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Abstract 

Digital transformation of the shop floor focuses not only to automate the process, but also to collect and 
transform the process data, with which effective data analytics is feasible. Due to the advanced communication 
technologies and decreasing cost for data storage, the amount of data generated on shop-floors is increasing 
rapidly on a daily basis. Using the metadata from the shop-floor, process-improvement based on the feedback 
is possible with modern data analytics. Real time information from the physical system is collected and stored, 
from which record-and-replay of the stored information on cabin assembly process is realized. With this 
motivation of record-replay of events along with remote monitoring of live data, the purpose of this paper is to 
introduce a digital shadow model for automated cabin assembly process. 

 
1. INTRODUCTION 

Modern technologies accelerate the conventional 
manufacturing processes, where digitalization of the 
process results in higher productivity. Digitalization in the 
Industry 4.0 domain allows easy integration of 
interconnected components on the shop-floor. As a 
technological basis of Industry 4.0, it is proposed to embed 
electronics, software, sensors and more importantly to 
implement the network connectivity between devices for 
enabling the data collection and exchange via the internet 
[1]. This results in physical systems being connected to the 
virtual world, where the stored data can be utilized for virtual 
operations. Consequence the performance analysis of 
executed operations can be made in virtual world while also 
deducing critical parameters of the physical operations. 
Using the advanced technologies, it is possible to monitor 
the process in real-time and to link the physical world 
activities to virtual world where real-time data should be 
properly modeled to enable the intelligent decision making. 

The digital twin can be seen as the virtual and computerized 
analogue of the real-time physical system that can be used 
to simulate the behavior of physical system in various ways, 
capitalizing on the real-time synchronization of the data 
originating from different field sensors [1]. In contrast, a 
digital shadow provides sufficient, content-related picture of 
the process with a unidirectional information flow from 
physical to digital world. In line with other activities at the 
German Aerospace Center (DLR) to implement a digital 
thread for the whole cabin assembly process, the digital 
shadow is generated based on the feedback information 
from the automated assembly process. Ontology plays 
central role in assembly-planning to describe the sequence 
of events. Robots are utilized for enacting the commands 
that ontology describe and sensors are deployed to assist 
the robots by identifying objects and obstacles. The 
feedback data from robots, sensors and other actuators 
during the autonomous assembly process constitutes the 
process metadata and it is stored in HDF51 format for 
further analysis and validation. The representation of the 
stored data in virtual world is achieved by the digital shadow 
model generated using open source software such as 
                                                           
1 Hierarchical Data Format 

Blender.   

The paper is structured in following manner: Section 2 
describes the state of art related to digital shadow, section 
3 provides hardware for the digital shadow and section 4 
describes the measures and interpreting sensors data 
followed by relating parameters for cabin assembly in 
section 5. Section 6 elucidates the replaying of stored data 
for visual analysis and section 7 provides the conclusion 
and future work. 

2. STATE OF ART 

Industrial process improvement based on feedback 
information has been researched for quite some time. 
Besides providing a deeper understanding on different 
proposed definitions of digital twin, the objective of Negri 
et.al [1] is to help in identifying the role of digital twin for 
manufacturing w.r.to Industry 4.0 and it gives the 
background information on implementation of digital twin in 
different areas of manufacturing. Thomas Bauernhansl et. 
al [2] show a roadmap for digital shadow model for 
production, where different stages of development are 
mapped to their complexity level in matrix form. It is also 
mentioned that using meta information about the stored 
data and by analyzing the semantics of the stored 
information, digital shadow would be able to cleanup data 
redundancies, compression tasks etc. Ehrdahrt et. al [3] 
present a model for operational optimization in 
manufacturing environment using digital shadow. In 
addition, the idea of using digital shadow for predictive 
analytics is presented, in order to support the 
understanding of process anomalies through data from live 
visualization. Based on the data from digital shadow, 
information for optimization problem is derived from five 
fundamental parameters: 1. time, 2. position, 3. stock, 4. 
status, and 5. product derivative. The amount of recorded 
data is reduced by using event-based recording. The 
fundamental parameters are linked to the critical 
parameters such as 1. Cycle-time 2. Utilization of single 
systems, 3. Delivery reliability 4. The number of products in 
circulation. Data from digital shadow are segregated into 
fragments and local optimum is found using genetic 
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algorithm and it is introduced “bottleneck-oriented 
hypothesis” to find global optimum. Uhlemann et. al. [4] 
demonstrates the learning factory to showcase the benefits 
of employing digital twin for production systems. In order to 
illustrate the vital differences between digital twin and 
conventional way of value stream mapping to the 
participants of the learning factory, the important concepts 
of digital twin viz., data acquisition, data warehousing and 
data analysis are exemplified with scenarios for better 
understanding. 

