
A FRAMEWORK FOR APPLIED COMPONENT ZOOMING IN GAS
TURBINES

D. Woelki & D. Peitsch, Fachgebiet Luftfahrtantriebe, Institut für Luft- und Raumfahrt
Technische Universität Berlin, Marchstraße 12-14, 10587 Berlin, Deutschland

Abstract
Much of academic research on gas turbines is conducted at component level. Promising concepts such as
enhanced blade design or active flow control are often investigated on isolated domains, e.g. single
compressor stages. Possible interactions with adjacent components, such as effects on secondary power
and air provision or the thermodynamic cycle are rarely or just subsidiary considered. Nevertheless, the early
inclusion of those effects is crucial for a reliable assessment of novel concepts’ benefits. For example, the
reduction of aero engine component weight or the increase of turbo-component stage efficiency is intangible
regarding the quantified benefit on system level. This gap can be closed by a technique called component
zooming. Here, a gas turbine performance model representing the cycle and components basic interaction is
coupled with more detailed models which are capable of specific investigations on component level. This
paper presents a suitable architecture of frameworks for component zooming in general.
In order to maintain high applicability especially for academic purposes, focus is put on flexibility in manifold
sense: Adaptability to arbitrary concepts and zoomed components, expandability of available workflows,
expandability to new disciplines, exchangeability of used software (e.g. commercial or in-house) and
portability to common platforms. Various examples will demonstrate the capabilities of component zooming
performed with such a framework. The first case discusses zooming on the secondary air system (SAS) of
gas turbines. Another case demonstrates the coupling of engine performance with models for an initial
assessment of aero engine components weight reduction benefit, e. g. realized by tandem blades or flow
actuation in duct components. The resulting change in overall mass of the engine leads to basic, pragmatic
options for aircraft operators.

Keywords: component zooming, preliminary design, gas turbine performance

NOMENCLATURE
Δ [-] Difference
Π [-] Pressure Ratio
η [-] Efficiency
Alt [ft] Flight altitude
err [-] Error vector
i [-] Running variable
Ma [-] Mach number
n [-] Amount
p [Pa] Pressure
s [NM] Aircraft mission range
T [K] Temperature
t [min] Time
vTAS [kt] True air speed
w [kg/s] Mass flow
x [-] Guess vector

Indices:
CL Creep life
CR Cruise
date Current value
eng Engine
f Fuel
mat Blade material
mission Flight mission
h Hot gas
i Running variable
PSN Pre-swirl nozzle
ref Reference value
rel Relative value
SAS Secondary air flows

Abbreviations:
A Aircraft module
AFC Active flow control
C Correction model
CFD Computational fluid dynamics
CPU Central processing unit
CVC Constant volume combustion
DLR German Aerospace Center
E Evaluation model
File I/O File input/output writing and reading
G Geometry model
GUI Graphical user interface
HPC High pressure compressor
HPT High pressure turbine
IPSM Interface for performance and

secondary air system modeling
IRC Internet relay chat
LAN Local area network
LPT Low pressure turbine
N Network model
OEM Original equipment manufacturer
OP Operating point
OS Operating system
P Performance model
SAS Secondary air system
SND Swan neck duct
TOW Aircraft take-off weight
XML Extensible markup language

©2020 10.25967/490174

Deutscher Luft- und Raumfahrtkongress 2019
DocumentID: 490174

1

https://doi.org/10.25967/490174

1. INTRODUCTION
The demand for the development in gas turbine
technology is unbroken. Main drivers are today’s
ecological requirements and economical enhancements
with certain legal requirements and certification standards.
A frequent objective in gas turbine research is the
increase of gas turbine efficiency. This can be achieved
by novel cycles, integration of features and enhancements
on component level. Examples for these three options
might be pressure gain combustion, active flow control
(AFC) or blade profile optimization. The range of possible
measures is diverse and subject to manifold industrial and
academic research.
Increases in component efficiency and the common
increase of efficiency on system level may result in fuel
flow reduction and hence reduced operational costs. In
addition, the development is triggered by manufactural
aspects, life time optimization and weight reductions. The
latter is especially an objective for mobile applications of
gas turbines. Thus, the successful integration of novel
concepts must match a bunch of partly conflicting
objectives. This can be ensured by multi objective
optimization. Nevertheless, optimization on component
level only, i.e. isolated from the context of the entire
system, might still be insufficient: Interactions with
aerodynamically, mechanically or thermally connected
components must be considered. This usually results in
highly iterative processes with other component
departments.
Gas turbine performance is appropriate to represent the
entire system and hence serves often as central
discipline. Its inputs are best knowledge component
characteristics. Typical outputs are interface or overall
system quantities, e.g. inter-component mass flows,
temperatures, pressures or power offtakes and fuel flows.
However, gas turbine performance is not suitable for
detailed component design.
The need for final component matching is initially not
necessary for research on new concepts. Nevertheless,
academic research in particular tends to focus on
technological details, often without including effects at the
overall system level. This also applies to the assessment
of the actual benefit of concepts. For this reason, the
justification of research sometimes cannot be perceived
by the public. A suitable technique to counter this problem
is the so-called component zooming: coupling of a whole
system simulation such as gas turbine performance with
higher fidelity component models. In this way, component
zooming is closely related to conceptual pre-design.
However, the latter typically includes the interdisciplinary
design of all relevant components. In contrast, component
zooming tends to be limited to one component. A complex
redesign of other components is initially not intended.

1.1 Existing Solutions
For the purpose of preliminary design, different software
exists, e.g. the NASA code NPSS [1], the MTU Aero
Engines code MOPEDS [2] or the German Aerospace
Center (DLR) code GTlab [3]. A computer-aided solution
to facilitate and accelerate the iterative, multidisciplinary
component design is developed with the participation of
Rolls-Royce Deutschland in the research project VIT [4].
Existing solutions vary in different ways. Some software is
company’s in-house code and hence usually unavailable
for other research institutions. Licensable software may
not or only partially be extensible for specific purposes.
Some key features may also be overload for academic

research. For example, data management issues for the
exchange of boundary conditions between different
component departments such as described in [3] are vital
in the multidisciplinary design process of bigger
institutions or in companies. In university research, which
is conducted in small groups or even by one person only,
the resulting advantages are sometimes seen as
disadvantageous or inefficient due to the complexity.
All presented characteristics of existing solutions can lead
to a situation where the overall benefit assessment of
novel concepts leads to the quick implementation of tools
which are only suitable for studies on one specific
concept. Adaptation to modified problems can then be
difficult so that such tools are rarely recycled. Exemplary
reasons are hard coded parameters, deep embedded
interfaces to required simulation software or rigid, non-
expandable equation systems in the case of iterative
processes.
All in all, there is a dilemma between well-engineered,
complex commercial or industrial solutions on the one
hand and one-way solutions on the other, mostly
university side.

