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Abstract
Due to model and measurement uncertainties, simulation outputs of dynamic systems might not be
exact and also subject to uncertainties. Especially in reentry missions unforeseen perturbations and
the resulting change of the vehicle’s behaviour are critical due to high velocities and heat loads. Here,
trajectory planning considering uncertainties is of high interest. Therefore, it is important to quantify and
reduce the dependency of the system output with respect to uncertainties. In general, reentry trajectories
can be calculated by optimal control methods, giving rise to controls such that a certain cost function, e.g.
the heat load, is minimized. In this study sensitivities are calculated and minimized in a multi-objective
cost function in order to reduce the dependencies of the system regarding uncertain parameters. Two
different sensitivity approaches, namely the forward sensitivity and adjoint method are compared. For
each of the methods two discretization schemes, first the collocation and second the shooting method,
are investigated.
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NOMENCLATURE

f System dynamics
fλ Dynamics for adjoint equation
h Altitude
np Number of parameters
nt Number of time steps
nu Number of controls
nx Number of states
p Parameters
q Heat load at stagnation point
S Sensitivity matrix
t0 Initial time
tf Final time
u Controls
V Velocity
x States
z Optimization vector
α Angle of attack
γ Flight path angle
λ Adjoint matrix
µ Bank angle

1. INTRODUCTION

During reentry, the vehicle’s velocity is reduced from hy-
personic to subsonic speed. In order to reach this high
reduction of velocity, the reentry vehicle uses the effect
of air resistance. By this, high heat flux acts on the ve-
hicle resulting in high heat loads. This is safety critical
for different reasons. High temperatures in either the
cabin, tank or other sensitive parts of the system are
critical for passengers or other flight systems in its sur-
rounding. Furthermore, high temperature impact short-
ens the vehicle’s lifespan and reduces reusability for fur-
ther missions. By optimal control methods [1, 2] optimal
flight paths can be calculated such that the heat load on
the vehicle is minimal. Here, constraints that include the
vehicle’s dynamic behaviour, configuration, and mission
specifications are considered. Therefore, mathemat-
ical models are required. Since for the modelling of
the vehicle and the environment not every parameter
is well known, the aforementioned optimal trajectory
varies with parameter perturbations and does not meet
the defined requirements. Uncertain parameter might
be air density [3] or the capsule’s position which might
differ from the onboard estimated position [4].
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In robust optimal control, these parameter uncertain-
ties are included into an optimal control problem either
probabilistically [5, 6] or deterministically [7, 8]. The
aim is to calculate a trajectory, that is optimal but not
prone to parameter perturbations, i.e. under parame-
ter perturbations the trajectories or some performance
value should not differ significantly. The optimal solu-
tion, where no uncertainties are considered, is called
nominal solution. The solution of the optimal control
problem, where uncertainties are considered is called
robust solution. Robust reentry trajectories under at-
mospheric uncertainties are studied e.g. in [9] with a
differential game method or in [10] by a multiple opti-
mization approach with perturbed air density to study
the distribution of the resulting trajectories. Another ro-
bust optimal control method is minimizing sensitivities of
the system output regarding uncertain parameters. The
method of sensitivity minimization is presented and ap-
plied in [8, 11]. Here, the state system is augmented
by the sensitivities. Hence, the discretization method
used for the states is also used for the sensitivities. For
large problem sizes, this might lead to high computa-
tional effort. Therefore, in [12] a hybrid method where
the states are fully discretized and sensitivities are dis-
cretized using a shooting method is presented. As dis-
cussed in [13], for a large number of parameters the ad-
joint method might be more suitable for efficiency rea-
sons. Therefore, in [14] adjoints instead of sensitivities
are applied in order to determine gradients in optimal
control problems. However, to the best knowledge of
the authors, adjoints have not been applied for sensitiv-
ity minimization.
In this paper, a reentry trajectory of an Apollo capsule is
robustified by minimizing the sensitivity of the final ve-
locity with respect to the initial altitude and flight path
angle. The sensitivity is incorporated into the cost func-
tion as a penalty resulting in a multi-objective optimal
control problem. Two methods, the forward sensitiv-
ity and adjoint method, are applied for sensitivity cal-
culation and compared regarding efficiency. For each
method, two different discretization methods for the for-
ward sensitivities and adjoints, namely a full discretiza-
tion (analogous to the system states) and a shooting
method are implemented and compared regarding ef-
ficiency. In section 2, an overview of applied optimal
control theory is given. Theoretical background on the
forward sensitivity and adjoint method is presented in
section 3. The modelling for the dynamic system, aero-
dynamics, atmosphere and thermodynamics is given in
section 4. In section 5 nominal and robust optimization
results are presented and compared. A conclusion and
outlook is given in section 6.

