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Abstract
Analysis of aircraft trajectory data is used in different applications of aviation research. Areas such as Mainte-
nance, Repair and Overhaul (MRO) and Air Traffic Management (ATM) benefit from a more detailed under-
standing of the trajectory, thus requiring the trajectory to be divided into the different flight phases. Flight
phases are mostly computed from the aircraft’s internal sensor parameters, which are very sensitive and have
scarce availability to the public. This is why identification on publicly available data such as Automatic Depen-
dent Surveillance Broadcast (ADS-B) trajectory data is essential. Some of the flight phases required for these
applications are not covered by state-of-the-art flight phase identification on ADS-B trajectory data.
This paper presents a novel machine learning approach for more detailed flight phase identification. We generate
a training dataset with supervised simulation data obtained with the X-plane simulator. The model combines
K-means clustering with a Long Short-Term Memory (LSTM) network, the former allows the segmentation to
capture transitions between phases more closely, and the latter learns the dynamics of a flight. We are able to
identify a larger variety of phases compared to state of the art and adhere to the International Civil Aviation
Organisation (ICAO) standard.
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Acronyms

ADREP Accident Data Reporting.
ADS-B Automatic Dependent Surveillance Broad-
cast.
APR approach.
ATM Air Traffic Management.

CLI climb.
CRZ cruise.

DST descent.

EPR Engine Pressure Ratio.

GMM Gaussian Mixture Model.

IATA International Air Transport Association.
ICAO International Civil Aviation Organisation.
ICL initial climb.

LDG landing.
LSTM Long Short-Term Memory.

MRO Maintenance, Repair and Overhaul.

NLLL Negative Log Likelihood Loss.
NODE Neural Ordinary Differential Equations.

SVM Support Vector Machine.

TOF take-off.
TXI taxi.

1. INTRODUCTION

An aircraft mission consists of multiple flight phases.
Each flight phase has an impact on the aircraft’s
parameter state. Therefore various stakeholders in
aircraft design and after-sales services are interested in
understanding the flight missions of the aircraft better
to derive a deeper understanding, e.g. of degradation
mechanisms. The degradation of an aircraft system
can vary throughout a mission, as such, Maintenance,
Repair and Overhaul (MRO) institutes need the
different flight phases of the trajectory to allow for
degradation prognostics [1].
With growing amounts of data collected and dis-
tributed, the need for automated classification
algorithms rises. Such flight phase classification
algorithms can be be integrated in bigger simulation
frameworks such as digital twins of assets, which
comprise various additional data processing and
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simulation functionalities [2].
Air Traffic Management (ATM) uses flight phases in
trajectory prediction [3], which is essential for traffic
flow prediction at airports and accident avoidance [4].
The analysis and reduction of environmental impact
also often uses flight phases [5–7].
The flight phase variable is either part of, or com-
puted from the aircrafts internal data which is very
sensitive and has scarce availability to the public.
This is not the case for aircraft trajectory data, which
is broadcasted through the Automatic Dependent
Surveillance Broadcast (ADS-B) technology. Al-
though there are multiple definitions of flight phases,
the most commonly used are given by the Interna-
tional Civil Aviation Organisation (ICAO) Accident
Data Reporting (ADREP) and International Air
Transport Association (IATA) [8, 9] which are rather
similar to each other, except for the standing phase.
To allow the use of ADS-B data in a larger variety of
contexts Sun et al. [10] present a model that augments
the ADS-B trajectory data with flight phases. This
model focuses on the processing of large-scale data at
the expense of flight phase completeness. As such, it
only identifies flight phases of larger grain (taxi, climb,
level, cruise, and descent) which do not adhere to any
recognised standard. This excludes the use of this
model for applications that require more fine-grained
phases or an alignment with other data sources that
use flight phases, such as accident databases.
In this work we identify the following phases based
on the ICAO standard1: taxi (TXI), take-off (TOF),
initial climb (ICL), climb (CLI), cruise (CRZ), de-
scent (DST), approach (APR), and landing (LDG).
The identification is performed through a supervised
machine learning architecture to create a model
trained on simulation data. The architecture relies
on the following steps: preprocessing the data, seg-
menting the data, classifying each segment. During
the preprocessing of the training data, the aircrafts
internal parameters are used to label the trajectory
data with the correct flight phases, and the data is
trimmed to allow for identification on partial flights.
For the classification, each flight trajectory is divided
into 160 segments relying on K-means clustering, this
makes sure that the borders of segments correspond
to moments of large amount of change. Every segment
is then classified with a Long Short-Term Memory
(LSTM) which receives the sequence of segments that
make up a flight.
In the following chapters we will first elaborate on the
machine learning algorithms used and other models
that use machine learning for flight phase estimation
(section 2), after which we will describe the details
of the labels, data used, and approach used (section
3), report on the results (section 4)), and discuss our
findings (section 5).