1.2 Objectives
This paper has three major objectives. The first is to
introduce the reasons to use component zooming in early
concept development phases. For this purpose,
exemplary concepts will be introduced (section 2.1).
When zooming is performed e.g. from gas turbine
performance to one or more components, different models
are applied. The resulting coupled model effectively
implements a workflow, which must manage the exchange
of each models boundary conditions and run simulations
in the right order, iteratively if required. The second
objective is therefore the formulation of elementary
workflow features and a guideline for the design of
workflows (section 2.2).
Third, important decisions will be discussed in order to
create a suitable framework which allows such workflows
to be run (section 3). A major topic will be flexibility in the
problem definition itself as well as in the use of different
simulation software.
In addition, the implementation of the framework IPSM
(interface for performance and secondary air system
modeling) is shortly presented (section 4), which both
serves as an example implementation of the before
discussed aspects and is the vehicle for studies on the
previously introduced concepts. The results of these
studies will be presented and discussed in section 5.

2. EXAMPLES FOR COMPONENT ZOOMING
The advantage to apply component zooming in gas
turbine research and development is various. The
subsequent examples are suitable to give first an
overview about different feasible approaches and second
to define the resulting requirements for workflow
implementing applications.

2.1 Introduction of Concepts
The subsequent examples focus on three different
components. The first concept aims for an off-design
optimized secondary air system (SAS), here applicable in
both stationary gas turbines and aero engines. The other
concepts primarily deal with new technologies in the swan
neck duct (SND) and high pressure compressor (HPC) of
common turbo fan engines. Figure 1 sketches a turbo fan

©2020

Deutscher Luft- und Raumfahrtkongress 2019

2

with integrated thrust nozzle. The considered components
are highlighted. Some axial sections of radial adjacent
components of the SND and HPC are also highlighted in
advance of some later introduced assumptions. It is worth
to note that the depicted components don’t match relative
sizes in real engines. For example, the HPC is commonly
longer than the SND.

Figure 1 Sketched turbo fan engine with focused
components and associated areas

2.1.1 Flexible Secondary Air Systems

The SAS is a subsystem, which provides secondary air for
different purposes such as turbine blade and disk cooling
or sealing against hot gas ingestion. Since most of
secondary air is typically extracted in rear compressor
stages, it is effectively bypassing the combustion process.
The return to the main flow in different sinks of the turbine
results in reduced turbine rotor work. In addition,
secondary air flows are the source of several other losses.
Especially cooling air flows with the highest share of
secondary air are usually designed to critical operating
points (OP) such as warm day take-off in aero engines or
warm day full/base load in common stationary gas
turbines. At OPs with demands for lower power output the
amount of cooling air frequently exceeds the
requirements. In contrast, other SAS requirements such
as sealing of bearing chambers against oil emission might
be critical at very low power output demand. Overall, the
design of secondary air flows must meet the requirements
of different operational conditions. Operation within the
off-design space will usually result in the local provision of
too much secondary air, resulting in avoidable losses. A
flexible SAS which is optimized to meet each SAS circuits
requirements in various OPs will reduce overall losses
and may reduce the fuel flow wf.
Nevertheless, the reduction of cooling air will result in
higher blade metal temperatures Tmat, even if held on an
acceptable level. The benefit of flexible SAS will hence
result in a trade-off assessment between e.g. fuel burn
and blade life reduction. This topic is also discussed in [5].
Finally, the zooming on the SAS as component requires
various models. The most important models are the gas
turbine performance model, which provides the SAS
sources and sinks boundary conditions on the one side,
and a SAS model suitable for investigations on modified
circuits on the other side. The consideration of changes in
Tmat and blade creep life tCL requires additional evaluation
models. All these models must be coupled in a workflow.

2.1.2 Aircraft Mission at HPC Modifications

Compressors in stationary gas turbines and HPCs in aero
engines are key components regarding overall engine
efficiency. The trend to higher overall compressor ratios is

unchanged. Nevertheless, axial compressors are also
subject to flow stability requirements. An increase of
compressor stage number or specific work per stage can
be addressed with multi-shaft design, enhanced
contouring, optimized aerofoils or AFC. Besides that,
shortening of the compressor is desired, since this
component contributes to approximately 7-14 % share of
total engine weight in common turbo fans [6]. Extra weight
of new integrated concepts must at least compensate the
penalty on aircraft operation by their benefits. The
importance of HPC weight gets even more important,
when surrounding components are considered as well: A
shortening of the component would additionally result in
reduced shaft, bypass duct and nacelle lengths.
As an example for novel concepts in axial compressors,
this paper focuses on possible advantages of so-called
tandem blades [7]. One intent of introducing tandem
blades is the increase of compressor stage work by highly
loaded blade rows still meeting the requirements of flow
stability. An example for a tandem blade configuration is
shown in Figure 2, here designed to achieve the same
flow deflection as in the associated conventional blade
row. The enhanced flow control by application of tandem
blades could allow for the reduction of blades per stage,
since the solidity can be increased.y

Figure 2 Conventional and tandem blade
configuration

Analysing the overall impact of tandem blades requires an
involvement of the aircraft and its flight mission. The
effectively changed overall aircraft weight will result in
either changed thrust requirements or a changed flight
mission trajectory caused by altered accelerations. Both
will result in a change of mission fuel burn, hence
requiring engine performance as integral discipline of this
topic. Compendious: Component zooming is applicable by
coupling gas turbine performance with models for mass
estimation, aircraft thrust demand and the flight mission
itself.

2.1.3 Aircraft Mission at Shortened Duct
Components

The SND is a critical duct component, which guides the
low pressure compressor’s outlet flow to the inlet of the
HPC, typically at a much smaller radius (Figure 3).