The digital shadow as a function is introduced in [5], where 
time is mapped to two dimensions: tree structure 
corresponding to the structure of physical object and an 
attribute vector for each object. With the tree structure, 
parent-child relation between different participating 
departments (of manufacturing) is established, thereby a 
whole factory can be represented and could be mapped to 
digital shadow. Any activities like assembly process that 
causes physical movements denotes the change in node 
parameters. Appropriate data storage mechanism is also 
described, where a dedicated data-base for the digital 
shadow is defined in addition to a data base for continuous 
data.   

Digital shadow is described as a platform to integrate 
information from different sources such that the 
miscellaneous real-time analysis is enabled to make right 
decisions [6]. A real time application is shown where the hot 
rolling process is taken into consideration for digital 
shadow, since it is highly energy consuming process, where 
process improvements will directly affect the carbon 
footprint. Hot rolling comprises of five stages: 1. Casting 2. 
Heating 3. Rolling 4. Stamping 5. Service life. Scheduling 
the process based on FEM analysis normally takes 30 
minutes - 4 hours. Complex mathematical models based on 
different process parameters influencing the slab 
dimensions, its microstructure, thermal condition and 
process’ energy impact are evaluated. Model based digital 
shadow is generated based on the generated models that 
reduced the evaluation time from 30-240minutes (FEM2 
based) to 50ms. 

This paper focuses on developing a digital shadow model 
for the autonomous cabin assembly process, where the 
feedback information from the physical model is used for 
analysis and to aid the live visualization to enable the 
intelligent decision making. 

3. HARDWARE INFRASTRUCTURE FOR 
DIGITAL SHADOW 

At the DLR, autonomous cabin assembly process is 
researched using a pre-assembly cell along with robots, 
sensors and other controls. Two robots are installed on the 
pre-assembly cell, which performs assembly operations on 
components, thereby building a subassembly of the cabin. 
Sensors, including cameras assist the motion of robots. 
Detailed information about the assembly infrastructure is 
provided by [9]. 

                                                           
2 Finite Element Method 
3 Programmable Logic Control  
4 Open Platform Communications Unified Architecture 
5 https://support.industry.siemens.com/cs/document/109756885 

Understanding, evaluating and improving the existing 
process based on feedback data is considered to be the 
primary objective of the digital shadow of cabin assembly. 
The main pillars of digital twin model are: 1. Data 
acquisition, 2. Data storage and 3. Data analysis. Here the 
information about the respective hardware is elucidated. 

1. Data acquisition 

The pre-assembly cell is equipped with central PLC3 
system, that communicates with robots on the cell along 
with the capability to be interfaced with different external 
sensors such as vibration sensor, noise sensors etc. using 
the appropriate function modules. OPC UA4 communication 
is enabled in the PLC such that PLC acts as an OPC UA 

server, and any hardware connected for data acquisition 
can be OPC UA client. This is shown in figure 1. 

 

Figure 1: OPC UA communication in Siemens TIA Portal5 

Since OPC UA is open-source and being used as global 
communication standard, hardware-independent 
communication is implemented. Hardware implementation 
is not in scope of this research, so more details on data 
acquisition is not presented here. However, it must be 
stated that it is important to record the context information 
as part of feedback data, so that the data analysis made on 
the stored information fetches the cross interpretation of 
external disturbances with the robot parameters. 

