furthermore, different aerodynamic solvers like TAU
[4] and CODA [5] should be combined with structural
solvers like MSC.Nastran, B2000++2 or a modal ap-
proach. Analyses of free-flying, flexible aircraft re-
quire rigid body flight mechanics and flight dynam-
ics. A trim algorithm of arbitrary trim targets and any
trim control variables should be available, which is re-
quired for all quasi-steady maneuver simulations.
Additionally, unsteady gust encounters and maneuver
simulations should be possible with the new frame-
work.

2.2. User expectations

Based on the user stories, additional expectations
about the framework can be summarized. Only one
input file should be needed, which is simple to setup
and for which input checks are conducted.
Furthermore, as the simulation may take several
hours to days, live monitoring of the analyses should
be available, to check for example the convergence

2https://www.smr.ch/products/b2000/

of the fluid-structure coupling or the current actuator
settings.
Also, restarting from a previous simulation should be
enabled in order to reduce computational effort.
Additionally, it was excepted that the scenarios should
be modifiable and that own implementations can be
integrated.

2.3. Constraints

The framework is constrained by the usage of the
FlowSimulator and FSDataManager (FSDM).
The FSDM is jointly developed by Airbus, DLR, Onera
and other research institutes with the goal to provide
a high-performance computing library for high-fidelity
simulations [9,10].
For example the flow solver TAU, the next flow solver
CODA [5], mesh deformation plugins, and other high-
fidelity related developments are integrated or will be
integrated in the FlowSimulator environment. Thus, a
lot of plugins can be used and less new implemen-
tations are necessary. As the number of users has
been increasing constantly over the recent years, the
different plugins are tested more intensively and the
software is developed carefully.

2.4. Research context

The new framework is a research software for a re-
search environment. Hence, it needs to be consid-
ered that new questions arise which may require new
implementations or modifications to the already exist-
ing code.
Also, code prototypes may become necessary to
quickly investigate a new method, which first must
prove to be useful. Hence, modifications and proto-
typing should be enabled by the new code. Instead
of modifying the code directly, the modifications
should take place only at run-time. This allows some
freedom to the researcher to adjust analyses to the
current project while maintaining a stable code base.

2.5. Technical context

To use already implemented plugins and being able
to include future developments, the FSDM ecosys-
tem must be used. With the FSDataManager, mul-
tiple data objects can be centrally stored, allowing for
a simple modularization of code. The most important
data objects for the new framework are the FSMesh
objects and the FSRelationsModel.

2.5.1. Mesh objects

The FSMesh object is a data container for distributed
meshes. Different mesh-types can be imported and
exported for structured and unstructured meshes.
Different element types are available for which cell at-
tributes and datasets can be stored. For example, cell
attributes can be used to define components, which is
useful for coupling, or boundary markers, which help
to identify solid walls in a volumetric mesh.
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As all meshes are FSMesh-objects, different mesh
partitioning algorithms can be used and general mesh
deformation techniques can be applied.
Visualization is simply achieved by built-in export
methods to VTK or Tecplot formats. Thus, the simu-
lation results can be visualized immediately, without
additional postprocessing.

2.5.2. The relations model

The FSRelationsModel is intended to provide rela-
tions between models and to hold simulation parame-
ters. It can be received from the FSDataManager in-
stance and is always synchronized over all processes.
This allows to access the relations and the parame-
ters anywhere in the process, and enables a central-
ized data approach for light-weight meta data.
It is a hierarchic data model, similar to an XML format,
with nodes, sub-nodes and elements like attributes,
parameters, FSDataLog and IDs. The relations model
can be imported from and exported to an XML file.
Thus, exporting the relations model allows to moni-
tor the current state of any simulation or using it as a
restart file.
Simulation settings or input can be realized by at-
tributes or parameters. Monitoring of data is accom-
plished via the FSDataLog, which may hold multiple
categories with again multiple quantities, where each
quantity can be a multidimensional array.