Figure 3 Principle of SND shortening,
challenging flow control

©2020

Deutscher Luft- und Raumfahrtkongress 2019

3

Besides of this S-shaped deflection the front struts of the
engine frame are crossing this duct, too. Even if the
benchmark of individual SND weight is given to only 3-4 %
of overall engine weight [6], surrounding components
could also be scaled down in their axial dimension as
described in sec. 2.1.2. Independent of the mass
reduction effect are further possible benefits regarding a
redesign of adjacent components. For example, a more
aggressive deflection towards the HPC could allow for a
design of the booster rear stages at higher radii, which
could increase specific work or efficiency.
The challenge of SND shortening – basically a disturbed
inflow of the HPC – as well as concepts to overcome this
problem by end wall contouring is described in [8].
Another field of interest is the introduction of active flow
control (AFC), e.g. realized with plasma actuators [9].
These plasma actuators are assumed to be lightweight
and less power consuming. If information on objected
component design and AFC is available, component
zooming is again suitable to estimate the expected overall
benefit.
This topic is basically familiar to the previously presented
HPC shortening. Furthermore, AFC is topic of research in
HPCs as well, but not emphasized in this paper.

2.2 Generation of Coupled Model Workflows

2.2.1 Basic Approach

The following describes the approach creating a workflow
of a coupled model for component zooming. It is not this
paper’s objective to introduce single models. For more
information about the applied disciplines and their typical
models refer to [10], [5] (flexible SAS) and [11] (aircraft
and flight mission model). It is also assumed that all
required models are available and can be run as
standalone models. The workflow definition just fixes their
order and interactions.
Dealing with models of different order, or in other words
dimensionality, is probably the major challenge in
component zooming. The interfaces between models may
be resolved in different ways. For example, gas turbine
performance commonly considers only a small, fixed
number of SAS sinks in the turbine. In the real engine,
there are manifold sinks, which are typically represented
in SAS network models by various axially and radially
distributed sinks. This requires conversion methods of
both sink boundary conditions (performance to SAS
network) and sink flow results (SAS network to
performance). Different approaches are available to
overcome this issue, e.g. correlations, inter-stage
characteristics or meanline models (e.g. [12]). The range
of possible conversion methods indicates that workflows
for the same problem can be implemented with different
models. In this sense, flexibility for later implementations
is desirable, too.
All models have to be arranged in a clear order, i.e.
primarily sequential structured. Where iterative processes
are required, those must be placed properly in the
sequence, opening a child sequence on a lower
embedded level. This means that the top level sequence
will pause at this point, call an iterator which repeats the
lower level sequence until convergence is reached and
finally continue on top level.
Regarding iterative processes, two different types can be
introduced:

1. Fixed-point iteration: Some matching procedures,
where involved models are feeding themselves
with new inputs are likely self-converging. This
allows no hysteresis and demands high
individual robustness of the simulations. In this
case, the iterator just requires the definition of
break criteria and will restart the iterated
sequence until one break criterion is reached.

2. Complex problems and also those integrating
simulations known to run not robust are not
guaranteed to reach convergence with simple
iterators. Replacing the iterator with an
optimization algorithm may be the choice, since
the algorithm is providing guess values for
defined input parameters, following an individual
approach in order to find convergence by
evolving these guesses. The nature of
optimization algorithms is of a different kind and
should be fit to the problem to be solved
iteratively. If an algorithm supports handling of
side condition violations, which might be in
general exceeding maximum or minimum values
of any parameter, there is also the chance to
treat robustness problems within the problem.

2.2.2 Coupling SAS with Gas Turbine Performance

Examples for workflows coupling SAS network models
with gas turbine performance models have been subject
of different publications, e.g. [13] referring the approach of
[14], further adapted in [5] and [10]. The latter two will now
be discussed in a scope, which focuses on the before
mentioned challenges, hence using some simplified form
of the workflows.
The very generic form of such a workflow is illustrated in
Figure 4. In the focus is the matching between a gas
turbine performance model (P) and a network model of
the SAS (N). As mentioned before, different approaches
exist for the conversion from the performance to the
network model (CP→N) and reverse (CN→P).

Figure 4 Rudimentary workflow for component
zooming on flexible SAS

The here presented workflow is very generic and its
adaptions to even different types of gas turbines will most
probably look a little different. This can be also seen when
comparing the workflows presented in [13] and [10].
Usually there will also be more than two correction models
C overall. For example:

©2020

Deutscher Luft- und Raumfahrtkongress 2019

4

- One CP→N model converts compressor bleed
pressures and temperatures from P to boundary
conditions of the sources in N

- Another CP→N model converts sink pressures to
sink boundaries in N

- The third CP→N provides a hot gas temperature
distribution within the turbine, which would be
required in case of local hot gas ingestions to the
disk wheel space

- The model CN→P summarizes secondary air flows
wSAS simulated in N in order to feed them to P

In the depicted case, the gas turbine performance model
would model three sinks wSAS which have to be matched
to the SAS network model flows summarized in CN→P.
Changed wSAS will result in an overall change of the gas
turbine performance at remaining OP boundary
conditions, hence changing source/sink pressures and
temperatures. This part of the workflow is iterated until the
errors between set mass flows in P and associated flows
in N fall below a threshold value. The lower this threshold,
the more accurate is the matching of the performance and
network model.
In the end, the second, sequential part of the workflow
evaluates certain requirements. In the here presented
example for studies in aero engines, OP holding times in
a reference flight mission are calculated (Emission), blade
material temperatures approximated (ETmat) and with the
results of both the current OP’s blade creep life is
calculated (ECL), see also [5]. The entire workflow may be
repeated for several OPs considered in the reference
flight mission.
What can be clearly seen in this example is the need for
the introduced features, namely sequential arrangements
combined with iterators and optionally the easy support of
multiple workflow simulations at various boundary
condition (OPs). The sketched workflow can only describe
the structural arrangement of involved models. The
workflow’s structure is mostly mandatory. Here, only
Emission and ETmat could be switched in place, because they
are independent from each other and only providing ECL
with inputs. Even if this generic workflow looks small and
straight forward, the number of inter-model parameter
exchanges can easily reach some hundred. In this matter,
it is important that the parameter exchange is not bound
to certain sub-workflows. For example, the creep life
estimation ECL requires the shaft speed from P for the
determination of current centrifugal stresses, blade
coolant temperatures from N and hot gas temperatures
from CP→N.

