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Abstract 

An essential aspect in the whole engine modelling of modern aircraft engines is the preliminary design of the 
meridional gas path definition. Especially the annulus dimensioning and topological characterisation of engine 
core subsystems are usually time-consuming. This paper presents a holistic and parametric approach to pre-
design the geometric 2D annulus contours of compressor and turbine subsystems without complex thermody-
namic calculations. It is based on distribution functions of the axial and radial dimensions, as well as the vari-
ations of compressor and turbine stages and realises a time-efficient re-dimensioning and topological variation 
of the complex annulus geometry. Parametric methods for an optimised arrangement of the blade stages in a 
turbomachinery subsystem configuration are shown and integrated into a mathematical model. 
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NOMENCLATURE 

HPT High Pressure Turbine  H Hubline 

LPT Low Pressure Turbine  LE Leading Edge 

L axial length  TE Trailing Edge 

A area, cross section  � index of the last stage in a configuration 

P 2D-point in meridional plane {x; r}  �, �, � index of an arbitrary position in a config. 

x axial component  ∆ difference between two values 

r radial component  � percentage of a total value 

C component (R, S or G)  ~ normalised value 

R rotor  ∇, 
 gradient of a line segment 

S stator  �� normalised function, distribution function 

G gap (passage between R/S or S/R)  �, 
, �, factor 

T Tipline (casing line)    

 

1. INTRODUCTION 

The generation and preliminary design of the gas 
path structure (annulus contour) are essential objec-
tives during the development of modern aircraft en-
gines. The basic subsystems compressor, combus-
tion chamber and turbine mainly describe the gas 
path of a core engine. In general, the swan-neck duct 
and the LPT diffuser are included in the annulus ge-
ometry [1–3]. The dimensioning of the gas path and 
the topological pre-design in the compressor and tur-
bine subsystems are particularly time-consuming and 
extremely computationally intensive. 

Therefore, the pre-design and optimisation of com-
pressor and turbine configurations are constantly in 
focus in the field of research and development of aero 
turbo-engines. Many of these investigations, like the 
work of Agromayor et al. [4], Keskin [5] and Sommer 
[6], deal with the three-dimensional geometric and 
topological design of system-internal geometries 
such as the rotor and stator blades. However, these 
methods also require basic input data, which can only 
be derived from the two-dimensional shape of the an-
nulus contour. Hence, a corresponding pre-definition 
of the space-limiting annulus geometry is necessary. 
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For this purpose, modern optimisation strategies can 
be applied to determine the design of the tur-
bomachinery subsystems and the resulting gas path 
contour. This basic contour can be generated from 
scratch by a multitude of iterations [7,8]. However, de-
pending on the complexity of the algorithm and due 
to ambiguous initial values, numerous possible gas 
path designs can be lost. By providing a precondi-
tioned annulus contour, the number of iterations can 
be reduced significantly, because the optimisation 
process only has to adjust the annulus contour in-
stead of creating it from scratch. Hendler et al. [9] 
show a method for adjusting the overall gas path con-
tour of several combined subsystems. The complex 
optimisation procedure also requires a suitable initial 
geometry, as well as predefined optimisation targets 
and parameters, which are fed into the process. 

When defining automated process sequences using 
optimisation algorithms, it is usually necessary to pa-
rameterise the required design variables instead to 
vary them directly. For particularly complex systems 
it can be necessary to reduce the mathematical de-
sign space. This can be achieved by a simplified but 
sufficiently accurate or even dimensionless parame-
terisation of the considered system. In his work on 
process acceleration of compressor optimisation Hinz 
[10] presents a first approach of a time-efficient strat-
egy for the axial distribution of rotor and stator com-
ponents in the compressor system. Resultant, Hinz 
derived a simplified parameterisation of the axial ex-
pansions of compressor components for subsequent 
2D optimisation strategies. 

Based on this, a holistic approach for a time-efficient 
preliminary design generation of the subsystem com-
ponent annulus contour is realised in this paper. The 
two-dimensional design of the rotor and stator stages 
are represented by aeroblocks. These objects define 
the precise axial and radial position and dimensioning 
of any stages in the designed gas path. The specific 
adjustments of the input parameters, in combination 
with the analysis of normalised distribution functions 
for the geometric dimensioning and topological varia-
tion of the aeroblocks, provides the potential of this 
work to calculate a large number of possible geomet-
ric annulus contours in a minimum of time. 

 

2. BASIC CONCIDERATIONS 

2.1. Curves and Splines as design tool 

Since the development of the aircraft turbo-engine by 
Prof. Dr. H.-J. Pabst v. Ohain (1937) and Sir F. Whit-
tle (1939) [2,3], the efforts to describe aircraft engine 
subsystem components using an approach of defined 

parametric calculations have to become indispensa-
ble. A uniform theory of compressor design was pub-
lished in 1942 by Traupel [11]. Based on this theory, 
P. de Haller [12] and S. J. Andrews et al. [13] worked 
out their studies, to verify the influence of parameters 
in compressor blade design with test results. This 
idea of a parameterised engine design has been con-
tinuously expanded over the decades. With the estab-
lishment of more powerful computer technology, the 
parameterised engine design finally led to the field of 
mechanical system optimisation. 