2.5.3. The layers

The FlowSimulator ecosystem can be seen as differ-
ent layers, where the data-objects are on the lowest
level and the fully defined scenarios are on the up-
per level, as shown in Figure 1. Data-objects like
the FSArray, FSDataSet, FSMesh, FSRelationsModel
build the backbone, but they may not be convenient
to interact with for the upper-level user. Thus, differ-
ent plugins are used to manage the data and different
features like the mesh deformation. On top of that,
the convenient control layers can be used for easier
access and execution of for example the TAU solver.
Here, it is only expected that the user has some basic
Python knowledge to work with the convenient control
classes. UltraFLoads aims at the upper level, to har-
monize different control classes in general scenarios.
Thus, the script does not require too much knowledge
about the FSDM and the control classes. However,
when it comes to further developing the code or de-
viating slightly, it quickly becomes necessary to know
all the different layers.

3. ARCHITECTURE

With the FSDataManager a centralized data model
is available, allowing to split the data-flow from the
process flow and making modularization easier. This
core idea is used for UltraFLoads as well by using
FSMesh objects for all models, which can be inter-
preted as some discrete, three-dimensional object.

FIG 1. The different layers of the FSDM. Starting from
the data objects on the lowest level, the user
needs less and less expertise with the FSDM go-
ing up to the scenario level.

So FSMesh objects have to exist for all structural
models, coupling models , loads model, etc.
Furthermore, the FSRelationsModel is used for
all meta information. The hierarchy, node names,
attribute names, parameter names etc. are stored
in relations interface classes. Therefore analysis
classes receive their input and store their output
in the FSRelationsModel via the relations interface
classes.
On the downside, most of the packages or classes of
the FlowSimulator do not use the FSRelationsModel
yet and hence there is no definition for them. Thus,
the input parameters for those classes and functions
have to be defined by UltraFLoads. This might
change, once the FSRelationsModel is utilized for
those plug-ins as well.

3.1. Relations-model interface

As the FSRelationsModel provides a hierarchic data
structure with different elements, the structure and the
names have to be defined.
This structure is defined by each relations interface
class, which inherits from a base interface class.
The FSRelationsModel can be accessed from the
FSDataManager and therefore, each interface object
can be instantiated using the FSDataManager only.
Each interface class defines a domain node, to
which all other parameters, attributes, FSDataLog
are stored.
A simple rule of one task, one node, one relations
interface class is followed. Thus, there is one class
for the flight point definition, one for the trim analysis,
one for general information about the vehicle and so
on.
Monitoring of any scalar quantity is achieved by fill-
ing an FSDataLog, stored below each domain node.
Which monitoring variable to be stored has to be ex-
plicitly requested by the user. All interface classes
have access to an object, which centrally stores it-
eration numbers for any analysis. When monitoring
variables are written, all up-to-date iteration numbers
are stored as well. This is necessary, as the different
analysis may be executed multiple times.
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3.2. Analysis base class

For UltraFLoads, every simulation, workflow and
analysis share some common behavior like incre-
menting iteration numbers or triggering a monitoring
event. Therefore, those code blocks can inherit from
one slim base class, the AnalysisExplicit, which is
demonstrated in Figure 2. The base class provides
public interfaces like preprocess, process, postpro-
cess, exportModels, chainrun, getVar, registerAnaly-
sis, registerMonitoring, registerPostProcessingEvent,
getRelationsInterface and fromRelations. Also, an
implicit analysis class exists, which is based on the
explicit analysis as well. Note, the implicit, explicit
analysis idea is based on the explicit and implicit
component idea of the open multidisciplinary analysis
and optimization framework OpenMDAO [8].

3.2.1. Using the relations interface

The relations interface object is constructed and
stored as an instance variable, when the analysis
class is initialized. This object is used to increment
the iteration number and do the monitoring. Which
relations interface class to use is defined by the
getRelationsInterface class method, which can be
overwritten by any child class.
When initializing the analysis object based on the in-
formation stored in the FSRelationsModel, the class
method fromRelations is used, which first collects the
input for the analysis, initializes it and then returns the
new instance as outlined in Algorithm 1.