2.2.3 Aircraft Mission at HPC Modifications

New technologies in HPCs and turbo components can be
initially investigated at component level. In many cases
there will be focus on either loss reduction at maintained
specific work or vice versa. Changed outlet conditions will
affect components downstream. This will finally require a
re-matching of the overall cycle. This is a typical task for
preliminary design with gas turbine performance as the
central discipline.
The here discussed introduction of tandem blades will not
consider aerodynamics to hold down the complexity of
this example. It is rather assumed that the application of
tandem blades matches the performance of conventional
blades. The benefit is assumed only to result in either
stage or blade reduction. Recent studies such as [7] deal
with stator tandem vanes. For this reason, the subsequent
use of the term tandem blade refers to stator vanes only.
Engine mass changes have no practical relevance for the

engine cycle when operating in steady state OPs. The
effect of mass compensation addresses the aircraft
mission and, if changes are significant, the aircraft design.
Thus, the question of engine weight reduction benefit
requires component zooming, which includes aircraft and
flight mission models. The final question can be: How can
an engine weight reduction decrease the mission fuel
burn mf,mission?
Important to the workflow design are the constraints which
are formulated for the engine operation. There are two
options:

1. The engines are considered to deliver defined
thrust in order to match the flight mission’s
current OP target quantities, e.g. flight altitude or
velocity, with the relative low pressure shaft
speed or aircraft lift coefficient as control
parameters, see [11]. This respects flight mission
trajectory changes during phases of aircraft
acceleration and deceleration.

2. The flight mission trajectory is held constant. This
requires matching of each individual OP’s thrust
to the aircraft’s current operational requirements.

The second option comes with a relatively simple
assumption, but is chosen for the here presented scenario
for the purpose of clarity. Since the flight trajectory and
hence the aircraft OPs are fixed to the reference case –
conventional instead of tandem blades –, the mission
model Emission is not required to be iterated. It is arranged
to be the initial model within the workflow. The definition of
the here used long range mission as well as applied
aircraft masses can be found in the appendix, Table 1.
The workflow for the here discussed concept studies is
depicted in Figure 5.

Figure 5 Workflow for engine mass effect on
aircraft mission

Every investigated concept requires the determination of
the change in aircraft operational empty weight, which is
assumed to be the change in the weight of aero engines
Δmeng only. This is the difference of calculated masses in
the geometry model Geng,ref of the reference and the
current concept Geng,date. In both models G an engine part
weight method is applied which is inspired by feature
based preliminary component design as presented in [15].
This model includes a detailed geometrical representation
of all relevant engine components, which are subdivided
to part and even sub-part level. This allows the scaling of
individual parts in order to derive mass changes at first
order. In predesign, such models would be extended with
e.g. mechanics models in order to ensure durability to
stresses. This is neglected in the here presented studies.
The model Geng,date is rather stretching the vane geometry

©2020

Deutscher Luft- und Raumfahrtkongress 2019

5

as well as associated, radial adjacent parts in axial
direction. This is exemplary sketched in Figure 6:
Compressor stage shortening would include
blades/vanes, associated casing structures, disk including
drive arms and annulus hub wall. In addition, the low
pressure shaft as well as bypass duct and nacelle would
be affected – these components are not depicted here.

Figure 6 Principle of feature based HPC
geometry model including axial segmentation to
key parts (dashed lines)

Downstream in the workflow, two different types of
iterative processes are embedded, see Figure 5. The
middle part organizes the iteration over different OPs.
Their ambient and flight conditions as well as individual
range and holding times have been calculated in Emission.
Each OP’s individual fuel burn mf,OP,i is unknown. For this
purpose, the aircraft’s thrust demand is derived from
aircraft force balance according to [11]. The thrust
demand is hence a function of lift, drag and weight forces.
The applied polar curve relating lift and drag is unchanged
and there is hence no detailed modeling of any changes
in the aircraft’s aerodynamics. The weight forces are
calculated with the overall aircraft mass as unified point
mass of all considered part weights.
The thrust result per engine from model A is set as target
parameter to the engine performance model P with
ambient conditions provided by the flight mission model.
The current OP’s fuel flow wf,OP,i is integrated over holding
time tOP,i. The result of the model sequence at the right
hand side is mf,OP,i. However, this quantity as well as the
entire amount of fuel required in later OPs is an input to A,
since it is one term of the aircraft’s weight force. For this
reason, an optimization algorithm or simple iterator is
applied, providing a guess of mf,OP,i, which is added in
Σmf,date to the fuel burn of all later flight segments. For this
reason, the OP placed in the intermediate level of the
workflow starts with the last OP in order to perform the
matching for all OPs in reverse order. Finally, each OP’s
fuel burn is added to the entire mission’s fuel burn. This
workflow is repeated for different concepts.
The aircraft modeled in A is based on a common narrow
body aircraft presented in [11]. The same applies for the
engine in model P. Compared to the coupled aircraft-
mission-engine model presented in [11], the here applied
workflow connects Emission, A and P as independent
models, whereas the reference model just integrates the
engine performance with lookup tables. In other words,
the reference case, implemented in Matlab-Simulink, is a
tailor made solution, optimized to computational
performance.

2.2.4 Aircraft Mission at Shortened SND

This scenario is almost identical to the one presented in
sec. 2.2.3. It uses the same base work flow. The only
difference is the simulation within Geng,date, which accounts
for other geometrical changes. These are namely the
SND component instead of the HPC and associated parts
of the LP shaft, bypass duct and nacelle. It has to be
noted that the areas highlighted in Figure 1 will not
mandatorily reflect the parts to be modified in the objected
studies. For example, the LP shaft segment in the axial
region of the SND has some structural features, which
cannot be directly scaled with the SND component. A
shortening of the SND would most probably result in the
adequate reduction of LP shaft length located more
towards the middle of the shaft where no structural
reinforcements can be found.

2.2.5 Considerations Regarding Models of Higher
Order

For both HPC and SND modifications, the presented
workflows do not consider aerodynamics as key discipline
of the presented concepts. Fundamental assumptions are
that the conceptual measures maintain the performance
of their reference components. However, component
zooming is intended to be free for extension with
additional models. The additional integration of HPC
meanline is advisable and even stationary CFD duct
models are feasible. The extension of workflows as well
as the type of integrated models always require the
consideration of following questions:

- What is the benefit of probable accuracy
enhancement regarding the overall quality of the
concept studies to be carried out?

- How does a model from higher order increase
the workflow’s computational time? Will the
model be a bottleneck?

- Is the originally zoomed component the overall
workflow’s bottleneck? If not, is the
computational expense of large bottlenecks
compatible with the requirements of the
conducted concept studies?

- Is it possible to resolve the interfaces between
models of different orders in a reasonable way?