2. APPLIED OPTIMAL CONTROL

The aim of optimal control is to control a dynamic sys-
tem such that a cost function is minimized. Mathemati-
cally, the optimization problem is stated as follows:

min
x,u

e(x(t0),x(tf )) + g(S(tf ;p))(1)

subject to the dynamic constraints

ẋ(t) = f(x(t),u(t);p)(2)

with f : Rnx × Rnu × Rnp → Rnx , the inequality con-
straints

cineq(x(t),u(t);p) ≤ 0(3)

for all t ∈ [t0, tf ] with cineq : Rnx × Rnu × Rnp → Rnineq
and the initial and final boundary conditions

ψ(x(t0),x(tf )) = 0(4)

with ψ : Rnx × Rnx → Rnψ . Here, e represents the
Mayer cost function, x : R → Rnx the state history,
u : R → Rnu the control history and p ∈ Rnp the pa-
rameter vector. Furthermore, S(tf ;p) denotes the sen-
sitivity S(tf ) =

∂x(tf )
∂p of the states regarding the pa-

rameters p and g : Rnx × Rnp → R denotes a nonlinear
function applied to the aforementioned sensitivity, e.g.
a suitable norm. This term is introduced in the robust
optimal control approach, where sensitivities are min-
imized to robustify the resulting trajectory and reduce
variations of the trajectory when the parameters p are
perturbed. This approach is introduced in section 3.
Please note that the Mayer cost formulation can include,
without loss of generality, Lagrange cost functions by in-
troducing new states accordingly.
There are two main approaches to solve an optimal
control problem. In function space methods, optimal-
ity conditions for the infinite dimensional optimal con-
trol problem are formulated and then discretized. In the
discretization approach, the problem is first discretized
on a time grid, thereby transcribed to a parametric op-
timization problem and then solved with methods for
finite dimensional optimization problems as applied in
this paper. [1, 2]
In the present study, the optimal control tool FALCON.m
[15] is used. We apply full discretization on the contin-
uous problem. Here, every state and control at every
discretized point of time is included into the optimiza-
tion vector. Hence, the optimization vector z takes the
form

z =[x1(t0), . . . , xnx(t0), u1(t0), . . . , unu(t0),(5)

. . . , x1(tf ), . . . , xnx(tf ), u1(tf ), . . . , unu(tf )]
T .
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In order to fulfill the dynamic constraints, the system is
simulated by one step at each discretized point. The
discrepancy between the simulated and the optimized
states is then constrained to be zero in the so called
defect constraints [1]. Therefore, no integration of the
system over the whole time interval is required.
In contrast, in the single shooting method, only the con-
trols are fully discretized and fully included into the op-
timization vector. From the states, only the initial state
is contained in the optimization vector. The remaining
state values are calculated by one integration sweep.
Therewith, the system dynamics are fulfilled such that
no introduction of integration defect constraints is re-
quired. [1, 2] Due to the decoupled integration of the
states the collocation method gives rise to a sparse
problem but requires the introduction of defect con-
straints [1, 16]. On the other hand, the single shoot-
ing method does not increase problem size significantly,
but has the drawback of a dense problem structure.
Therefore, to incorporate the sensitivities from section 3
into an optimal control problem, both a pure colloca-
tion method collocating states and forward sensitivi-
ties/adjoints respectively and a hybrid method collocat-
ing states and shooting forward sensitivities/adjoints are
applied and compared.