Algorithm 1 Usage of the class method fromRela-
tions(dataManager)

1: RelClass = cls.getRelationsInterfaceClass()
2: rel = RelClass(dataManager)
3: arguments = rel.getInput()
4: return cls(arguments)

3.2.2. Process flow

Each analysis instance can be executed by the in-
stance method chainrun, which simply calls consecu-
tively preprocess, process and postprocess. The pre-
process calls the private method _preprocess, which
can be defined by a child class. A call to process in-
crements the iteration number and then executes the
private method _process. This private method has to
be overwritten by any child class, otherwise the initial-
ization fails. Similarly, the postprocess calls a private
method, which may be overwritten by any child class,
then triggers a monitoring event, if requested stores
the FSRelationsModel as XML and or calls the ex-
portModels and finally triggers further postprocessing
events.

3.2.3. Variables

Variables are just quantities which may be required
by an analysis or are just interesting to be monitored.

Calling the method getVar with the variable name as
input, will first check whether an up-to-date value can
be found in the monitoring log. If not available, the
variable is computed using a dictionary which maps
the variable name to the corresponding method. Oth-
erwise the variable is received from the sub-analyses
by calling getVar.

3.2.4. Analysis registry

The analysis registry is a core component of each
analysis class, as it is used to identify other analy-
sis classes, which may be used. For example the
fluid-structure analysis may combine different aerody-
namic and structural solvers. The registry is realized
by a dictionary which maps analysis keys to analysis
classes. As the registry is stored as a class variable,
it is shared by all instances and can be accessed or
modified easily.
Users can register own analysis classes to each anal-
ysis registry, allowing for quick modifications of al-
ready existing analysis classes. This way, a user can
define an own, new analysis, register it and still use all
the other analyses classes. The new analysis has to
be a child of the base class as well. The benefit is that
the modification only exists at run-time and the source
code remains untouched. This also simplifies the au-
tomatic testing, as dummy analysis can be registered
as well.
In combination with the class method fromRelations,
the registry can be used to chain the analyses auto-
matically, visualized by Algorithm 2. The name of the
sub-analysis to be used is stored in the corresponding
domain of the FSRelationsModel. Then, the analysis
name is used to receive the class of the sub-analysis
from the registry. Now, the analysis can be instanti-
ated by calling the fromRelations method of that sub-
analysis.

Algorithm 2 Using the analysis registry in the
method fromRelations(dataManager)

1: RelClass = cls.getRelationsInterfaceClass()
2: rel = RelClass(dataManager)
3: analysisName = rel.analysisName
4: Analysis = cls.fromRegistry(analysisName)
5: analysis = Analysis.fromRelations(dataManager)
6: return cls(analysis)

An example of the analysis registries and the inheri-
tance is shown in Figure 2 by the green boxes. Fol-
lowing the green arrows, it becomes apparent that
each analysis may be in an analysis registry of an-
other analysis. For example the SixDOF analysis,
which allows for rigid-body flight dynamic simulation
of the free-flying aircraft, may use the TAU analysis
or the SteadyFSI analysis. The SixDOF class itself is
then part of the registry of the TrimAny class to enable
the trimming of the free-flying aircraft.
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FIG 2. Inheritance diagram of the abstract analysis in
blue and the fully defined child classes in black
and red. The analysis registries are visualized
as green boxes, which may hold other analyses
definitions.

3.3. Implicit analysis class

Another analysis class provides solvers for implicit
problems. The solvers are damped Gauss-Newton
solvers which can be used for trimming and a sequen-
tial solver, applicable to loosely coupled fluid-structure
simulations.
The implicit analysis has the methods getX, setX,
getY and setY, to build simple input-output models.
The child classes may also provide a way to compute
the jacobian, which is done using forward finite differ-
ences otherwise. Alternatively, the jacobian can be
computed using a good or bad Broyden approach. It
is up to the user to decide whether or not to freeze
the jacobian or allow for re-computation.
If activated, the input variables can be relaxed by
a predefined sequence of relaxation factors, or the
relaxation may be based on an Aitken relaxation
method.