3. FRAMEWORK ARCHITECTURE

The design of a framework architecture applicable for
arbitrary use cases of component zooming, requires some
decisions to be made at an early design phase.
Programming a reusable and extendable framework might
come along with relatively high expenditure in the
beginning of this process, but will allow for very quick
extensions with e.g. new disciplines or model approaches
at a later point of time. Subsequently, such a framework
will often be ready for simulations later than very tailor-
made solutions. However, the adaptation of those tailor-
made solutions to other cases is mostly relatively complex
or even impossible and therefore often requires the
development of a new solution. This section introduces
those aspects, which are recommended to be considered
from the beginning of the design process on.

3.1 Level of Model Integration
First to be discussed is the basic nature of concept
studies to be conducted with the framework. In numerical
gas turbine research, there are two major domains:

©2020

Deutscher Luft- und Raumfahrtkongress 2019

6

1. Novel concepts on component level: These
demand for benefit assessments on the overall
system, usually the gas turbine. A detailed
component model is available and formally
requires the extension with gas turbine
performance.

2. Concepts on system level, e.g. novel cycles: The
gas turbine performance model is available and
subject to optimization studies. In order to
increase the significance of the study results, key
requirements are included via additional low-
dimensional models. An example could be the
estimation of turbine vane and blade
temperatures as limiters, i.e. side conditions in
the optimization.

In both cases, gas turbine performance is a key discipline.
However, there is an additional use case of component
zooming that doesn’t aim for evaluations on whole system
level:

3. Novel concepts on sub-component or part level:
An example could be studies on overall
compressor performance reflected by a meanline
model, but coupled with a detailed high order
model such as 3D CFD of a single stage.

All these three cases emphasize that the framework must
allow for extremely flexible, arbitrary workflows. In
consequence, the probably most important decision is
whether the framework is supposed to be an independent
application or not.
Regarding flexibility, the extension of e.g. a gas turbine
performance code by integrating interfaces to potential
other models should be seen as disadvantage regarding
both arbitrary workflows and software integration. Another
conclusion is that the framework should essentially
contain a core process that connects the individual
models with each other and organizes their data
exchange.

3.2 Different Disciplines
Component zooming requires the capability to couple
models from different disciplines with each other. The
most obvious disciplines are gas turbine performance,
aerodynamics (e.g. meanline, 3D CFD), network models
(e.g. SAS or arbitrary pipe systems) or optimization itself.
Depending on the kind of researched problem or modeling
depth, mechanics and thermo-mechanics (e.g. FEM),
aero elasticity and weight assessment might be necessary
as well.
The core process of the framework must support all these
disciplines by provision of interfaces, which are designed
to enable the coupling of state of the art software. For this
reason, all subsequent uses of the term discipline will
refer to less physical disciplines than the nature of
models, e.g. performance, network, meanline or CFD.
In addition, a totally generic interface is recommended to
support any other disciplines, which are not yet
considered.

3.3 Different Disciplines Implementations
There is usually a variety of software available, which
features the same discipline. In the following, such
software will be described as implementation of a specific
discipline. Not exclusive examples for different
implementations of some disciplines are e.g.

- performance: GTlab-Performance (in-house code
DLR, conditionally licensable), Mars (in-house
code Rolls-Royce Deutschland),

- network: Flowmaster V7, Flownex SE (both
commercial),

- CFD: Ansys CFX (commercial), Numeca
(commercial), OpenFOAM (open source).

These examples show some fundamental challenges.
One is the availability of the implementation. Free and
commercial software is basically available everywhere. In
contrast, in-house codes of gas turbine OEMs (original
equipment manufacturer) are barely available at other
institutions or their use is restricted to certain projects. In
other words: The specification of an entire discipline to
one implementation only tends to be insufficient, since
future work could require the use of another
implementation.
Another challenge is the coupling of the implementation to
the core process. Open source software allows the direct
integration of an interface on side of the implementation,
realized via libraries. Commercial software optionally
provides an API (application programming interface). If
not, it is at least required to provide possibilities for batch
processing, which is most popular realized by pre-
processing, running and post-processing the software via
command-line interpreters.
Finally, implementations may differ in the nature and
scope of their modeling and customization for specific
applications.
In consequence, the interfaces of the core process to on
discipline must also be generic to support different,
sometimes unknown implementations.

3.4 Integration of Implementations and their
Computational Performance

All implementations need an interface in order to be
coupled to the core process. This may also be a specific
interface, which communicates through one of the
previously introduced discipline interfaces. Talking about
specific interfaces: The introduced ways for integration –
either via library or bash process – have different benefits
and disadvantages also worth to be considered.
A bash process is commonly the easiest and fastest way
to address a software as long as it offers file input reading
and file output generation. The framework would then
require the implementation of a specific interface, which
exports new input to the appropriate format and read
generated output to be converted for the core process.
Common disadvantages are the relatively computational
time consuming input/output writing and reading (file I/O)
as well as the continuous reinitialization of the software in
iterative processes. Furthermore, not every software
supports bash processing in an effective way. An example
is software, which is optimized to operate on a database
service instead of fie I/O.
The usually better choice is the direct coupling by loading
the implementation as library to the framework at runtime.
This way also requires the implementation of a specific
interface, which initializes the model once and manages
the data exchange with the core process via objects. In
this scenario, file I/O is usually not required.
A special case is embedding the implementation as
module directly into the framework, which is only possible,
if the source code of the framework is available.
The modular plugging of any implementation’s library may
be challenging in following terms:

- The provided API or open source implementation
is written in another programming language: This
can be solved by intermediate wrapper libraries
with the purpose to transform the data types
between the languages.

©2020

Deutscher Luft- und Raumfahrtkongress 2019

7

- The implementation runs on another operating
system (OS) or in another process architecture
(e.g. 32- vs. 64-bit model): This requires inter-
process communication, which can also be
realized by wrapper libraries. These are acting as
client application on the framework side and host
application on the implementation side. In fact,
host-client services can solve almost every
problem regarding the communication between
processes, but are relatively complex solutions.

3.5 Performance of Core Process
Codes generated in academic research projects tend not
to be effectively written from the point of view of computer
science. It is important to note that this is an acceptable
matter, since research projects are time limited and must
focus on the scientific contents. Nevertheless, both
implementations and framework itself should be designed
to run studies in a reasonable frame of time. When
dealing with component zooming, the question arises, if
the framework must be considered as critical factor
regarding computational time.
In fact, this matter highly depends on the kind of workflow
and even more important the implementations used within
the workflow. Some disciplines in general tend to be
consuming much computational time, e.g. 2D/3D CFD. In
contrast, gas turbine performance is originally designed to
run fast on a specific set of boundary conditions. Thus the
order of the model is the first indicator to define
bottlenecks in the workflow. Besides there are other
characteristics indicating bottlenecks, e.g. an
implementation’s internal solver performance and the
already introduced data exchange with the core process.
Overall, typical implementations should be rather
considered as issues regarding computational
performance than the framework itself. Beyond that it is
more beneficial to identify the actual bottlenecks and put
effort into their performance enhancements, if possible.