The early approaches of general parameterisation 
strategies of structures comes from the field of typog-
raphy. As early as 1517, Torniello et al. [14] made the 
first efforts to describe letters mathematically using 
straight lines and circles. Weierstrass (1885) 
achieved an important milestone by proving the ap-
proximation of real continuous functions on a real, 
limited and closed area using polynomials. This poly-
nomial approach was taken up by Bernstein in 1912 
and led to the general theory of Bernstein Polynomi-
als [15]. In 1958 P. F. de Casteljau (Citroën) and P. 
Bézier (Renault) used the Bernstein Polynomials to 
calculate free-form curves in car body design [16]. 
The approach developed by Bezier was published in 
1960 under the name "Bezier-Curves". The further 
development of parameterised curves by C. de Boor, 
I. J. Schoenberg and Hiroshi Akima to the well known 
Splines, B-Splines and Akima-Splines should not re-
main unmentioned, but will not be further discussed 
in this work. 

 

2.2. Thermodynamic conditions and constraints 

A precondition for the generic gas path approach of 
axial turbo-engines is the knowledge of some geo-
metric and topological system variables of the consid-
ered subsystem component. In order to comply with 
the character of a time-efficient preliminary design, 
these variables are limited to 

 the axial length (�), 
 the number of stages (�), 
 and the area of the inlet and outlet cross sec-

tion (��) 

in the system to be designed (Fig. 1). Depending on 
the level of detail, the system length (�) and the num-
ber of stages (�) can be specified. The required inlet- 
and outlet cross sections can be calculated using sim-
ple synthesis-based calculation methods for engine 
pre-dimensioning [2,3] or by much more complex nu-
merical approaches. The following calculation ap-
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proaches are presented in general terms and illus-
trated by the example of a representative high- and 
low-pressure turbine. 

 

2.3. Parametrisation of geometric subsystem 

components: Point approach 

The overall radial change of height of the considered 
subsystem component can be calculated according to 
Equation 2.01. For this purpose the absolute value of 
the difference between the radial values of inlet and 

outlet cross section or the point ��,���,�  of the last rotor 

/ stator stage and the point ��,���,� of the first rotor / sta-

tor stage will be determined. 

2.01 
∆���� !" # $�(%&'() ) �(%+,)$ # $��,���,� ) ��,���,�$ 

 ∀� ∈/01 

The indexing "�" indicates the last component of the 
last stage. Note that turbine systems, unlike compres-
sor systems, usually start with a stator stage and end 
with a rotor stage. An arbitrary stage position in the 
considered subsystem is described with the index �, 
where � # 1, . . . , � ; �˄� ∈ ℕ describes the entire sys-
tem arrangement and sets up the quantity of stator-
rotor combinations. 

The local radial annulus variation within a stage com-
ponent 7� can be set up analogous to Equation 2.01 
for any rotor or stator stage according to Equation 
2.02. 

2.02 ∆��� # |��,���,� ) ��,���,�| 
The total radial extent of all rotors or stators of a sub-
system component (7 #9 /, :) is determined by Equa-
tion 2.03, by the sum of the individual radial variations 
of the considered components. 

2.03 ∆�� # ; ∆���
�

�<�
 

When calculating the radial parts of the individual 
components, it must be taken into account that each 
rotor and stator arrangement is followed by a corre-
sponding axial gap. Those also causes radial 
changes in the annulus contour on Hub- and Tipline. 
Depending on the axial position in the subsystem, 
there is a distinction between a "rotor to stator" gap or 
a "stator to rotor" gap (Eq. 2.04). In addition, it must 
be decided whether the radial gap behind the last ro-
tor or stator stage (�) should still be counted as part 
of the considered subsystem or not (Eq. 2.05). 

2.04 ∆��=>/@ # |��,���,� ) ��,��A,�|   ;    ∆��=@/> # |��,��A,� ) ��,���,�| 
2.05 ∆��=>/@ #? 0   ;    ∆��=@/> #? 0 

After all components have been subdivided and their 
shares of the overall radial difference within the con-
sidered subsystem have been established, Equation 

 

Figure 1: Representative turbine configuration (HPT + LPT) with aeroblocks and parameter definition. 
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2.06 can be used to come a full circle to the initially 
established Equation 2.01. 

2.06 

∆���� !" #! ∆�� E ∆�=@/> E ∆�A E ∆�=>/@ 

#! ;(∆��� E ∆��=@/> E ∆��A E ∆��=>/@)�
�<�

 

 

2.4. Normalisation of subsystem components 

Subsequently a normalisation and the associated 
nondimensionalisation of the geometric and topologi-
cal dimensions will be performed. For this purpose, all 
radial point coordinates are related to the overall ra-
dial difference of the considered partial component 
according to Equation 2.07. 