3.4. Input

As all necessary information for the analyses are
stored in the FSRelationsModel, it plays a central
role for UltraFLoads. Thus, to use all the features
and analyses, the FSRelationsModel has to be set
up correctly, meaning the names and hierarchy of
nodes, attributes, parameters have to be known.
One possibility is to load the FSRelationsModel from
an XML-file, which is shifting the problem towards the
XML file creation. As the XML format is not partic-
ularly user friendly, this option is only considered for
restarting from previous simulations.
Another approach is to use the interface objects for
setting up the FSRelationsModel, which requires
knowledge about UltraFLoads. With each interface
object, the data can be written without knowledge
about the structure of the FSRelationsModel.
A third way is a simplified input file in the lightweight,
text-based JSON-format [11]. Also, a schema
is available for UltraFloads based on the JSON-

schema3 [12], enabling simple auto-completion,
dependency checks and data type checks. Thanks
to the Python package jsonschema4, the input is
validated at the start of the simulation. Then, the
input is translated to the FSRelationsModel using the
interface objects.

4. IMPLEMENTATIONS

4.1. Nodal based mesh interpolation

Interpolation from one mesh to another is necessary
for the coupling of the different disciplines. Forces
from the aerodynamic surface mesh need to be trans-
ferred to the structural mesh and displacements from
the structural to the aerodynamic mesh.
Based on element attributes of each FSMesh object,
the interpolation can be split into different pairings to
ensure that for example loads from the left wing are
transferred to the respective wing structure only and
not to the fuselage as well. For each coupling pair, a
different interpolation method can be selected. Differ-
ent radial basis functions and nearest neighbor meth-
ods are available and the user can register own inter-
polation functions.

4.2. Meta models

In order to not mix different disciplines with each
other, meta models are used for storing loads and
displacements. The structural analysis receives the
loads from a loads model and not from an aerody-
namic analysis. This way, the structural solver does
not need to have access to the aerodynamic model.
The same applies for the aerodynamic analysis with
respect to the displacements. Also, it allows to
define artificial external loads, which may act on the
structure only.
Furthermore, the loads model is equipped with fea-
tures to integrate the forces and moments along the
loads-reference axis.

4.3. Actuators and controls

Actuators are used to change the state of an moving
object. Depending on the target state, multiple ac-
tuators may be applied to reach it. The state of each
actuator is logged in an FSDataLog to monitor the his-
tory of the actuators state.
Multiple actuator types are available, which either
manipulate the model directly or just change the input
of an analysis. Aerodynamic control surfaces and
control planes can be selected, which then alter the
volume mesh for the CFD simulation. At the mo-
ment only the blended, mesh-morphing approaches
for control surfaces [6] can be selected; Chimera
mesh-movement is not considered yet.
Furthermore, external force distributions can be re-
lated to a set nodes of the loads-meta model to mimic

3https://json-schema.org/
4https://python-jsonschema.readthedocs.io/en/stable/
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a horizontal tail plane for example. Additionally, artifi-
cial forces can be applied to the flight mechanic model
to account for a thrust force.
As the Euler-angles, translatory and rotatory speeds
are input parameters for the simulation, they can be
treated as actuators as well.
Control variables are then defined, which may affect
multiple actuators simultaneously. Each actuator may
be scaled by a different participation factor, which
may change over time. Those control variables can
then be used for a flight-control system, which has
not been implemented yet, or for a trim algorithm.
Also, each actuator state and control variable state
may have different upper and lower limits. All those
information are light-weight enough to be stored in the
FSRelationsModel.

4.4. Modal projection

For small deformations, the structural degrees of free-
dom u relate linearly to the applied forces F by the
stiffness matrix K.

(1) Ku = F

However, solving this equation for a large number
of degrees of freedom and different element-types
may require a finite element analysis with an external
solver. Instead, the degrees of freedom can be re-
duced, by just using a small set of n structural modes
of the model. With u ≈

∑n
i φiqi, the displacements

are approximated by scaling the eigenvectors φ with
the generalized coordinates q.