3.6 Portability
Another important issue is the likely portability of the
framework to other operating systems. This might be
required because of following reasons:

- Different institutions or companies willing to work
with the framework might have different OS
defined as standard.

- The same might apply to different departments
within one institution or the freedom of
employees to choose the OS.

- Some machines in one institution might work on
different OS. A prominent example is Windows
as OS of employees’ desktop computers and a
computer cluster operating on a Unix derivate.

- Available implementations might be compiled for
certain OS or process architectures. A
recompilation is not possible at the institutions
site. This also frequently applies for commercial
software.

This can be solved by implementing the framework itself
in a way that allows the portability to other OS. The choice
of programming language is important in this matter.
Unfortunately, it is not possible to resolve this problem
completely. Possible restrictions can be resolved by the
use of virtual machines or once again host-client services.
It is obligatory that the topic of portability doesn’t solely
apply to the development of the framework, but also to the
development of any associated implementation.

3.7 Parallelization, Cluster Operation and
Remote Job Distribution

Broad concept studies can require a lot of computational
resources. Where already standalone gas turbine
performance studies may be a candidate for operation on
computer clusters, workflows including models of higher
order with the need of inner matching procedures are
consuming even more computational time.
A popular used approach enhancing the performance of
used computational resources is parallelization, realized
by multi-threading: Parts of the workflow or the simulation
in general are split into independent problems in order to
assign them to individual central processing unit (CPU)
cores. Branching the workflow and reasonable merging of
threads at their end is a complex affair that can, in the
worst case, increase the cumulated CPU time.
Looking at the exemplary workflows presented in sec. 2.2,
there is only little potential for branching them. Best
options are provided in iterative processes. If such loops
are controlled by optimization algorithms which include
independent function evaluations, multi-threading is an
option. This is e.g. the case by application of evolutionary
algorithms, in which broad populations are evaluated and
results are merged in the creation of the next generation.
Another example are gradient algorithms when evaluating
the Jacobi matrix. Another option would be the
parallelization of different OPs. However, this is not
applicable in the workflows presented in sec. 2.2.3-2.2.4,
since the results of OPs at the beginning of the flight
mission depend on results in later OPs: The amount of
fuel mass required in later mission segments affects the
thrust demand of the current OP, but not vice versa.
Overall, typical workflows for component zooming are
more or less sequential with only embedded loops, which
are typically sequential themselves. For this reason, a
parallelization is only a minor business case when
designing the framework. In contrast, some
implementations may benefit from parallelization. Best
examples are commercial FEM and CFD codes, which are
commonly computed for effective multi-threading.
If a workflow supports multi-threading, it tends to be
running effectively on a computer cluster, too. But even if
parallelization is not considered, cluster operation might
be an issue regarding the parallel, independent simulation
of workflows on either different OPs such as suggested in
sec. 2.2.2 or on any concept study dealing with different,
independent geometries such as applying for both the
flexible SAS and aircraft mission vs. engine mass
assessments. However, this type of parallelization doesn’t
need multi-threading, but just running multiple instances
of the framework. Then, the requirements of the
framework would be limited to the issues discussed in
sec. 3.4 and 3.6.
Even if there might be justification to run workflows on a
computer cluster, it might not always be a reasonable
solution. There might be conflicts with departments
running software, which is highly optimized for cluster
operation, e.g. again CFD. This dispute can be avoided by
a relatively simple alternative: remote job distribution,
which became especially popular with the SETI@home
project with the publication of the software BOINC [16].
The implementation of a remote job capability is relatively
simple, if it is aimed to be realized in a trustworthy
environment, namely the institution’s local area network
(LAN). Everything required is a thin client-host service,
which allows for the submission of rudimental prompts
such as load, run or stop a simulation, and another

©2020

Deutscher Luft- und Raumfahrtkongress 2019

8

service, which allows the update of new workflow input
files and the collection of results. Assuming the framework
and all required implementations to be installed on a
remote client desktop computer and ramping up after
system start, it can be an effective solution regarding
computational resources. E.g. the evaluation of
computational resources at desktop computers at the
Chair for Aero Engines, TU Berlin showed high shares of
operation at CPU loads below (1/nCPU), with nCPU defining
the number of cores located on the main processor. A
significant deviation has arisen only for computers
frequently used for simulations with 3D CFD models.
However, remote job distribution should only be seen as
feature, but never as requirement for a new framework.

3.8 Framework Integration to Parental
Processes

The very first question discussed the integration level with
some good arguments to design the framework as
independent application with all required simulations
plugged in. If choosing this way, every end-user should
understand the benefits of this approach and hence
respect that decision. In other words: It should never be
the intent to plug the framework itself as external service
to another simulation.
However, there might still be one reasonable situation
providing an interface to plug the framework to an external
process: Making two different frameworks interact with
each other. For this purpose, it is advisable to provide at
least one way to run the framework as batch process.

3.9 A Word About GUI Programming
Graphical user interfaces (GUI) can support the engineer
e.g. by setting up workflows, checking simulation outputs
at runtime and review errors. Especially for users who are
not familiar with a software, they show advantages. On
the other hand, daily users sometimes prefer the manual
configuration of projects. A good example of this are
common performance codes, which tend to offer only very
rudimentary GUIs.
Since GUI programming can also be time-consuming,
because usability requires high robustness, it should be
prioritized rather low for such a framework. However, the
integration of GUI features should be discussed from time
to time as the complexity of a program grows. This might
especially apply for the academic area, when the
framework is considered to be used in teaching or
scientific staff is frequently changing.

4. IMPLEMENTATION OF IPSM

This section will shortly describe, how the before
formulated questions have been answered by
implementing the framework IPSM, which has been
mostly developed in the scope of the framework AG Turbo
and which was introductory presented in [13]. It is also
intended to give suggestions for the application of
techniques, which are more or less available platform and
programming language independent.