3. FORWARD AND BACKWARD SENSITIVITY

In this section, two methods to calculate the sensitivity
of a state with respect to a parameter are presented,
namely the forward sensitivity and the adjoint method.
Let xk be the k-th state with k ∈ {1, . . . , nx}. The aim
is to calculate the dependency of the final state xk(tf )
w.r.t. parameters p. In the following, the state values
x(t0) and x(tf ) are abbreviated by x0 and xtf respec-
tively.

3.1. Forward Sensitivity

By deriving the sensitivity S = ∂x
∂p with respect to time,

we obtain the following initial value problem for the for-
ward sensitivity [1]:

Ṡ(t) =
∂f(t)

∂x
S(t) +

∂f(t)

∂p
, S(t0) =

∂x0

∂p
(6)

The terms ∂f
∂x and ∂f

∂p can be calculated by analytically
deriving the model dynamics. The sensitivity S is then
determined by numerical integration of (6). The dis-
cretized sensitivity matrix is of size nx×(nx+np)×nt. In
the rows of S the states, which are derived, are given.
In the columns, the parameters, with respect to which
the sensitivity is calculated, are given, cf. Figure 1. So
for each parameter nx differential equations have to be

solved which makes the sensitivity computationally ex-
pensive.
Since the first order sensitivity is introduced into the cost
function, second order sensitivities with respect to the
optimization vector are required. These are provided
by the tool FALCON.m, if the first order sensitivities are
collocated. For the hybrid method, where states are
collocated and sensitivities are shooted, they need to be
provided by the user. Details regarding the calculation
of second order sensitivities can be found in [12].

3.2. Adjoint

As in [1], for the backward sensitivity or the adjoint
method we consider the k-th state xk(tf ). By augment-
ing xk(tf ) with an integral over a product of the adjoint
function λ and the system dynamics and deriving the
resulting sum w.r.t. p we obtain the final value problem

λ̇
T
(t) = −λT (t)∂f(t)

∂x
, λT (tf ) =

∂xk(tf )

∂xtf
.(7)

The function λ is an auxiliary function and by defin-
ing its differential equation and the final value as in (7)
the computationally expensive forward sensitivity terms
S(t) with t > t0 are eliminated. By integrating λ̇ back-
ward in time, we obtain λ(t0). In the special case
p = x0 considered in this study the initial value λ(t0)
represents the sensitivity ∂xk(tf )

∂x0
. The relation to the

forward sensitivities is then given by [1, 13]:

λ(t0) =
∂xk(tf )

∂x0
= Sk(tf )(8)

where Sk denotes the k-th row of S. The size of the
discretized adjoint matrix λ is nx × nt, cf. Figure 1. So,
independent from the number of parameters nx differ-
ential equations are solved. Please note that if sensi-
tivities for more than one state are considered, for each
state nx differential equations are introduced for the ad-
joint.
Since the adjoint is introduced into the cost function, its
gradient with respect to the optimization vector needs to
be calculated. For the collocated adjoints the tool FAL-
CON.m provides the gradient. For the hybrid method,
where the adjoints are integrated in the cost function
by shooting, it needs to be provided by the user. The
gradient of the adjoint can be calculated based on
the sensitivity differential equation in (6). Therefor, let
fλ : Rnλ × Rnx → Rnλ with λ̇ = fλ(λ;x) be the function
describing the adjoint differential equation in (7) and let
z be the optimization vector.
Then the gradient Sλ = ∂λ

∂z of the adjoint can be deter-
mined by solving the final value problem

Ṡλ(t) =
∂fλ(t)

∂λ
Sλ(t) +

∂fλ(t)

∂z
, Sλ(tf ) =

∂λtf
∂z

.(9)
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FIGURE 1. Structures of the forward sensitivity matrix
S (top) and adjoint matrix λ (bottom) for the special case
p = x0.