(2) Ω2q = ΦTF

Then, only the eigenvalues Ω2 and eigenvectors φ
need to be available at run time. This method is
especially beneficial for the free-flying vehicle as
shown in the work of [13]. Also, the FEM solver is
only needed once in a model-preparation phase to
set up the modal base. Here the user has to decide
which structural modes should be included.

4.5. Fluid-Structure interaction

The available structural and aerodynamic analyses
are stored in the analysis registry of the SteadyFSI
class. The generic fluid-structure interaction solver
only weakly couples the two disciplines, by executing
the aerodynamic solver, then transferring the aero-
dynamic forces via the loads model to the structural
mesh. Then, the structural solver is executed and the
displacements are interpolated over the displacement
model to the aerodynamic surface mesh. The prob-
lem is solved if the residual of the forces and the resid-
ual of the displacements are small enough. Note, it is
up to the user how to set up the aerodynamic solvers
and the structural solvers. At the moment, the avail-
able structural solvers are the modal approach as de-
scribed in Section 4.4, the linear and the nonlinear
solvers of MSC.Nastran. It is planned to include the

B2000++ solver in the near future. For the aerody-
namic solvers, only TAU is available at the moment.
However it is planned to include a low-fidelity, poten-
tial flow based solver and the new CODA solver as
well.

4.6. Rigid body motion

For the free flying aircraft the six degrees of freedom
of the rigid body motion are based on the equations
for forces (Eq. 3) and moments (Eq. 4). Forces F and
moments L in the body reference frame b are evalu-
ated at the center of gravity. The mass matrix M and
the moment of inertia tensor J are computed at the
center of gravity as well. The degrees of freedom for
the translatory motion u and rotatory motion Ω con-
tribute by the gyroscopic terms, leading to a nonlinear
differential equations. Further details can be found
in [14].

(3) Mu̇b = (Mub)× Ωb + F aero
b + F ext

b + F grav
b

(4) JΩ̇b = (JΩb)× Ωb + Laero
b + Lext

b

Note, external forces can be defined like artificial
loads to mimic the engine’s thrust or an artificial lift
distribution for a horizontal tail plane.
As the load factor plays an important role for maneu-
ver simulations, it is calculated by the rigid body ac-
celeration, the centrifugal acceleration and the gravi-
tational acceleration.

(5) n =
1

g

(
u̇b − Ω× ub + z̈grav

b

)

4.7. Flight dynamics

For the flight dynamics analysis, the equations 3
and 4 are rewritten in a state-space form. The
system of equations is nonlinear due to the terms
(Mub) × Ωb and (JΩb) × Ωb. The time integra-
tion is achieved by the linear multistep methods
Adams-Moulton or Adams-Bashforth [15], where
the implicit Adams-Bashforth method may use the
explicit Adams-Moulton method in a predictor step.
Furthermore, applying the mean-axis condition to the
fully-elastic, free-flying aircraft, the rigid body degrees
of freedom and the elastic degrees of freedom can
be decoupled [16].

4.8. Trim

For several quasi-steady maneuvers, a target state
must be reached in order to asses the correct loads.
For example, the load factor is prescribed and the
pitch acceleration should be zero. Those two con-
ditions constrain the lift distribution on the wing and
therefore the aerodynamic loads. The target state is
reached by altering trim variables, which have to be
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determined during the trim analysis. Thus, the implicit
problem can be formulated as a root-finding problem,
or interpreted as a minimization problem [17].
The trim analysis class inherits from the AnalysisIm-
plicit and therefore the implemented solvers can be
selected.
As all relevant parameters and input values are stored
in the FSRelationsModel, the trim analysis only needs
to modify it. Therefore, the control variables (section
4.3) can be selected as trim variables, which will then
alter several actuators. Those actuators then influ-
ence the different analysis blocks.
The states of the trim targets are received through the
public method getVar (section 3.2.3) of the trim analy-
sis object, enabling setting up trim tasks with arbitrary
trim targets.
The available analyses in the registry are so far, the
TAU analysis class, the SteadyFSI class and the
SixDOF analysis class. Depending on the analysis
class, different target states must be defined, as
each analysis class can only return the values for
variables, which are stored in the variable map or can
be found in a sub-analysis.
For example, having selected the TAU class, only CL,
CD, Cmy etc. are possible candidates for trimming.
If a load-factor is requested, then the SixDOF class
needs to be selected, as the load-factor is related
to flight mechanics and not pure aerodynamics. Of
cause, if the aerodynamic class TAU was the sub
analysis of the SixDOF analysis, the variables CL,
Cmy can then be used for defining the trim target state
as well.