4.1 Choice of Programming Language
The first decision has been the choice of an object
oriented programming language because of their
universally known benefits, most of all class inheritance
facilitating the recycling of code and support later

extensions. Further, a relatively modern and common
language should be chosen such as C++, C# or Java.
Regarding platform portability, C++ and Java are originally
suited with support of different, common OS. In contrast
C# as .NET programming language was primarily
designed for Microsoft Windows OS, even if there are
different projects aiming for a more general support on
other platforms.
Finally, Java was chosen as major programming language
for IPSM. However, C++ is also evident for a proper
framework implementation and may generally provide a
higher flexibility to enhance the computational
performance of the framework. But as stated in sec. 3.5,
the framework is not considered to be a bottleneck. In the
end, this paper won’t discuss advantages and
disadvantages of these two programming languages –
both are suitable. At least it should be clarified that such
languages for the here presented purpose are preferable
to implementations in e.g. VBA, see also [17].

4.2 Core Process and Parameter Exchange
The fundamentals of the core process design have been
published in [13], but will be covered due to extensions in
the meantime. The framework’s entire architecture is
organized in a modular way, where the core process itself,
the individual generic interfaces of each discipline and
different auxiliary tools are stored in various Java libraries.
These libraries are connected with each other as plugins,
forming the entire framework application. This is depicted
in Figure 7 with gas turbine performance, network and an
arbitrary additional discipline, specified by each one
implementation. The direction of edge arrows defines the
dependency of plugins. For example, all modules depend
on the auxiliary modules and the specific implementation
interfaces always inherit certain classes from its
associated generic discipline interfaces. The latter are
registered at the core process, so that it can communicate
with these interfaces. Indeed, the core process doesn’t
have to know about the specific implementations behind
the generic discipline interfaces: These are resolved at
runtime by using a technique in Java called instantiation
via so-called META-INF services. In this way, it is also
possible to provide the framework to a third party ‘as is’,
still allowing the third party to attach own implementations
to the framework without the need of recompiling it.
Comparing Figure 7 with the original from [13], the
changed hierarchy of dependencies becomes clear – the
former structure didn’t allow the independent integration of
third party implementations.

Figure 7 Modular architecture of IPSM, extended
from [13]

©2020

Deutscher Luft- und Raumfahrtkongress 2019

9

Figure 8 demonstrates the basic implementation of
workflows, which are combined of following key features:

- Modules: Each module is the computational
representation of usually one model. The kind of
model is arbitrary, both regarding its discipline as
well as its complexity. A module can basically
represent the 3D CFD model of an entire
component or just a scaling equation of a certain,
single parameter.

- Process chains: Common modules are arranged
in their sequential order in process chains.
Process chains itself can be handled as common
modules, too.

- Optimization modules: Suited with the same base
properties as common modules, they are
primarily representing optimization as discipline.
A special feature is that the optimization is
performed on a problem, which must be
represented by a process chain. The simulation
run of an optimization module hence opens an
embedded loop, which is iterated until user-
defined break criteria are reached.

- Operating points: In the scope of the workflow,
OP means the run of the entire workflow or a part
of it under a certain set of input parameters.
These might be associated to e.g. different
boundary conditions, but may in principle also
represent changed geometries or even solver
settings. Operating points may be placed on the
very top level – hence repeating the entire
project several times – or on the level of any
process chain. The latter allows for multi OP
studies as e.g. required by the workflows
presented in sec. 2.2.3-2.2.4.

- Constraints: In the context of the core process,
the term constraint refers to a parameter
exchanged between modules. The evaluation of
each module is managed by the core process.
This includes one initialization while loading the
workflow and three typical steps at runtime. The
first is preprocessing by means of transferring
new input values registered at a central
constraint map to the module. This is followed by
the simulation run at current inputs. Result
parameters registered in a workflow’s definition
file are extracted and stored to the central
constraint map, where they are available for the
preprocessing of other modules. The definition of
constraints is not bound to any workflow level so
that modules from embedded modules may
interchange parameters with modules in other
process chains and even with OP definitions.

Figure 8 Principle of an IPSM workflow with all
available key features, extended from [13]

The implementation of these five features is sufficient to
support nearly arbitrary workflows. Even the here
implemented feature of running IPSM as slave in external
workflows (see sec. 3.8), not to be emphasized here in
detail, integrates the external process as common
workflow module.
The workflow itself is defined in a small set of XML-files.
XML (extensible markup language) is a file standard,
organizing data in tree structures. All IPSM input and most
output files are using this format, which facilitates usability
and is relatively robust at parsing. Workflow input files are

- one project file defining the entry point and top
level OPs,

- each one process chain definition file including
the specifically included modules in their correct
order and

- one overall file with the definition of all
constraints.

Extension of available workflows is straight forward, since
additional modules may be inserted to process chain
definitions by adding XML-elements declaring the new
module’s discipline, implementation and fundamental
information such as the location of required input or
generated output files. In this way, it is also easy to switch
between different implementations by just updating these
entries.
Considering the constraint definition, the most important
entries are, which unique module is acting as provider of
the constraint’s value and which are the modules
receiving updated values as new inputs. Since both inputs
and outputs as well as their transfer through the specific
implementation interfaces may be arranged in total
different ways, the parameters to be addressed as
inputs/outputs must be declared with a so-called link. This
link is effectively a string, which must be parsed in the
specific implementation interfaces, usually including a
trace e.g. to the targeted component, part and finally the
parameter description on side of the implementation.
When switching the implementation, these links must be
adjusted as well. This might be overcome in future
versions by naming conventions for all implementations of
a discipline. This is in fact an optional requirement, which
solutions like GTlab already support due to their strict
necessity in collaboration of different departments.

4.3 Interface Example: The Generic Discipline
The direct communication between the core process and
all generic discipline interfaces is hard integrated in the
core process plugin and is effectively not of interest for
third party developers, who want to extend the framework
with a new implementation. Coding the specific
implementation interface requires a dependency setting of
the most appropriate discipline interface or in worst case
the generic discipline’s interface. The latter is described in
this subsection referring to the most important, not
exclusive methods to be implemented by the developer.
This gives a good inside of what to be considered when
creating a similar framework on its own. The prefix of each
method declares its return type. Boolean return values
always indicate the success of the method’s intent.

- boolean setSetup(IDiscSettings)
This method hands over a prepared,
standardized object from an IPSM specific type
called “IDiscSettings” including information about
the represented model’s configuration, e.g.
location of input and output files. All of this is
information previously read from the associated
process chain definition file.