2.07 �̃� # ��
∆��   ∈ G0,1H, �� ∈ G�1,�I7,J , ∆��H 

For a complete dimensionless description of the sub-
system, it is necessary to normalise the previously 
defined number of stages. As can be seen in Equa-
tion 2.08, the arbitrary stage � is related to the total 
number of stages �. 

2.08 K̃ # ��   ∈ G0, 1H, � ∈ G1, �H 
The result of the normalisation represents a graph 
(distribution function), which describes the depend-
ency between the normalised radial variation and the 
associated normalised stage number of the respec-
tive subsystem component. This dependency which, 
is graphically shown in Figure 2, can be described by 
Equation 2.09. By varying the indexing, Equation 2.07 
and 2.09 can be used for the normalised description 

of the radial variation within the axial gaps between 
rotor to stator or stator to rotor. 

2.09 �̃�� # �̃�(K̃) # �̃� L ��M 

From the normalised radial difference of the Tipline 
over the normalised total number of stages (Fig.2), a 
rough overview of the blade shape by the correspond-
ing stage number can be derived. It can be seen that 
the main part of the radial variation of the rotors on 
the Tipline must take place in the front area of the low-
pressure turbine. The radial rear stage gradient of the 
Tipline highly decreases, whereby the normalised 
curve becomes also a flatter characteristic and much 
less impact to the overall radial rotor extent of the Ti-
pline. On the other hand, the high-pressure turbine 
shows a relatively homogeneous distribution of the 
radial gradient across all Tipline rotor stages. The be-
haviour described by the graphs in Figure 2 can be 
recognised by the aeroblocks in Figure 1. 

Analogous to the previous approach, the axial dimen-
sion of all rotor, stator and gap components can also 
be normalised to enable a parametrised 2D modelling 
of the turbine annulus contour. The only constraint is 
that the distribution function gradient using the radial 
or axial function values according to Equation 2.03 
shows a decreasing or increasing simple monotony in 
all points. A radially alternating contour of the Hub- or 
Tipline would lead to an incorrect result of the normal-
isation and subsequently to an incorrect modelling of 
the subsystem. The background and the necessary 
adjustments for the correct normalisation of alternat-
ing annulus contours are described in Chapter 3.3. 

 

2.5. Conversion to geometric dimensions 

Following the normalisation of the radial variations of 
the Hub- and Tipline, there are a total of 8 distribution 
functions (graph in Fig. 2), which can generally be de-
scribed with sufficient accuracy by the polynomial ap-
proach (Eq. 2.10) 

2.10 
�(N) # OP ∙ RP E OPS� ∙ RPS�E. . . EO� ∙ R� E O0 ∙ R0  

∀O ∈ / ˄ OP\U0V, ∀� ∈ �0. 

The polynomial degree can be set higher than neces-
sary without directly noticing the disadvantages. Es-
pecially for numerical methods, lower polynomial de-
grees are often easier and more stable to handle [17]. 
In general, the lowest possible polynomial degree 
should always be chosen with regard to the neces-
sary accuracy. Depending on the application, other 

Figure 2: Normalised distribution functions of the rotor 
components on the Tipline of a representative HPT and 
LPT 
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functional approaches can be used to map the nor-
malised subsystem components as distribution func-
tions in a sufficiently accurate way. 

A conversion of the distribution curves into geomet-
rical dimensions for the radial distribution of the rotor, 
stator and gap components is only possible if the fac-
tors (percentages; (��)) of the overall radial differ-
ence of the considered component group on the sub-
system are known (Eq. 2.11). 

2.11 �∆W� # ∆��
∆���� !" ; ; �∆W� #! 1 | ∀�∆W� ∈ / ˄ 0 < �∆W� < 1 

Depending on the type and range of data ascertain-
ment (Chapter 3.1), the 8 factors required for the 8 
distribution functions for modelling the radial variation 
on Hub- and Tipline of the considered subsystem can 
be pre-defined. Within the scope of future numerical 
optimisation processes, the factors can be brought 
into mutual dependencies through specific assump-
tions [10]. An extended approach for the dependent 
variation of the axial gap would be possible. However, 
8 independently defined factors should be sufficient 
for the approach presented in this paper. Based on 
the specified radial components, Equation 2.12 can 
be used to convert the normalised components back 
into their geometric dimension. Subsequently, the ex-
act radial coordinates for each aeroblock on any 
stage at any overall radial difference of the consid-
ered system can be determined using Equation 2.13. 

2.12 �� # �̃� ⋅ ∆�� # �̃� ⋅ �∆W� ⋅ ∆���� !" 

2.13 

��,��� # ��,��� E ∆��� 

# ��,��� E Z��,∆W� ([̃) ) ��,∆W� ([S�\ )] ⋅ ∆�� 

The individual coordinates of the Trailing Edge of the 
considered partial component (e.g. rotor) are calcu-
lated in dependence to the Leading Edge of the same 
partial component. It should be noted that the coordi-
nates of the Leading Edge of the considered sub-
component can be equated with those of the Trailing 
Edge of the previous sub-component (e.g. gap be-
tween stator and rotor) (Fig. 1). Modelling the radial 
difference within a component on an arbitrary stage is 
represented by the approach defined in Equations 
2.10 to 2.13. The axial coordinates of the components 
can be determined by using the same approach, tak-
ing into account to use axial lengths instead of radial 
differences of the components. 