5. RISKS

All the advantages of the FSDM, the plugins and the
different control classes come at the cost of depen-
dencies. Smaller to larger changes to the different
codes, may affect UltraFLoads and could break it.
This risk is minimized as all the release notes are
available and planned changes are communicated.
Even though the centralized data approach is ad-
vantageous for modularization, it poses a risk, as
data has to be implicitly available and must be up
to date. It is more difficult to read when, where
and how the data is modified. However, standard
Python optimized IDEs and code editors help and
the documentation of the code and its architecture as
well.
Another risk poses the analysis base class, as all
other analysis classes inherit from it. Modifications
may cause unforeseen behavior of the child classes.
One answer to that is testing and keeping the base
class as slim as possible. Using continuous inte-
gration and continuous deployment together with
a git-flow branching model further reduces risk of
unexpected behavior.
Although software is the backbone of every
simulation-based research department, the main
task is still the actual analysis. Hence, software
development remains a task of few people in a re-

search environment and users may need to become
developers at some point to ensure continuity. This
can be achieved by training, documentation and
example test cases.
Training with Python and the FSDM is necessary for
the scientific usage of UltraFLoads. For simpler tasks,
the pre-defined workflows, which just rely on the anal-
ysis registries, can just be used. Here the acceptance
is improved by a user manual and a guided, simplified
user input.

6. STEADY TURN MANEUVER

The steady turn maneuver, visualized in Figure 3, is a
good testcase for the trim method, because it can be
flown steadily by a pilot. In order to push virtual flight
testing as a tool for simulation based certification, dif-
ferent flight tests, including steady turn maneuvers,
have been performed with the DLR ATRA5 aircraft in
the projects VicToria6, SimBaCon7 and VitAM. Also,
the simulation capabilities for the virtual aircraft have
been progressed as shown by [6] and [2].

6.1. Flight mechanics

The goal is a trimmed, horizontal, slip free, coordi-
nated turn with a load factor of nz = 2. This is a stan-
dard text-book scenario, relating the bank angle with
the loadfactor nz = 1/ cos(φb). However, this angle
may not be mistaken with the Euler-angle φ. While
trimming the free variable θ, the other two angles φ
and ψ are constrained by the slip-free condition and
the target loadfactor. Thus, all three Euler angles are
different from zero [17].
The other trim variables are aileron deflection, rudder
deflection and the rotation angle of the complete hor-
izontal tail plane. The target state is that a load factor
of nz = 2 is reached and that all rotatory accelerations
are zero. Note, this does not force the longitudinal ac-
celeration uxb to be zero as no thrust from an engine
is considered.

6.2. Simulation

For this scenario, a hybrid mesh with 11.6×106 nodes,
and 19 × 106 prism cells was used. The airflow is
modeled by the RANS equations, using the negative
Spalart-Allmaras turbulence model [18]. The equa-
tions are solved by the DLR-TAU code [4].
The Mach number is 0.7; the true airspeed is
222 m s−1. In order to match the dynamic pressure of
the experiment, the altitude was altered.
The structural model developed for the project VicTo-
ria [2] is reused and the modal approach is selected
for the analysis.

5https://www.dlr.de/content/de/artikel/luftfahrt/forschungsflotte-
infrastruktur/dlr-flugzeugflotte/airbus-a320-232-d-atra.html

6https://www.dlr.de/as/desktopdefault.aspx/tabid-
11460/20078_read-47033/

7https://www.dlr.de/as/desktopdefault.aspx/tabid-
13016/22740_read-52834/
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√
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Ẋ

FIG 3. Forces acting on the aircraft in a coordinated
steady turn maneuver.