2. Data storage 

This work leverages the use of HDF56 format for storing the 
feedback information from the different hardware from pre-
assembly cell. It is an open-source file format that supports 
large, complex, heterogenous data7. HDF5 format stores 
the data in binary format such that larger information can be 
stored in a file with relatively smaller file-size. Data from 
robots and external sensor data along with context 
information (as in figure 2) are stored in HDF5 which is later 
used for analysis. For picking a side-wall panel from storage 
and placing the panel on the pre-assembly cell, the 
associated context could be “pick sidewall panel” and 
“place sidewall panel”. The role of contextual information is 
very much beneficial for visualization and visual inspection. 
The third pillar of digital model i.e., Data analysis is 

6 Hierarchical Data Format 
7 https://www.neonscience.org/resources/learning-hub/tutorials/about-hdf5 
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explained in next section. 

 

4. PROCESS METADATA FOR DIGITAL 
SHADOW 

Data from the different hardware in the pre-assembly cell 
constitutes to the process metadata. This data is later 
analyzed for any process improvements. The automated 
pick-and-place operation with robot is exemplified in figure 
3 and the corresponding sensor-data is shown in figure 4. 
For autonomous pick-and-place operation, sensors assist 
the process-planning to ascertain if the objective of pick-
and-place operation is successful. Digital shadow of the 
process collects the information from different sensors that 
could be used for analyzing the process parameters. Based 
on mathematical computation of different parameters, 
process improvement is envisioned. 

As depicted in figure 4, there are different sensors 
information available for the pick-and-place operations. At 
top level, they are classified into 1. Internal robot sensors 2. 
External environmental sensors. Some of the robot data, 
such as joint position, velocity could be directly used by the 
controller for necessary motion whereas other information 
is not necessarily used by controller (data in dotted round 
circles). Similarly, in environmental sensors information 
from cameras are directly inferenced for successful object 
pick and place operation. 

Information from aforementioned sensors together with 
other sensors contribute the feedback data of the pre-
assembly cell. The information from sensors such as 
temperature, current, vibration etc. are used for evaluating 
the effectiveness of process and to improve it. This is 
explained in following sections. 

4.1 ANALYZING PROCESS METADATA 

In this section the important parameters to evaluate robot 
performance are discussed, along with the importance of 

interpreting such information for process improvement 
measures. Analyzing metadata from the entire will not only 
improve process time, but also aids in avoiding future 
errors. This section explains the measures to enhance the 

process execution utilizing the 
feedback data along with the 
different parameters to 
analyze. There are two topics 
addressed here: 

1. Indicators to measure 
robot performances 

2. Improving robot 
performance using sensors 
data 

4.1.1 INDICATORS TO 
MEASURE ROBOT 
PERFORMANCE  

The ontology for the cabin 
assembly process schedules 
and assigns different robots 
based on process time [7]. 
This is shown in figure 5, 

Figure 2: Joint position data with contextual information 

Figure 3: Flow diagram of autonomous 
pick-place operation 
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where the APAS8 robot is chosen based on the process 
execution time and the process sequence is generated by 
ontology. In this paper the performance evaluation is 
described, which aren’t directly part of the ontology w.r.to 
process planning. There are different parameters to 
measure in order to understand the performance of the 
robot, which directly or indirectly influence the process 
execution time [8].  

1. Resolution 

The resolution describes the smallest increment that the 
robot is able to move. This is determined by the robot 
controller. In the scope of the autonomous cabin assembly 
process, resolution describes the robot’s ability to move on 
a single instruction from one timestep to next timestep. 