1https://www.skybrary.aero/index.php/Flight_Phase_T
axonomy accessed on 10/08/2021

2. RELATED WORK

Before proceeding with the details of the flight phase
identification method developed, we give an introduc-
tion to the machine learning algorithms used and other
approaches to flight phase identification with machine
learning.

2.1. Machine Learning Algorithms Used

Machine learning algorithms are algorithms that learn
from experience [11]. For the architecture described
in this paper, two well-established machine learning
algorithms are used: K-means clustering and LSTM
neural networks.
Clustering is an unsupervised learning task and con-
sists of grouping similar data together in the same
cluster and putting dissimilar data in different clus-
ters. The K-means algorithm does this by assigning
data points to the cluster with the nearest mean. It
starts by randomly assigning each data point to one of
the K clusters, where K is a predetermined number.
It then proceeds by alternating the following two steps
until convergence:
• Assigning each data point to the cluster with the
nearest mean.

• Update the clusters’ means based on the newly as-
signed data points that compose them.

The algorithm converges when no points are assigned
to different clusters, in comparison to the previous it-
eration or until the predetermined maximum number
of iterations is reached. We use K-means to divide a
single flight into different segments in order to assign
a flight phase to each of the segments.
These segments are classified using a LSTM [12,13], a
neural network that is known for its good performance
on sequences. A neural network is a computational ar-
chitecture that consists of layers of nodes, connected
to each other by weighted edges. These weights are
learned during training through the network’s feed-
back. LSTMs are a popular type of recurrent neural
networks. Recurrent neural networks have the addi-
tion of a memory unit that allows to produce an out-
put of a single data point based also on information
acquired from its predecessors in the sequence, this
aids the network to learn the temporal relations of a
flight.
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(a) Trajectory variables used in related work

state variable Sun et al. [10] Liu et al. [14] Kovarik et al. [3] this work
Paglione et al. [15]

Altitude X X X X
Speed X X

Rate of Climb X X X*
XY coordinates X
Pitch, Roll and

True Heading angle X

Power Lever Angle X
Engine Fan Speed X

* Rate of Climb is computed from altitude

(b) Flight phases identified by related work

flight phase Sun et al. [10] Liu et al. [14]
Kovarik et al. [3]

this work
Paglione et al. [15]

ground / taxi X X X X
take-off X
climb X X X X*
cruise X X** X** X
level X X** X** *

descent X X X X*
turn X***

landing X

* climb is further divided into initial climb and climb, descent is
divided into descent and approach, level is considered part of
climb or descent

** cruise and level are considered the same phase
*** in a separate model

TAB 1. Comparison of variables used and phases
identified by related work and this work.

2.2. Flight Phase Identification

As flight phases are defined on board the aircraft by
the pilot or by internal system parameters [16] they
are mostly unavailable on a large scale because of the
confidentiality of these sources. This leads to the need
to identify them externally either online or offline. Re-
cent research shows that machine learning approaches
outperform previous statistical modelling approaches
for this task [3]. Many models, however, only provide
a reduced number of phases, as can be seen in TAB 1b.
The aim of this work is to provide an identification tool
that classifies the phases in ADS-B trajectory data.
Of the publications referenced in tables 1a and 1b, the
approach by Sun et al. [10] is the only one that uses
ADS-B data. Their model divides the flights into seg-
ments of fixed lengths and classifies them using fuzzy
logic [17]: fuzzy logic allows to introduce partial truth
in Boolean logic. As such, the segments are classified
using ranges of values for the altitude (H), speed (V ),
and rate of climb (RoC) given for each phase, defined
as follows:

• Ground = Hground ∧ Vlow ∧RoCzero

• Climb = Hlow ∧ Vmedium ∧RoCpositive

• Cruise = Hhigh ∧ Vhigh ∧RoCzero

• Descent = Hlow ∧ Vmedium ∧RoCnegative

• Level flight = Hlow ∧ Vmedium ∧RoCzero

A different model for flight phase identification with
machine learning has been presented by Liu et al., us-
ing a Gaussian Mixture Model (GMM) clustering [14].