0 5 10 15 20
−1

−0.5

0

0.5

1

θ

aileron
htp

rudder

FIG 4. Convergence history of the control variables
used for trimming the aircraft. The variables are
normalized by their maximum value.

Just altering the pitch angle θ in the FSRelations-
Model does not consider that the other angles φ and
ψ have to be adjusted for the slip-free condition and
the target load factor. Therefore, the trim class has
been modified on the fly in order to adjust for the
steady turn maneuver. This modification only applies
to the setX method, in which the other two Euler
angles are adjusted depending on the pitch angle.
The problem is trimmed using a damped Gauss-
Newton method with a frozen jacobian matrix. The
converged trim history is shown for the different
variables in Figure 4 and the trim states are depicted
in Figure 5.

6.3. Comparison to flight test

For the flight test, a stereoscopic camera setup was
used to reconstruct a deformation field based on a
patterned foil on the wing applying the image pattern
correlation technique [19]. The magnitude of the dis-
placements is shown in Figure 6 for the simulation
and in Figure 7 for the flight test. From the contour
plots, the agreement between both results appear to

0 5 10 15 20
−1

0

1

2
nz

dp
dt
dq
dt
dr
dt

FIG 5. Convergence history of the load factor and the
rotational accelerations.

FIG 6. Magnitude of the simulated displacements.

be perfect on first sight. The difference between both
plots, normalized by the simulation results is shown
in Figure 8. It reveals that the error in displacement
magnitude is between 5.0 % and 6.5 %.
Even though the simulation results are in good agree-
ment with the flight test data, it has to be pointed out
that there are multiple uncertainties of the simulation
models but also in the flight test data. The structural
model has not been fully adjusted to the actual aircraft
structure. Furthermore, the aerodynamic model does
not include the engine’s thrust, and the flow around
the wing is not affected by the nacelle. Also, the mass
distribution of the finite element model does not match
the one of the actual aircraft perfectly. Furthermore,
the total weight, the moments of inertia and the cen-
ter of gravity of the DLR-ATRA have only been esti-
mated for the flight tests. So it is likely, that the as-
sumed mass-matrix for the simulation deviates from
the mass-matrix of the actual flying aircraft.
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FIG 7. Magnitude of the displacements from the flight
test.

FIG 8. Difference between simulated and experimental
results, normed by the simulation results

7. CONCLUSION

Concluding, the requirements, the architecture so-
lution and some implementation details of the loads
framework UltraFLoads have been presented.
A centralized data approach is followed using the
FSDM and the FSRelationsModel, which can be
interacted with using one interface class per task.
All analyses can be instantiated anywhere in the
process, as they receive their relevant input from
the centrally stored FSRelationsModel via interface
classes. This enables constructing analysis instances
from an analysis registry, which can be modified by
the user to integrate own implementations.
All analysis classes are derived from a single abstract
analysis class. Each analysis class provides an analy-
sis registry, from which sub-analyses can be selected.
Also, users can inject new analysis prototypes into the
different registries in order to test new analysis meth-
ods.
As a testcase, demonstrating the framework’s capa-
bilities, a steady turn maneuver of a free-flying, elas-
tic, transport aircraft was discussed. Good agreement
with the flight test data was achieved, even though
some uncertainties exist.

8. OUTLOOK

In the next phase, the new flow solver CODA and the
structural solver B2000++ will be integrated.
Investigations of maneuvers at the border of the en-
velope will be intensified to evaluate the application of
viscous CFD applications for structural design.
Then, virtual and real flight tests with DLR’s research
aircraft iSTAR8 will be performed, for which model and
operational uncertainties may be reduced.
Furthermore, work about geometrically nonlinear
structural models, coupled with nonlinear aerody-
namics is ongoing and will be presented soon.

Contact address:

johan.feldwisch@dlr.de
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