The initial values of the Leading Edge of the very first 
component of the first stage must be specified,  

because according to Equation 2.08 a stage � < 1 
does not exists and therefore no coordinates of the 
previous Trailing Edge can be used (Fig. 1). Table 1 
shows the initial values of the very first stage compo-
nent (� # 1) within a local component specific 2D Car-
tesian coordinate system for Hub- and Tipline. 

In case of the calculation of axial coordinates under 
the currently available approach, a distortion of the 
aeroblocks in the direction of the positive x-axis can 
occur. The reason for this is the assumption of the 
axial initial values from Table 1 a detailed considera-
tion of this problem and a possible solution is pre-
sented in Chapter 3.4. 

Table 1: Initial values for the coordinates on Hub- and 
Tipline of the very first stage component  

 axial (OR → R) radial (� → _) 

��,���,�(R, _) 0 0 

��,���,� (R, _) 0 ��,��� (%+,) 

   

 

3. DATA ASCERTAINMENT AND GEOMETRICAL 

ADJUSTMENTS 

3.1. Data ascertainment 

The data sets required to set up the distribution 
curves can be derived from existing engine models. 
A broad data basis of several engine geometries is 
advantageous. However, when selecting and meas-
uring the representative engines or their subsystems, 
it should be taken into account to select comparable 
engine types that are as similar as possible for a later 
data comparison. For example, a comparison be-
tween the subsystems of small business jet engines, 
large civil aircraft engines and military jet engines is 
possible but not necessarily target-oriented due to the 
data normalisation. A comparison of the data sets 
should generally be carried out after the normalisa-
tion, since these are dimensionless after the conver-
sion. Figure 3 shows the comparison of a subsystem 
of different engines using some representative data 
sets of the low-pressure turbine. Due to the dimen-
sionless character, component-specific distribution 
curves and factors of different engines can be aver-
aged to a representative distribution curve or factor 
for the generic pre-dimensioning of the annulus con-
tour (Fig. 3). 

According to Equations 2.01 to 2.06, as well as 2.11, 
all necessary axial or radial differences and percent-
ages of the component groups in the considered sub-
system can be determined. 
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It is necessary to consider all geometric data dis-
cretely for the four possible component groups 

 rotor (/), 
 stator (:), 
 axial rotor gap (`A/�) and 

 axial stator gap (`�/A), 

as well as separately on the Hub- and Tipline. 

With an additional subdivision into a radial and an ax-
ial point coordinate, 16 data sets for 16 distribution 
curves must be determined. The 16 factors of the 
component percentages can be specified, as well as 
the overall radial difference (∆���� !"), the total sub-

system length (���� !") and the total number of 

stages (�). For a simplified preliminary design, the 
factors are determined as fixed values according to 
Equation 2.11 or averaged between several data 
sets. As part of an optimisation study, they can be 
used as additional adjusting screws. 

 

3.2. Adjustment of distribution functions due to 

measurement inaccuracies 

Due to systematic and random measurement failures 
when setting up the partial data sets, as well as the 
large number of normalisation steps of the individual 
stages and component parts, inaccuracies in the final 
data set may occur. By examining such an "inaccu-
rate" distribution function, the remainder term indi-
cates that the graph does not start at the origin of co-
ordinate system. As the normalised function should 
also intersect the point �([̃,W̃)U1; 1V, this property can be 

used as advantage. For this purpose, the remainder 
term (O) is adjusted according to the example of 
Equation 3.01 and the factor in front of the exponent 
with the least influence according to Equation 3.02. 

3.01 
Nb,∆cd (1) # 1 #  0,984 )  3,444 E  3,640  

) 0,022 )  2,403 E  a 

3.02 
Nb,∆cd (x) #  0,984 ⋅ xm  )  3,444 ⋅ xn  E  3,640 ⋅ xo  

) 0,022 ⋅ xp )  2,403 ⋅ xq  E  2,245 ⋅ x 

The resulting functions pass through the points �([̃,W̃)U0; 0V and �([̃,W̃)U1; 1V as defined by the normalisa-

tion method in Equations 2.07 and 2.08. 

 

3.3. Adjustments for axial and radial geometric 

fluctuations in the annulus contour 

A special behaviour of the annulus contour can be 
seen in the rear section of the low-pressure turbine 
Hubline (Fig. 1). Due to the continuous energy extrac-
tion from the hot gas through the turbine, the local op-
erating temperature and pressure decrease. Accord-
ing to the Ideal Gas Law, this is equivalent to a de-
crease of the fluid density. In combination with the 
Law of Conservation of Mass in flowing fluids and a 
simultaneous desired reduction of the flow velocity, a 
significant increase in the flow cross section is re-
quired. However, the flat contour of the rear LPT Ti-
pline prohibits a further increase of the rear Hubline 
to a higher radius by increasing the local flow cross 
section at the same time. 