3.3. Comparison and Implementation

Analytically, when calculating a certain sensitivity
∂xk(tf )
∂p , both the forward sensitivity and the adjoint

method deliver the same result as stated in [1]. With the
forward sensitivities we obtain sensitivities on the whole
time interval, so we obtain ∂xk(t)

∂p for all t ∈ [t0, tf ]. But
due to the fact that for each parameter a set of nx dif-
ferential equations has to be solved, forward sensitivity
calculation comes along with higher computational ef-
fort. In contrast, for the adjoint sensitivities, only nx dif-
ferential equations for all parameters are solved which
is more advantageous especially for a high number of
parameters.
When introducing either the forward sensitivity S or the
adjoint λ into an optimal control problem we consider
two different methods. Since the discretization method
for the states is chosen to be the collocation method
as stated in section 2, also collocating S and λ might
be suitable [8]. Therewith, both the states and the sen-
sitivities are integrated with the same method. As the
sensitivities are treated as states, the number of states
increases to 2nx + np for the forward sensitivity method
and to 2nx for the adjoint method. In general, the prob-
lem size, i.e. the number of states and constraints, in-
creases in this incorporation method since states and
hence constraints are added to the original problem.
Especially for the forward sensitivities the problem size
increases linearly in np.
On the other hand, the problem sparsity in the colloca-
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FIGURE 2. Growth of the total number of differential
equations for eight states in the robust optimal control
problem dependent on the number of parameters for
the collocated forward sensitivity and adjoint method.
In case of the forward sensitivity method, the problem
size increases linearly in np whereas it is constant for
the adjoint method, if the sensitivity of only one state is
considered.

tion method is higher in contrast to the shooting method
[16]. Figure 2 depicts an example of the growth of the
total number of differential equations with the number
of parameters for both the forward sensitivity and the
adjoint method for nx = 8 states.
Another approach is combining collocation and shoot-
ing methods, i.e. the system states are collocated and
the sensitivities are shooted in the cost function. The
cost function is provided with the discretized states,
controls, parameters and time grid, which are used for
the single shooting trapezoidal integration of the sensi-
tivities. The output of this cost function is the required
sensitivity and its gradient w.r.t. the optimization vector.
[12] By this, the problem size does not increase but the
problem structure is dense. An overview of the applied
combinations is given in Table 1.

3.4. Sensitivity Penalty

In order to calculate robust optimal solutions, we fol-
low the approach of penalizing the cost function for high
sensitivities of interest. Let

Sk,i(tf ) =
∂xk
∂pi

(tf )(10)

be the sensitivity of the k-th state w.r.t. the parameter pi.
In the sensitivity penalty approach, not only the nominal
Mayer cost function is minimized but the sum of it and
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TAB. 1. Overview of methods and problem sizes.

Number of collocated states Number of internally integrated states

Collocated Forward Sensitivity 2nx + np 0
Collocated Adjoint 2nx 0
Shooted Forward Sensitivity nx nx + np
Shooted Adjoint nx nx

the weighted squared sensitivities, i.e.

e(x(t0),x(tf )) +

nx∑
k=1

np∑
i=1

ak,i · Sk,i(tf )2(11)

is minimized. With the help of the non-negative weights
ak,i this cost function can either be weakly or strongly
penalized by sensitivities. The greater ak,i the higher
the penalty and the higher the robustness of the solu-
tion. On the other hand, the smaller ak,i the less the ac-
cording sensitivity’s influence on the cost function and
hence the lower the robustness of the solution. Assum-
ing that the nominal solution is strictly global and unique
and the sensitivity Sk,i is not zero, the robust solution
cannot deliver a smaller nominal Mayer cost function
value, since the penalty terms are added and also min-
imized.