This unsupervised model offers nearly the same phases
as the previously discussed approach by Sun et al., but
rather than trajectory data, this model also requires
aircraft internal data such as: pitch angle, roll angle,
true heading angle, power lever angle, and engine fan
speed.
There are also approaches that aim at predicting the
phase of flight as part of trajectory prediction. Kovarik
et al. [3] compared 3 machine learning models to a sim-
ple regression model proposed by Paglione et al. [15]:
Support Vector Machine (SVM), LSTM, and Neural
Ordinary Differential Equations (NODE). They found
that the LSTM model performed best among the 3
analysed. The LSTM model consists of two separate
networks that predict the next horizontal or vertical
flight phase one step ahead. The horizontal flight
phases consist of straight and turn, however, the verti-
cal flight phases consist of ascending, descending, and
level flights. These flight phases were predicted from
XY coordinates and altitude.
In this work we combine the approach of clustering and
LSTM. Firstly, similar values are grouped together, as
similar values often belong to the same flight phase. In
contrast to previous work, more clusters than the num-
ber of flight phases are identified and kept continuous
in time to give them to a LSTM. The LSTM learns
the sequential dependencies of these clusters and iden-
tifies flight phases with potentially multiple clusters.
The details of this implementation are provided in the
next section.

3. METHODS

At the foundation of our architecture lies the super-
vised learning paradigm. With the help of internal air-
craft parameters we create a labeled training dataset
of trajectories labeled with the ICAO defined flight
phases. The model uses an algorithm called K-means
segmentation to transform the trajectory data into
fixed length sequential data. These sequences, that
represent single flights, are then classified by a LSTM.

3.1. Flight Phases

The ICAO ADREP flight phase taxonomy is adopted
to allow alignment with a widespread standard [9]. We
focus on commercial powered fixed-wing aircraft flight
phases, since this covers a big portion of performed
flights. Additional sub-phases are part of the ICAO
flight phase taxonomy, but are not included at this
stage of our work. Our approach uses the visual flight
rule definitions and limit criteria of flight phases. The
standing phase is not included in this work and some
sub-phases were combined. TAB 2 shows ICAO’s pri-
mary and secondary phases of flights and the derived
flight phases used in this work.

3.2. The Data

To obtain sufficiently large training and testing
datasets, flights are generated using the flight sim-
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ICAO primary phases ICAO sub-phases Phase used for classification method

Standing - -
Taxi ... Taxi (TXI)

Take-off
Take-off run Take-off (TOF)
Initial Climb Initial climb (ICL)

En Route

Climb to Cruise climb (CLI)
Cruise

Cruise (CRZ)
Change of Cruise Level

Descent Descent (DST)
Approach ... Approach (APR)

Landing
Level off-touchdown

Landing (LDG)
Landing Roll

TAB 2. Flight phases addressed by classification
method.

ulation software X-Plane2. This kind of flight data,
compared to ADS-B data, comprises an additional
range of parameters from different aircraft systems,
such as the landing gears or the engines. Using
these parameters, an algorithm is developed to
automatically label large numbers of flights.
Furthermore, using trajectory simulation software al-
lows for coverage of various types of aircraft trajecto-
ries. This enables tests of different scenarios. On the
other hand, there are also differences between simu-
lated data and real data: in our case we noticed an
increased smoothness in the variables and a tendency
towards shorter flights.
The rules for flight phase identification are derived
from the ADREP taxonomy criteria and are shown
in TAB 3. Generally, the algorithm relies on a typ-
ical order of flight phases, which is described by the
relation between the timestamp ts and a timestamp of
an arbitrary flight phase ts(flightphase), as shown in
TAB 3.
Flight phases on the ground are mainly identified by
the gear_compr parameter, which indicates if there is
a normal force on the landing gear. TOF is defined
by the maximum Engine Pressure Ratio (EPR) com-
manded. A lower threshold of 80% is added to avoid
sensor noise sensitivity. The phase ends if an altitude
of 35ft is reached or the command to retract the land-
ing gear is given.
CRZ is defined by a rate of climb around zero and
an altitude close to the maximum altitude in the flight
data given. Furthermore, this phase needs to be longer
than a defined lower threshold, in order to exclude
short level flight phases during climb and descent.
DST is identified by a negative rate of climb which
lasts longer than a defined minimum time span. LDG
starts with the flare motion shortly before the landing
gear touches the ground and ends either if the aircraft
comes to a stop, or leaves the runway, which is indi-
cated by the steering angle steer_ang.

3.3. The Architecture

The architecture developed for the flight phase identi-
fication consists of two main steps: the segmentation
of the flight, and the classification of the segments af-
ter each segment is translated into features.