In order to increase the flow cross section despite the 
flat Tipline, the Hubline must have a curvature with a 
decreasing radial difference (negative radial gradi-
ent). As the front part of the Hubline has already been 
defined with a positive radial gradient, the considered 
curve achieves an alternating character by the de-
creasing rear part. This causes a change in the alge-
braic sign of the gradient and thus a no constant mo-
notony of the distribution curve. Resultant, a further 
and by far the most important basic constraint of the 
considered approach for the normalisation of subsys-
tem components is derived (3.03). 

3.03 ∇��#9 
��  | 
��  s 0 ∀� ˅ 
��  u 0 ∀� 
This implies that the considered radial normalisation 
quantity from one axial coordinate (stage; �) to the 
next (stage; � E 1) has a constant monotony and thus 
always the tendency of a algebraic sign-wise constant 
gradient. If the constraint according to Equation 3.03 
is met (simple monotony), the sum of the absolute 
value of all partial radial differences relative to the 
overall radial difference of the subsystem (0 u � u �) 
would always be exactly 1 (Eq. 3.04 - 3.05). 

Figure 3: Set of representative LPT distribution curves 
with an averaged distribution curve for the rotor Ti-
pline. 
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3.04 ∆�� # ��� ) �0� 

3.05 
∑ $��1�� ) ���$�S��<0 ∆�� #! 1 →  w7x
y�z{{x�: # 1

}~����z: � 1  

This behaviour is presented for the Hub- and Tipline 
of conventional axial compressor systems in turbo-
fan engines. In case of turbine systems, this condition 
can generally only be met by the Tipline (Fig. 1). Usu-
ally, the Hubline cannot comply with the constraint 
due to the alternating gradient between the stages of 
the considered subcomponent, so that Equation 3.05 
would always be ≠1 (alternating monotony). 

The design of a radially alternating contour according 
to Equation 2.06 would have a normalisation which 
would not exactly reach �([̃,W̃)U1; 1V (Fig. 4). The radial 

fluctuations within the normalised contour could not 
be evaluated exactly in a conversion. Because ac-
cording to Equation 3.05 the given overall radial dif-
ference of the subsystem would be clearly larger than 
the sum of the absolute value of the partial differ-
ences in a radially alternating system. 

In general, there should be no relevant fluctuations in 
the axial differences, since in a meaningful construc-
tive context of an axial turbo-machine the x-coordi-
nate can only increase positively with each compo-
nent. 

 

3.3.1. Minor fluctuations: Point approach 

Particularly flat contours with 
�� � 0 tend to alge-
braic sign fluctuations of the gradient between two ad-
jacent coordinate points. For this, it can be consid-
ered as legitimate to perform an adjustment of the co-
ordinates according to Equation 3.06. 

3.06 ��E1� UR�E1; ��E1V ;  ��E1 # �� 
In case of normalisation for a sufficiently accurate 
modelling of the annulus contour of the considered 
subsystem, such a radial adjustment must be carried 
out before the normalisation procedure. 

Since the radius has a quadratic influence on the sub-
system cross section, it is important to check whether 
the adaptation does not vary the cross sectional area 
too much on the given radial interval. Therefore, the 
influences when varying the Hubline have a much mi-
nor effect, as it is located on a lower radius than the 
Tipline. Depending on the radial position of the coor-
dinate point, it must be decided up to what percent-
age a radial and cross sectional area variation ac-
cording to Equation 3.06 can still be carried out with 
sufficiently accuracy and without major contour dis-
tortions. 

 

3.3.2. Major fluctuations: Area approach 

According to Chapter 3.3.1 it is possible to smooth ir-
regularities in case of minor radial fluctuations, such 
as in the rear flat part of the LPT Tipline. Algebraic 
sign changes of the local gradient with significant ge-
ometric variations, such as in the HPT and especially 
the LPT Hubline (Fig. 1), cannot be corrected by a 
simple radial shift of the coordinate points. In this 
case, it can be assumed that the major radial fluctua-
tions are important design measures, which must be 
included in the normalisation process. 

According to Equation 3.03 – 3.05 it is not possible to 
use the normalisation approach from Chapter 2.4 for 
the generic modelling of subsystems with an alternat-
ing annulus contour. Therefore, another variable in-
stead of the local radius must be used to fulfil the con-
straint of a simply monotonically decreasing or in-
creasing function. A possible solution is the local 
cross-sectional area briefly addressed in Chapter 
3.3.1. This can generally defined as 

 constant growing for a turbine arrangement 
and 

 continuous contracting for a compressor ar-
rangement. 