2. Accuracy  

It describes the ability of the robot to reach the desired 
target position/orientation. For a pick-and-place task of the 
robot, accuracy error denotes the spatial distance between 

                                                           
8 APAS – Automatic Production Assistants 

the expected location to pick/place and the actual location 
the robot actually places the end-effector to pick/place. 
expected location to pick/place and the actual location the 
robot actually places the end-effector to pick/place. 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 𝒆𝒓𝒓𝒐𝒓 = 𝑨𝒄𝒕𝒖𝒂𝒍 𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏 𝒐𝒇 𝒆𝒆
− 𝑫𝒆𝒔𝒊𝒓𝒆𝒅 𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏 𝒐𝒇 𝒆𝒆  

ee: End effector of the robot 

3. Precision 

Precision measures the ability of the robot to reach a 

particular position repeatedly over a period of time. While 
accuracy measures the deviation from target, precision 
measures the ability to repeat the motion resulting in same 
position. For a picking operation, accuracy could identify the 
number of successful attempts in picking objects over a 
period of time while precision will denote the number of 
successful attempts of the robot to pick different objects at 
same location over a period of time. Errors in precision and 

Figure 6: Prolonged process execution time 
Figure 5: Process planning based on 

process execution time 

Figure 4:  Sensor data for pick-and-place operations 
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accuracy lead to position errors of the desired object on the 
pre-assembly cell. Any disturbance in the parameters 
described above will influence the process execution time 
as shown in figure 6. 

4.1.2 SENSOR DATA FOR PROCESS 
IMPROVEMENT 

Previous subsection elucidated the measures of robot 
performances, while in this subsection the plausibility of 
using sensor information for the digital shadow model is 
discussed. Different pieces of robot-based sensor 
information such as position, orientation, current etc. are 
available. Theoretically, information from these sensors 
should suffice to comprehend the performance 
measurements of robot for any desired task. But in real 
time, there are more disturbances such as effects of 
vibrations, objects position relative to robot, type of handled 
object (such as metal or non-metal) etc. which must be 
considered.  

INTERPRETING SENSORS DATA 

Different disturbances can contribute to problems during 
the execution of intended task. For example, induced 
vibration could result in positional disturbances such that 
the operation of picking an object by the robot would take 
more time until the vibration reduces or the robot controller 
was able to negotiate the induced vibration. The positional 
distortion of an object with induced vibration may look as in 
figure 7.  

The velocity of the robot joints can directly influence the 
accuracy and precision of the robot [8] and is shown in 
figure 8. In addition, the applied payload plays crucial role 
in achieving the desired results. Similarly, the different 
individual disturbances (such as joint current, joint voltage, 
noise) might cause the problems with robot tasks, and their 
behavior and can have influence on the robot 
performances. The expected outcome of such 
interpretations is detailed in next section, which elucidates 
the results of the interpretations in detail. The following 
section describes the methodology of digital shadow model 

and the purpose of using it in cabin assembly and expected 
results. 

 

5. UNDERSTANDING ROBOT PERFORMANCE 
FOR AUTOMATED CABIN ASSEMBLY 

The important part of this paper is the data analysis of the 
digital shadow for process improvement. As described in 
the previous section, an understanding of the effect of 
different disturbances on robot performance is required for 
effective process analysis and improvement. The 
disturbances induce the error in positioning of the end-
effector at desired location as shown in figure 9 where the 
window is placed with an error to target location. Another 
important measure of robot performance is the precision. 
As shown in figure 10, for picking the sidewall panel, it is 
required that the gripper consistently moves to a same 
expected position over a period of time, so that picking the 
panel will be successfully carried. But if there is a problem 

Figure 9: Positional distortion in 
placing a window 

Figure 7: Vibration vs positional error 

Figure 8: Effect of velocity on precision and accuracy 
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in precision occurs, while picking the panel, the gripper may 
not move to the same location as expected posing a threat 
to process execution. 

The underlying reasons are described further which is 
based on the observations from feedback data.  
To begin with data analysis for error in end-effector position 
and orientation, direct inferencing can be made from joint 
angle data of robots. Comparing the actual joint position vs 
expected joint position for different time points it would be 
possible to find the joint, that exhibited different behavior 
than expected. The underlying reason for such behavior 
may or may not be directly inferenced. Relations between 
internal robot parameters such as current, velocity can be 
easily understood when there are no external disturbances 

present in the system. With higher probability of external 
factors such as vibrations, applied load etc. influencing the 
robot performance, it is therefore very important to evaluate 
cross relationships between different sensors information 
for an effective process planning as shown in figure 11. 
 