4. MODELLING

In this section, the models for the dynamic system of the
Apollo capsule (cf. Figure 3) including the equations of
motion, the aerodynamics, atmosphere and thermody-
namics are presented. The mass of the Apollo capsule
is m = 5900kg and has a nose radius of Rn = 4.595m.
The reference area for the determination of the lift and
drag of the shield is Sref = 12.8794m2.

Equations of Motion

The system is assumed to be a point mass model as
in [18]. Positional state and velocity dynamics are de-
scribed dependent on the angle of attack α and the
bank angle µ.

Lift and Drag Coefficient

The lift and drag coefficients CL and CD for the capsule
are modelled based on Newtonian impact theory in hy-
personic regions as a function of the angle of attack α
as in [19]:

CL = Cy cos(α)− Cx sin(α)(12)
CD = Cy sin(α) + Cx cos(α)(13)

α

Drag
Lift

Rn = 4.595m

d = 3.95m

V
Liftµ

FIGURE 3. Apollo capsule geometry [4, 17].

with the axial and normal force coefficients

Cx =
2

3
sin(θ)3(sin(α)2 − cos(α)2) + 2 cos(α)2 sin(θ)

(14)

Cy =
4

3
cos(α) sin(α) sin(θ)3(15)

where θ = 32.055◦ is the cone angle.

Air Density

The model of the air density ρ is an approximation of the
U.S. Standard Atmosphere 1976 [3] and describes the
air density as a function of the altitude up to 200km. It is
represented by an exponential function as follows [18]:

ρ(h) = exp

(
c1h

5 + c2h
4 + c3h

3 + c4h
2 + c5h+ c6

c7h3 + c8h2 + c9h+ c10

(16)

+ cos(d1h
d2 + d3)

d4
d5h+ d6

− e1 exp
(
e2(h− e3)2

))
For the coefficients c1,...,10, d1,...,6, e1,...,3 please refer to
Table 2.
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TAB. 2. Coefficients for density model.

c1 = 1.53225 · 10−10 d1 = 2.6294 · 10−1

c2 = −2.13594 · 10−8 d2 = 0.83
c3 = −2.81202 · 10−5 d3 = 3.7
c4 = 6.06600 · 10−3 d4 = 1.0 · 10−1

c5 = −3.46014 · 10−1 d5 = 1.5 · 10−2

c6 = 1.03970 d6 = 3.0 · 10−1

c7 = 0.0
c8 = 1.76969 · 10−4 e1 = −2.6 · 10−1

c9 = −3.80665 · 10−2 e2 = −5.0 · 10−3

c10 = 2.15211 e3 = −92.0

Thermal Model

The heat flux q̇ at the stagnation point of the capsule is
calculated as in [10] by

q̇(t) = Ke

√
ρ(h(t))

Rn
V (t)3,(17)

where Ke = 5.199111 × 10−5 (kg/m2)1/2 is an atmo-
sphere specific constant and Rn is the nose radius of
the vehicle.

5. APPLICATION TO REENTRY TRAJECTORIES

In this section, the reentry trajectory of an Apollo cap-
sule is optimized. First, the nominal problem without
uncertainties is solved and simulated under parameter
perturbations. Afterwards, high sensitivities are penal-
ized as described in section 3. In detail, the sensitivity of
the final velocity with respect to initial altitude and flight
path angle is reduced. Finally, the results are compared
and discussed.