Local algebraic sign changes in the area difference 
between adjacent aeroblocks in case of minimal fluc-
tuations can be interpreted as ∆�� # 0 (no area differ-
ence between the measuring positions) using the ap-
proach from Chapter 3.3.1. For this purpose (Eq. 3.07) 

3.07 �(W����,�;c����,�) # �(W��,�;W��,�) 

Figure 4: Normalised distribution functions of the rotor 
components on the Hubline (point and area approach) 
and Tipline (point approach) of a representative LPT. 
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can be set. Consequently, it should be noted that due 
to the increasing Tipline (Fig. 1) the radial values on 
the Hubline do not have to meet Equation 3.06 in or-
der to generate a constant flow cross section accord-
ing to Equation 3.07. This indirect displacement of the 
radial point position due to significant algebraic sign 
changes in the radial partial differences only affects 
the Hubline. 

Since the Tipline can still be parameterised with the 
point approach presented in Chapter 2.3, it is possible 
to normalise the Hubline with an extended area ap-
proach depending on the point coordinates of the 
Hub- and Tipline. Analogous to Equation 2.01, Equa-
tion 3.08 can be used to determine the overall area 
difference of the flow cross section in the considered 
subsystem by the absolute area difference between 
the reference inlet and outlet cross section. 

3.08 ∆�:�{�z
 # |�(I�~�) )  �(I��)| # |��,}I ) �1,�I| 
Likewise shown in Equation 3.08, Equations 2.02 to 
2.05 are changed to a stage-dependent area differ-
ence between the Leading Edge and Trailing Edge of 
the considered sub-component (∆���). A differentia-
tion between the rotor and stator components, as well 
as the alternating rotor / stator gaps, is still carried out. 
It must also be decided whether the gap after the last 
component is part of the considered subsystem. 

After a successful conversion to the area difference, 
the sum of all partial area differences can be set in 
relation to the overall area difference (Eq. 3.09).  

3.09 

∆���� !" #! ∆�� E ∆�=@> E ∆�A E ∆�=>@  

#! ;(∆��� E ∆��=@/> E ∆��A E ∆��=>/@)�
�<�

 

Subsequently, the normalised and stage-dependent 
area difference can be established according to 
Equation 3.10. 

3.10 ��7 # �7
∆�7   ∈ G0,1H, �7 ∈ G�1,�I7 , ∆�7H 

The normalisation of the associated stages of the 
considered subsystem is carried out equivalent to 
Equation 2.08 by Equation 3.11. 

3.11 ���� # ���(K̃) # ��� L ��M 

Analogous to Equation 2.10, a normalised distribution 

function Nb,∆�d (x) of area differences per component 

group can be established (Fig. 4). The adjustment of 
the distribution functions due to measurement inaccu-
racies according to Chapter 3.2 are still legitimate. In 
order to normalise the selected annulus contour (usu-
ally Hubline) completely by the area approach, 4 dif-
ferent distribution functions must be set up. These re-
place the 4 distribution functions of the radial point 
difference represented by the 4 component groups. 

The increase in the normalised distribution curve of 
area differences in Figure 4 shows that the area dif-
ferences in the normalised system are distributed rel-
atively evenly over all stages. Nevertheless, the area 
change in the rear part of the low-pressure turbine 
seems to have a much bigger effect than in the front 
part (Fig. 1). The reason for this is the relatively hori-
zontal contour of the Tipline (higher relative radius) 
and the significant negative modification on the Hub-
line (lower relative radius). As the radius enters the 
surface in a square and nothing changed at the high 
radial position of the Tipline, all changes must come 
from the low radial level of the Hubline. This radial po-
sition significantly decreases as the area increases. 
In order to achieve a relatively constant change in the 
cross-sectional area at all stages, the rear part of the 
Hubline must progressively decrease in the radial di-
rection for every stage. 

For the conversion of the normalised area difference, 
the percentages per component group in relation to 
the overall area difference in the considered subsys-
tem must also be determined (Eq.3.12 - 3.13). 

3.12 �∆%� # ∆��
∆���� !" 

3.13 ��� # ���� ⋅ ∆�� # ���� ⋅ �∆%� ⋅ ∆���� !" 

Similar to the approach of radial difference (point ap-
proach), the change of the cross section within the 
aeroblocks of any component group can be evaluated 
relative to the overall area difference in the subsys-
tem. The final determination of the radial points on the 
considered Hubline is carried out according to Equa-
tion 3.14. This is done by recalculating the area dif-
ferences between the Leading Edge to the Trailing 
Edge in the considered aeroblock depending on the 
simultaneous radial variation of the Tipline. The ba-
sics for Equation 3.14 is the calculation of the annulus 
cross section as an ideal circular ring in a plane. 
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3.14 ��,���,� # ����,���,� �q ) Z��,∆%� ([̃) ) ��,∆%� ([S�\ )] ⋅ ∆��
� ) Z���,���,��q ) ���,���,��q] 

Equation 3.14 can be used for all 4 component 
groups of the Hubline. It should be noted that due to 
the Tipline dependencies, the calculation of the radial 

Hubline coordinates (��,���,�) by area approach is only 

possible after the determination of the radial Tipline 

coordinate (��,���,� ) by point approach. For the required 

coordinates of the Leading Edge (��,���,� , ��,���,�) the Trail-

ing Edge coordinates of the previous component (� ) 1) should be used. The initial values of the Lead-
ing Edge of the very first stage component in the con-
sidered subsystem can be found in Table 1. 