5.1 Relating external disturbances and robot 
parameters 

This subsection speaks about relating the external 
disturbances such as vibration or applied payload to the 
internal robot parameters. As shown in figure 12 and figure 
13, the actual orientation of joint 1 is the reason for 
positional distortion of the end-effector as shown in figure 
10. A similar investigation is carried for all joints to ascertain 
the faulty oriented joints. At the next level, external 
disturbances are correlated with the angular position of joint 
1, to better understand the behavior. Behavior of applied 
load and vibration against the joint orientation is studied and 

interpreted with end-effector position. The influence of the 
object’s mass, shape and/or material properties are 
inferenced based on the context information. As described 
in data storage (figure 2), without the knowledge of 
associated context it would be impossible to understand the 
reason for sudden change in joint 1 value, as it is due to the 

object being handled for a particular operation. Cross 
relations between vibration and different joint parameters 
are expressed as well as for the applied load. One such 
relation between joint 1 position and vibration is shown in 
figure 14.  
 

 
Based on the analysis made between the external 
disturbances and the internal robot parameters, process 

Figure 10: Error with precise positioning of gripper 
for picking a panel 

Figure 11: Interrelations between external 
disturbances and robot parameters 

 

Figure 12: Actual vs expected joint1 orientation 
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planning is improved so that appropriate robot was mapped 
for appropriate process and object to handle. A lookup table 
is generated that describes the different robot parameters 
for handling a component. One such table is given in figure 
16, where analysis based on digital shadow is made and 
the parameters corresponding to handle a hat-rack 
assembly by two different robots. Importantly, the 
successful collaborative mechanism with effective process 
execution time is ensured as depicted in figure 5. 
 

 
  

6. REPLAYING STORED KNOWLEDGE 
To evaluate the effectiveness of the assembly process, it is 
necessary to replay the stored information in the virtual 
world, where more information on process parameters can 
be evaluated. Replaying the assembly events should allow 
the user to understand the associated process. Therefore, 
a replay system is implemented, that displays contextual 
information along with process data. Blender is used for 
replaying the data, as the software is open-source. The time 
stamp from HDF5 data is used to create the timeframes in 
Blender and for each timeframe, the associated robot state 
is represented by creating appropriate keyframe 
corresponding to orientation of robot joints. Context 
information serves as an identifier to understand the 
associated task as shown in figure 15. 

 
 

7. CONCLUSION AND FUTURE WORK 
In this paper the digital shadow for autonomous robot 
operations for cabin assembly process is described, where 
internal and external process parameters on the pre-
assembly cell are recorded and analyzed for any deviation 
in the expected robot behavior. Data acquisition from the 
pre-assembly cell is done with OPC-UA communication, 
where an OPC UA client is able to retrieve information from 
the server. The robot parameters are stored in a binary file, 
which is later used for analyzing the existing anomalies. 
The process of analyzing different types of data is 
described here, but a deeper understanding of other 
external parameters such as material properties or ambient 
temperature will contribute to the future work. Based on the 
complexity of data for any crucial tasks, machine learning 
algorithms are promising to detect anomalies in the robot 
performance. Live visualization for remote monitoring is 

planned for future, where any future process malfunctions 
could be identified in advance and necessary measures are 
taken based on past experiences. Visualizing the simulation 
on Blender looks good, but more value is added when using 
Webots for robot assembly. This is in initial stage of work, 
and later generating offline program from Webots/Blender 
is envisioned based on obtained results. For better sharing 
of results with OEMs (Original Equipment Manufacturers) in 
the digital thread, Virtual Reality (VR) application is 
developed, which currently is in initial stages. Building a 
digital twin for the process is planned on the future road 
map to transfer the process knowledge from digital world to 
real world.  

Figure 14: Angular position of robot joint1 at different 
vibrational frequencies 

Figure 13: Angular positional error of joint1 

Figure 15: Contextual information for an event 
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Figure 16: Lookup table for hat-rack component 
assembly with UR10e and APAS robot 
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