5.1. Nominal Optimization Results

In the nominal optimization the aim is to minimize the
heat load at the stagnation point after reentry, hence

min
x,u

q(tf )

by finding optimal controls α ∈ [−21, 21] deg as well as
µ ∈ [−30, 30]deg. Furthermore, the rate of α is con-
strained to be in the interval [−2, 2]deg /s. Initial and
final boundary conditions are given in Table 3.
In this setting, the reentry starts in the lower earth orbit
at an altitude of 120km. The optimal trajectory is deter-
mined for a flight until an altitude of 30km and a velocity
of 1.735km/s is reached. The final value for the velocity
is chosen to be the final optimal velocity from a previ-
ous optimization step without the final boundary for the
state V . Since we are interested in the variation of the

TAB. 3. Initial and final boundaries. A dash (-) indicates
that no constraints are enforced.

State Symbol Unit t0 tf

Altitude h [km] 120 30

Velocity V [km/s] 7.7 1.735

Flight path angle γ [deg] −3 -

Course angle χ [deg] - -

Longitude λ [deg] - -

Latitude φ [deg] - -

Heat load q [kJ/m2] 0 -

final velocity w.r.t. the initial altitude and flight path an-
gle it is chosen to be a final boundary condition in the
nominal and robust optimization to be able to compare
the results. Furthermore, a path constraint on the load
factor −D

mgh
is imposed by the lower bound of −5. Here,

D is the drag and gh the gravitational acceleration de-
pendent on altitude.
In Figure 4 the optimal trajectories of the velocity, alti-
tude, flight path angle and heat load together with the
corresponding optimal controls α and µ are presented.
It is beneficial to fly with a flight path angle close to the
initial flight path angle in the upper layers of the atmo-
sphere. In this region the velocity is close to constant
and the heat load increases quickly. At an altitude of
around 50km, where the air starts to become denser,
the flight path angle decreases in order to use air resis-
tance to reduce velocity and hence to reduce the growth
of the heat load. Here, the heat load q(tf ) is 8246.62
kJ/m2.
Perturbations in the initial altitude and flight path angle
might occur due to measurement errors that can lead to
discrepancies in the real position and attitude and those
which are known to the system [4]. High variations in
the final velocity make the landing phase unpredictable
and might lead to an unsafe landing. Hence, we investi-
gate the variation of the final velocity with respect to the
initial altitude and flight path angle. The perturbations
of the initial altitude and flight path angle are assumed
to happen up to 1%, hence

h̃0 = h0(1 + ph), ph ∈ [−0.01, 0.01],(18)
γ̃0 = γ0(1 + pγ), pγ ∈ [−0.01, 0.01].(19)

In the simulation in Figure 5, we can see that for varia-
tions of the initial altitude and the flight path angle the
final velocity varies up to 563.5 km/s, which is 32.45%.
The sensitivities in this case are ∂V (tf )

∂h0
= 0.27447 and

∂V (tf )
∂γ0

= 361.4493.

Deutscher Luft- und Raumfahrtkongress 2019

6©2020



FIGURE 4. Nominal optimal trajectories for velocity V , altitude h, flight path angle γ, heat load q and controls α
and µ.

nominal solution

simulation

FIGURE 5. Simulation of the velocity history with nominal optimal controls for variations of initial altitude and flight
path angle up to 1%.

5.2. Robust Optimization Results

In order to reduce the variations in the final velocity de-
pendent on the initial altitude and flight path angle, a
robust trajectory via sensitivity penalty as described in
section 3 is conducted. The cost function to be mini-
mized now is

min
x,u

q(tf ) + a1

(
∂V (tf )

∂h0

)2

+ a2

(
∂V (tf )

∂γ0

)2

(20)

with the weights a1 = 3·104 and a2 = 3·10−3. Therefore,
four different methods are utilized:

• collocated forward sensitivities

• collocated adjoints
• shooted forward sensitivities
• shooted adjoints

The robust trajectories are presented in Figure 6. At
the beginning of the reentry, the nominal and the ro-
bust trajectories are similar until an altitude of around
75km. Then, in the robust trajectory the flight path be-
comes smaller in magnitude in order to reduce altitude
more slowly. Furthermore, the velocity is reduced more
slowly than in the nominal solution. The final heat load
is 9237.96kJ/m2 which is a rise of 12.02% in contrast to
the nominal solution.
In the simulated trajectories in Figure 7, we can see that
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nominal

collocated sensitivity

collocated adjoint

shooted sensitivity

shooted adjoint

FIGURE 6. Robust optimal trajectories for velocity V , altitude h, flight path angle γ, heat load q and controls α
and µ.