The utilisation of the area approach developed for the 
turbine configuration to calculate a compressor sys-
tem is quite possible. It also requires a gradient with 
a constant algebraic sign for radial and area differ-
ence on every stage of the compressor annulus con-
tours to provide a simply monotonically decreasing or 
increasing character for all required distribution 
curves. 

 

3.4. Subsequent adjustments of the aeroblock 

geometry 

3.4.1. Contour smoothing: Radial corrections 

The preparation of the data sets by averaging several 
geometries, as well as possible measurement and 
rounding failures during normalisation and evaluation 
of the distribution curves can result in defective geo-
metric aeroblock contours of the rotors, stators and 
gaps. Figure 5 shows an example of an incorrect gap 
contour of an arbitrary stage configuration from stator 
to rotor. 

The gap passage (Hub- and Tipline of aeroblock) is 
relatively horizontal, so the Leading Edge of the rotor 
is approximately at the same radial level as the Trail-
ing Edge of the stator. The coordinates of the rotor 
and stator are only indirectly coupled to each other 
via the coordinates of the gap aeroblock. Therefore, 
the failure in this example is in the distribution curve 
or the percentage of the gap component. To smooth 
the contour, the corresponding distribution curve or 
percentage could be adapted. In case of a lack of in-
formation for this adaptation, a simpler method of 
contour smoothing will be used. 

In order to not falsify the geometrical basics of the dis-
tribution curves, the entire subsystem is calculated 
according the point and area approaches described 

in Chapter 2 and equation 3.1 – 3.3. The radial cor-
rection for a smoother annulus contour is carried out 
subsequently by shifting the radial coordinates of the 
Leading Edge of the component after the faulty pas-
sage / aeroblock. An adjustment of the radial coordi-
nates during the calculation of the subsystem would 
result in a shift of all following coordinate points, 
which would no longer fulfil the constraints in Equa-
tion 2.06 and 3.09. 

The radial coordinates are adjusted according to 
Equation 3.15 by manipulating the gradient of the 
Hub- or Tipline of the component after the faulty aer-
oblock. Depending on the position in the subsystem, 
the stage numbering (�) cannot be used. A local con-
secutive numbering of the aeroblocks (�) is intro-
duced for the considered aeroblock configuration (ro-
tor, stator, gap). For a correction of the passage from 
stator to rotor (Fig. 5), the rotor (right side of the pas-
sage) would be indexed with � and the previous stator 
(left side of the passage) with � ) 1. For the passage 
from rotor to stator, the configuration is directly re-
versed. The factor � indicates the percentage of the 
gradient of the component � that is applied to the gap. 
A value of � # 0.75 provides an approximately good 
smoothing of the passage between the adjacent aer-
oblocks. 

3.15 ��,��� # ��,��� ) ��,���
R�,��� ) R�,��� ⋅ � ⋅ (R�,��� ) R�S�,��� ) E ��S�,��� | � ∈ G0,1H 

Figure 5: Contour smoothing by adjusting the rotor 
Leading Edge coordinates depending on the gradient 
of the gap passage between stator and rotor of a repre-
sentative LPT section. Left: original contour. Right: 

smoothed contour with � # �. ��. 
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Equation 3.15 is applied separately for the Hub- and 
Tipline. The result is a smoothed annulus contour of 
the entire subsystem. Since the correction is carried 
out after the basic calculations, it can be previously 
checked if it is necessary to smooth all subsystem 
passages or only a few selected ones. When using 
valid data sets, the correction of the radial coordi-
nates should only be a shift in the tenth or hundredth 
part of the range relative to the nominal values out of 
the distribution curves. Therefore, the variation of the 
flow cross sections is minimised and applicable within 
the scope of the preliminary design. 

 

3.4.2. Distortion minimisation: Axial corrections 

Because the Leading Edges of the calculated compo-
nent aeroblocks in the considered subsystem are 
based on the Trailing Edge of the respectively previ-
ous aeroblock (Chapter 2.5), the initial values for the 
Leading Edge of the very first aeroblock in the sub-
system are given in Table 1. The basic condition of 
the initial values from Table 1 is that the Leading Edge 
of the very first aeroblock is parallel or congruent to 
the ordinate axis (radial axis) in the local subsystem 
coordinate system. All further coordinates of the fol-
lowing components are calculated by the distribution 
curves. 

In most cases, the aeroblock Leading Edge of the first 
stage component in the subsystem cannot be consid-
ered as parallel to the ordinate axis. Therefore, a sim-

plification of the axial initial values to R�,���,�/� # 0 is not 

mandatorily legitimate. Often the 2D blade profile of 
the first stage component or its aeroblock approxi-
mately resembles a trapezium shape (Fig. 6). Subse-

quently, the axial initial value of the Tipline is R�,���,� �0. This deviation propagates and accumulates in the 
calculation of the following stages and the whole sys-
tem gets a distortion in positive x-axis. 