2https://www.x-plane.com/

Flight Phase Rule

TXI
(ts < ts(TOF ) ∨ ts > ts(LDG))∧
∧gear_compr ∧ tgt_epr > 0

TOF alt < 35 ft ∧ gear_lvr_down ∧ cmd_epr · tgt_epr > 0.8 ·max(tgt_epr)

ICL
ts > ts(TOF )∧
∧35 ft < alt < 1000 ft

CLI ts > ts(ICL) ∧ ts < ts(CRZ)

CRZ
−500 fpm < roc < 500 fpm ∧
∧ ((alt > max(alt)− 1000 ft) ∨ (alt > 1000 ft ∧ (tsend − tsbegin) > 360 s))

DST
ts < ts(APR)∧
∧(tsbegin − tsend) > 120 s ∧ roc < −10 fpm

APR roc < −10 fpm ∧ alt < 1000 ft

LDG
ts > ts(TOF )∧
∧tsbegin − ts(gear_compr) < 5 s ∧ (abs(steer_ang) < 3 ◦ ∨ spd = 0 kts)

TAB 3. The rules applied for the rule based flight
phase identification from aircraft vari-
ables. Variables used: timestamp (ts),
barometric altitude (alt), ground speed
(spd), altitude rate (roc), target take-
off EPR (tgt_epr), commanded take-off
EPR (cmd_epr), landing gear deployment
(gear_lvr_down), force on main landing
gear (gear_compr), nose gear steering an-
gle (steer_ang).

For the segmentation a variation of the K-means clus-
tering algorithm [18] is used, while for the classification
a LSTM [13] is used with a loss penalty function.

3.3.1. Segmentation

The first step in the architecture is the segmentation
of the flight, which consists of dividing it into a fixed
number of segments. This is achieved by using a vari-
ation of the K-means algorithm, further referred to as
K-means segmentation.
K-means segmentation initializes segments by dividing
the input into equal parts, after which it allows the
edge points of segments to either belong to their cur-
rent segment or the neighboring one, based on their
distance to the segment means and if their current
cluster has at least 4 points belonging to it. When
two neighboring edges both try to change their cluster
of belonging, only the edge that has a bigger difference
in distance between the two means is allowed to do so.
The hyperparameters of this algorithm are the number
of clusters and the maximum number of iterations:
• The number of clusters is found empirically with the
right trade-off between size and the minimum error
introduced, it is set to 160.

• The maximum number of iterations is set by taking
the 95th percentile of iterations until convergence
which corresponds to 100 iterations.

The result of the algorithm are clusters that represent
the segments that are continuous with respect to time
and vary in size with the amount of change over time.
The aim of this segmentation is to be able to reduce
the error introduced by phases overlapping in a single
segment. A change of flight phase most likely occurs at
a point where there is more change, i.e., where there is
a bigger distance between two consecutive data points.
In section 4, we compare the use of K-means segmen-
tation with uniform segmentation, which does not per-
form the K-means iterations and as such divides the
flight into equal length segments.
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3.3.2. Features

After the flight has been divided into segments, these
segments are given to the classification network, this is
achieved by extracting features from each segment. As
has been mentioned previously, the aircraft state vari-
ables given to the model are altitude, speed, and rate
of climb, together with time. Other models [3,10] also
used the rate of climb and XY coordinates. The lat-
itude and longitude provided in the ADS-B data can
be transformed into XY coordinates [19]. However,
since both XY coordinates and latitude and longitude
are referenced to the earth, for the network to be able
to generalize flights from different airports, the origin
coordinates are required. ADS-B flights, however, are
often incomplete which means that the origin coordi-
nates are not always available. It would be possible to
retrieve the coordinates from the origin airport, but
this is out of the scope of this work. To circumvent
this issue, the latitude and longitude could be used
taking their difference over time, yet this would corre-
spond to using the speed, as such, these variables are
excluded in this work.
The following features given to the network are com-
puted for each segment provided by K-means segmen-
tation:

1) length of the segment (n)
2) initial altitude (alt0)
3) final altitude (altn)
4) initial speed (spd0)
5) final speed (spdn)
6) initial rate of climb (roc0)
7) final rate of climb (rocn)

Each of these features is normalised. For the segment
length, this consists in subtracting the preset mini-
mum value 4 and dividing by 1800, a manually in-
troduced limit. The altitude- and speed-related fea-
tures are normalised by dividing each of them by the
maximum value of that feature in each flight. For the
rate of climb features, this consists in subtracting the
minimum value of that feature in the flight it belongs
to and subsequently dividing it by the difference of
maximum and minimum. The altitude and speed are
always positive, and if a flight is incomplete, the min-
imum altitude or speed might not correspond to the
value of these in a complete flight.