nominal solution

simulation

robust solution

simulation

nominal

robust

FIGURE 7. Simulation of the velocity trajectory with nominal and robust optimal controls for variation of initial
altitude and flight path angle up to 1%. The robust optimal controls reduce the variation in the final velocity.

with the robust controls the variation in V (tf ) for differ-
ent values of h0 and γ0 is less than with the nominal
controls. The final velocity now varies up to 302.5km/s,
which is 17.42%. Also, the sensitivity values are re-
duced to ∂V (tf )

∂h0
= 0.10328 and ∂V (tf )

∂γ0
= 266.8226. The

reduction of the sensitivities can also be observed in
Figure 8. Please note that the final values of the forward
sensitivities equal the initial values of the according ad-
joints as stated in (8). The cost function and sensitivity
values for each method are collected in Table 4.

Together with Figure 6 we can deduce that all four meth-
ods, collocated forward sensitivities and adjoints as well

as forward sensitivities and adjoints by single shooting,
deliver the same solution except for a small discrepancy
in the first 10s to 55s in the angle of attack between the
collocated and both the shooted forward sensitivities
and adjoints. This can be explained by the fact that the
system dynamics have to be fulfilled in order to deter-
mine their sensitivities. Generally, this is not the case at
the beginning of the optimization. Analytically, both the
forward sensitivity and adjoint method should deliver the
same solution since they both represent the same sen-
sitivity. However, for gradient based methods, it should
be noted that the forward sensitivity method might lead
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FIGURE 8. Forward sensitivities and adjoints over time.

TAB. 4. Nominal cost function values for q(tf ) and sensitivity values for all methods.

q(tf ) [kJ/m2] ∂V (tf )
∂h0

∂V (tf )
∂γ0

Nominal 8246.4 0.27447 361.4493
Collocated Sensitivity 9237.9581 0.10328 266.8226
Collocated Adjoint 9237.8828 0.10329 266.8222
Shooted Sensitivity 9238.02 0.10328 266.8085
Shooted Adjoint 9237.7887 0.1033 266.8351

to another local optimum than the adjoint method, since
they both are based on different differential equations
and hence result in different gradients.

6. CONCLUSION AND OUTLOOK

In this study a robust reentry trajectory of an Apollo cap-
sule is calculated with respect to minimal heating at the
stagnation point. Therefore, optimal control methods
based on full discretization and trapezoidal integration
are used. The robust optimal control method is based
on the introduction of a sensitivity penalty where sen-
sitivities of states with respect to uncertain parameters
are minimized together with the nominal cost function.
Two different methods to calculate the sensitivities are
compared, namely the forward sensitivity and the ad-
joint method. For each method, the sensitivities are in-
corporated into the optimal control problem first by col-
location and second by a hybrid method combining col-
location for states and shooting for sensitivities. The
resulting robust trajectories give rise to a reentry, where
the variance in the velocity after reentry and before the
landing phase is reduced when the assumed initial al-
titude and flight path angle are perturbed. The four
methods deliver the same results for sensitivity evalu-
ation and for robust optimal control. For this illustrative
example, the adjoint method has shown to be more effi-
cient than the forward sensitivity method, especially to-
gether with the collocation method. Further research

could be targeted towards an extended adjoint method,
where sensitivities via adjoints are calculated for the
whole time grid. Also, a problem with a larger set of
parameters could be investigated for the hybrid method
in order to determine the limitation of the collocated ad-
joints and the benefit of shooted adjoints. Furthermore,
the performance of the forward sensitivity and adjoint
method for the determination of sensitivities for multiple
states could be studied.
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