The direct causes of this distortion are the simplified 

initial x-coordinates R��,��,� # R��,��,� # 0 on the Hub- and 

Tipline out of Table 1. Although the two coordinates 
are equated, the calculation of the Hub- and Tipline 
does not dependent on each other. Larger axial dif-
ferences in one of the two contours cannot be com-
pensated by the other one. The resulting misalign-
ment can be solved separately for each individual 
component in the system by simply shifting the axial 
coordinates on the Tipline in relation to the Hubline 
coordinates. 

In order to achieve a simple but yet meaningful de-
pendence between the axial coordinates on the Hub- 
and Tipline, two control points will be added on the 
lines. They are shifted axially so that they lie vertically 
one above the other (Fig. 6). According to Equation 
3.16 and 3.17, the axial coordinates of the Tipline 

 

Figure 6: Realignment of the aeroblocks by means of control points on the Hub- and Tipline of a representative 
LPT stage configuration. Left: original skewing shape of the stator and rotor aeroblock due to incorrect initial 

values on the stator Leading Edge. Right: realignment of the stator aeroblocks with � # � # �. �. 
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(Leading and Trailing Edge) will be realigned within 
the considered component. The percentage position 

of the control points on the line segment R[,���,�/�; R[,���,�/������������������ 

can be adjusted using the parameters 
 and �. 

3.16 R�,���,� # (R�,���,� E R�,��� ,�) ∙ 
 ) ∆R� �,� ∙ � | 
, � ∈ G0,1H 
3.17 R�,���,� # (R�,���,� E R�,��� ,�) ∙ 
 E ∆R� �,� ∙ (1 ) �) | 
, � ∈ G0,1H 
The result of adjusting the Tipline with the control 
points on 50% of the length of the line segment is 
shown in Figure 6. The correction according to Equa-
tion 3.16 varies the effective area, the shape and the 
position of the considered aeroblock in a minimal 
way. 

An adjustment is usually only necessary for the very 
first component and can be applied directly after the 
calculation of this very first component aeroblock. All 
further sub-components use the coordinates of the 
Trailing Edge of the respective previously calculated 
sub-component aeroblock as initial values. Alterna-
tively, the complete calculation of the axial (and ra-
dial) coordinates of all partial components in the con-
sidered subsystem can be run at first. Subsequently, 
the correction of the axial components must be ap-
plied again to all previously calculated partial compo-
nents. The result of both variants is approximately 
identical. 

 

4. OUTLOOK 

Based on the presented approaches of holistic 2D an-
nulus contour design methods for axial aero tur-
bomachinery systems, possible further developments 
and optimisation strategies can be defined. 

Since each component in the subsystem is deter-
mined by its own distribution curve, the number of 
stages in the considered subsystem significantly re-
stricts the number of interpolation points per distribu-
tion curve. Especially in the turbine configuration 
where often only a few stages are needed, certain in-
accuracies in the calculated contour are possible. On 
the other hand, multi-stage systems such as the com-
pressor, provide a sufficient number of support points 
and thus a stable and relatively smooth distribution 
curve. Therefore, a further consideration for smooth-
ing the annulus contour by overlaying the calculated 
coordinates with a suitable spline function is possible. 

In terms of Industry 4.0, the methods can be extended 
and superimposed by a combination of design and 
EHM databases (Engine Health Monitoring) as well 
as adaptive processes. In combination with various 

design studies (DOE) a multitude of potential annulus 
structures can be found and evaluated. The results 
can be a gas path structure tailored to the specified 
application and needs of the customer. 

In addition, complex optimisation processes can be 
set up for the targeted adaptation of the two-dimen-
sional compressor and turbine annulus contours. In 
combination with pre-defined optimisation targets and 
design space parameters, the generically created gas 
path can serve as an initial geometry for complex aer-
odynamic, thermodynamic and structural-mechanical 
optimisation processes. A smoothing and holistic op-
timisation of the predetermined annulus structure 
would thus be possible. 

 

5. CONCLUSION 

In this paper a holistic approach for the preliminary 
design of 2D annulus contours for thermal axial tur-
bomachinery systems is presented. The basis is a 
valid set of normalised distribution curves, which can 
be extracted from existing engines structures. The 
normalisation provides the possibility to perform a 
complete geometric pre-dimensioning of a turbine or 
compressor subsystem with the help of a few geomet-
ric and topological input parameters. To correct pos-
sible inaccuracies or contour distortions, several 
methods for axial and radial adjustment of the coordi-
nates were given. The application and combination of 
one or more correction methods is optional and pro-
vides a significant smoothing of the calculated con-
tours with minimal influence on the axial and radial 
characteristics, the flow-conducting annulus structure 
and their cross sections. A direct integration of the re-
sults as initial value for DOEs or more complex opti-
misation processes is possible. The calculation ap-
proaches presented in this paper offers a time-effi-
cient and fully parametric possibility for the gas path 
pre-dimensioning for thermal turbo-machines. 
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