3.3.3. Classification

The features extracted from the segments, as explained
previously, are used by the classification network that
labels each segment with a flight phase. For this pur-
pose, a LSTM is chosen because of its ability to cap-
ture longer temporal relations. The LSTM receives
the features of the segments as inputs and learns to
classify the clusters according to the prevailing label
of that cluster. The network is implemented in Py-
torch [20] and consists of an input layer, 2 layers of 16
LSTM cells, followed by an activation layer consisting
of the logarithm of a softmax function. The output is

a value between 0 and 1 for each of the classes, where
the output value 1 indicates the segment belongs to
that class and the output value 0 indicates that it
does not belong to that class. For training, a batch
size of 16 and a Negative Log Likelihood Loss (NLLL)
are used for stochastic gradient descent. The hyper-
parameters number of layers, number of hidden units,
and batch size have been found with an initial hyper-
parameter gridsearch. Initial evaluation of the model
shows that not every flight phase is identified with the
same accuracy, the shorter flight phases present more
inaccuracies.
For this reason, a penalty term (equation (1)) is added
to the loss function, an approach to class imbalance
that has been proven successful in multiple studies [21–
23]. This penalty consists of the average of the false
negative rate [24] and the false discovery rate [25] of
each flight phase, multiplied by an influence factor α.

(1) penalty = α ·
∑

c∈classes(
FPc

TPc+FPc
+ FNc

TPc+FNc
)

2 · ||classes||

FP = false positive, TP = true positive, FN = false negative

A hyperparameter gridseach is used to assess the op-
timal penalty influence value.

3.4. Evaluation Metrics

The evaluation of the different models relies on the
concept of precision and recall [26]:
• The precision of each class is the number of
correctly identified data points belonging to that
class (correctclass) divided by the total number of
data points identified as belonging to that class
(identifiedclass).

precisionclass =
TPclass

TPclass + FPclass
=

=
correctclass

identifiedclass

(2)

• The recall of each class is the number of cor-
rectly identified data points belonging to that class
(correctclass) divided by the total number of data
points belonging to that class (truthclass)

recallclass =
TPclass

TPclass + FNclass
=

=
correctclass
truthclass

(3)

TP = true positive, FP = false positive, FN = false negative

The average of precision and recall will be further re-
ferred to as weighted accuracy, while the overall accu-
racy refers to the ratio of data points correctly identi-
fied.
In the next section, the models obtained from training
with and without penalty function, and with and with-
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Uniform Uniform K-means K-means
w/o penalty w/ penalty w/o penalty w/ penalty

(α = 0) (α = 3) (α = 0) (α = 3)

Accuracy
(%)

Overall 97.26 97.04 97.15 97.09
Weighted 91.20 91.09 90.30 90.64

Precision
(%)

TXI 99.02 99.08 98.48 98.53
TOF 90.81 89.38 88.12 88.23
ICL 76.25 75.02 81.20 81.31
CLI 97.98 96.74 95.94 95.63
CRZ 96.59 97.09 98.01 98.19
DST 99.15 99.29 99.15 99.24
APR 79.67 76.97 78.31 76.97
LDG 88.10 87.55 89.46 89.77

Average 90.95 90.14 91.09 90.98

Recall
(%)

TXI 99.00 98.99 99.28 99.26
TOF 83.56 84.28 78.26 79.91
ICL 82.86 78.73 70.73 72.28
CLI 96.89 96.75 97.30 97.42
CRZ 97.25 96.98 97.19 96.84
DST 98.66 97.69 98.25 97.99
APR 85.66 92.52 89.57 90.56
LDG 87.67 90.27 85.57 88.08

Average 91.44 92.03 89.52 90.29

TAB 4. Average results of variations of the model
for average of 3 instances of the same
model trained independently.

out K-means segmentation are compared using these
metrics.

4. RESULTS

In this section, we discuss the results of different vari-
ations of the model: using and not using K-means seg-
mentation and using and not using the penalty func-
tion.
An overview of the results of the variations of the
model can be found in TAB 4. For each variation,
three instances were independently trained, the results
shown are averaged over these.
K-means segmentation is introduced into the architec-
ture to capture the transitions between flight phases
more closely with the borders of the segments. In fact,
FIG 1 shows a higher density of edge borders, where
there are transitions from one phase to the next. If ev-
ery segment would be correctly classified, these smaller
segments around the transitions would reduce the er-
ror introduced by two flight phases overlapping within
one segment. K-means segmentation reduces the error
due to segmentation by more than 20% both on the
training and testing data alike. This benefit, however,
is not reflected in the combination with the classifi-
cation, as can be seen in TAB 4. The improvement
by the usage of K-means segmentation lies in the in-
creased precision at the expense of a decreased recall,
which results in an overall lesser weighted accuracy.
The cause of these results could lie in the fact that
when using uniform segmentation, the feature that
represents the length of the segment is removed as the
network would not be able to use an input that shows
the same value for every element in the sequence. The
sequence length, on the other hand, is needed when
the segments vary in size with each element in the
sequence. This iss empirically confirmed by training

both variants with and without the segment length
feature and comparing the results on the validation
dataset. The length of a segment might be a vari-
able that decreases the number of false positives and
increases the false negatives for the shorter phases.
The loss penalty function, on the other hand, has a
positive impact on the shorter phases that present a
relatively lower weighted accuracy (TOF, ICL, APR,
and LDG). It slightly improves their weighted accu-
racy, mostly by increasing the recall, leading to an
overall higher recall but lower precision. This shows
that when using the loss penalty function, the model
assigns more segments to the shorter phases that have
an overall lower weighted accuracy.
Overall, however, the best performing model is the one
trained without loss penalty that uses uniform segmen-
tation. FIG 2 shows an ADS-B trajectory of a research
aircraft with flight phases identified with this model.
For this flight, as is often the case for ADS-B, the
ground data is incomplete and as such some phases
are not present. The main identification error lies in
the take-off being prolonged, however the overall per-
formance on this flight is satisfactory with an 98.39%
overall accuracy.

5. CONCLUSION

In this work we presented a novel approach to flight
phase identification using supervised learning. In con-
trast to other models, we provide the classification
module with information regarding the past trajectory
of the flight, by using a LSTM on a flight represented
as a sequence.
The application of our approach to simulated data
shows promising results for the inclusion of flight
phases in trajectory-based identification, that have
not been considered so far and that adhere to the
ICAO standard. The system is developed for short-
haul flights, defined by the IATA as less than 6 hours
flight time3, of commercial powered fixed-wing air-
crafts. This is due to the fact that some flight phases
might require slightly different rule sets for other types
of aircraft or long-haul flights. To allow for compar-
ison, the performance of the best overall performing
model is shown on ADS-B data of a research aircraft
flight, for which the flight phases are known. Upon
comparison of the simulated data (e.g. FIG 1) to
real trajectories (e.g. FIG 2) some differences become
apparent. The recorded simulation flights have a
short length bias, with an average flight duration of
29 minutes. The trajectory values themselves also
present some differences in their characteristics, such
as smoothness and range. When considering longer
flights K-means segmentation might have a bigger
impact on the results of the model, as the segments
increase in size.
While this architecture is developed for specific con-
ditions and data, we hypothesise that the results will

3https://www.iata.org/contentassets/821b593dd8cd4f4
aa33b63ab9e35368b/iata-cabin-waste-handbook---final-re
sized.pdf accessed on 10/08/2021
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FIG 1. Identification on simulated flight with model using K-means segmentation and penalty for training
with penalty influence α = 3. Overall accuracy 97.04%. The curves are colored with the identified
flight phase, at the bottom the colors of the correct label are shown. The faded background lines
indicate the edges between segments.

FIG 2. Identification on ADS-B trajectory data of an Airbus A320 research aircraft with model using
uniform segmentation and no penalty. Overall accuracy 98.39%. The curves are colored with
the identified flight phase, at the bottom the colors of the correct label are shown. The faded
background lines indicate the edges between segments.

be similar with the same architecture transferred to
similar applications. Such application could include
real data for training to make the system more suited
to ADS-B data. Further applications could also in-
clude different scopes, such as flight phases drawn from
different definitions or maneuver detection. To ap-
ply the architecture to different data it needs to be
retrained and it might be necessary to perform new
hyper-parameter tuning. When adapting the architec-
ture to perform different tasks it will additionally also

be necessary to provide a new training dataset with
the correct labels. In the case of maneuver detection,
one might consider training different models that can
detect a single maneuver through binary classification
and combine them.
Future work will include the exploration of the archi-
tecture on different data and tasks to verify remaining
hypothesis and widen the scope.
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