©2020

Deutscher Luft- und Raumfahrtkongress 2019

10

- boolean initInstance()
This performs the rudimental initialization of the
module, which might contain loading a dynamic
link library or starting the application.

- boolean setProject()
Initializes the “real” model on side of the
implementation, e.g. loading a network model
defined by contents of the configuration object
from the data base.

- boolean editProject(ITreeStructure)
Represents the preprocessing method of the
interface according to the depictions in Figure 8.
The object from type “ITreeStructure” is a
standardized object, which represents an XML-
tree – here containing the links to the input
parameters and the new value of each.
Documented classes implementing the Java
interface “ITreeStructure” are accessible for the
developer and contained in the auxiliary plugins.
It is also the type of data structure evaluated and
generated by the core process.

- boolean runSimulation()
Performs the simulation on the preset model
under the current input conditions.

- int getNSI()
Returns the so-called numerical status indicator
(NSI) of the last simulation run, which is a four-
digit number. It represents a return code, which
can be used to rate the overall validity of results
and partly trace errors. The specific
implementation interface or the implementation
itself should define those return values in
accordance to the standards defined in [18].

- ITreeStructure getResultParse()
Returns – depending on the implementation – all
or partial results. Hence that method is
responsible for the module’s postprocessing. The
specific implementation interface must transfer
the results to the standardized XML-tree
structure from type “ITreeStructure”. Contained
are the available output parameters and its
values, where the XML-tree reflects the links to
be used when applying those parameters as
constraint value providers.

These are the methods regarded to be required for any
implementation working on any framework. Additional
operations are usually very specific and hence can be
ignited within one of these methods. In IPSM, technical
spoken, the developer implements a Java interface,
effectively the pendant to the implementation of virtual
methods in C++.

4.4 Remote Job Distribution and Control
The remote job distribution and control is realized with the
provision of two network clients. One of them is a simple
IRC client (internet relay chat), which receives messages
from a channel logged to. These messages are parsed by
an interpreter for certain keywords and forwarding
identified commands by calling certain methods of the
core process. This includes e.g. loading, running or
stopping of workflows or sending feedbacks on specific
workflow or module states. The major advantages of using
the IRC protocol are that the protocol is compact, the host
doesn’t need to be implemented itself, since various hosts
are yet existing, and even the remote control from any
arbitrary platform is possible, which provides an IRC client
software, e.g. smartphones, too. In order to avoid
unwanted operation of the remote control, different

authorization requests are integrated in this IRC client.
The data exchange for the configuration of remote jobs as
well as the collection of results is realized via a purposely
independent, separate client. This client is bound to LAN
operation and equipped with a relatively strict security
concept, which e.g. only allows communication between
fixed defined network addresses.

5. CONCEPT STUDIES

5.1 Coupling Secondary Air System Modeling
with Engine Performance
The workflows and some results for flexible SAS
approaches were presented in [5] (aero engine) and [10]
(stationary gas turbine). New results from ongoing
concept studies are not in the focus of this subsection.
Although, both cases are suitable for demonstrating the
advantages of the flexibly designed framework.

5.1.1 Switching of Implementations

In case of the aero engine application, the originally
applied implementation of the discipline performance has
been GTlab-Performance. In a later phase, this tool has
been exchanged by a customized library of the industrial
partner’s in-house performance code, including the
reference engine’s original model as hard coded version.
Performance code input and output parameters are
relatively well standardized. For this purpose, the generic
discipline interface of performance has been extended
with constraint link interpreters, which allow the use of
standardized links to be translated in each implementation
interface. In this way, switching between performance
implementations almost only requires to change few
entries of the module definition within the associated
process chain definition file.
Another example is the network discipline, originally
implemented with Flowmaster V7, version 7.9.3 (software
A). The SAS network model is subject to problems
regarding solver robustness, both in the coupled model of
the aero engine and the stationary gas turbine. In the
latter case, there is an appropriate network model existing
for Flownex SE, version 8.9 (software B), which showed
comparatively better robustness. In consequence, the
implementation was switched for the studies presented in
[10]. This required in addition to the module definition
some manual changes of constraint links. A small set of
constraints had to be redefined because of minor general
differences in the network model setups. The latter can’t
be finally avoided, but are low, the more similar the model
setup of two implementations is. Most important: All
changes had to be done in workflow definition files
presented in sec. 4.2, hence without the need of any code
changes. However, it is trivial that implementation
switching always requires the specific implementation
interface to be coded or provided once before.
Another advantage of adapting the workflow of the
stationary gas turbine model to a more robust overall
version allows for additional enhancements. The two
different types of iterative processes – simple iterator and
optimization algorithm – have been introduced in sec.
2.2.1. Previously, the robustness problems required the
application of an optimization algorithm. Expecting the
alternative SAS network model in software B to run
robust, the simple iterator has been selected for
subsequent studies. In IPSM, the simple iterator is
technically an optimization algorithm, too. The difference

©2020

Deutscher Luft- und Raumfahrtkongress 2019

11

is that it doesn’t provide guess values on its own, but can
simply forward the new derived secondary mass flows as
new input to the performance model. This approach is
valid for that type of workflow. This basically self-
converging process is beneficial in terms of computational
time – or being more precise: less iterative steps.
This exercise also provides the following reverse
conclusion: The applicability of a theoretically self-
converging iterative process should always demand for
the possibility, to be controlled by an optimization
algorithm as well. This must be considered both when
setting up the workflow and deciding for or programming a
framework. Models may run robust in a certain, well
known scope, e.g. at design point conditions, but are
sometimes not known to run problem free in other OPs
are with certain geometry changes.
Figure 9 highlights the changes made in the workflow for
flexible SAS studies in the stationary gas turbine
presented in [10]. Also included is a plot demonstrating,
how the overall simulation time can be accelerated. It
includes the optimization algorithm’s and simple iterator’s
convergence progress in the objective function value fcn
over function evaluations, hence iterations.

1,0E-05

1,0E-04

1,0E-03

1,0E-02

1,0E-01

1,0E+00

0 5 10 15 20 25

fc
n

[-]

Iterations [-]

Simplex Downhill
Simple Iterator
Threshold

Matching

Simplex Downhill
Simple Iterator

Matching

PCP→N

CN→P

End

ETmatConverged?

N
Software A
Software B

Evaluations

Evaluations

Start

no

yes

Figure 9 Workflow modifications for flexible SAS
in stationary gas turbine and benefit regarding
computational time

The recorded progress of fcn represents the matching
process of an exemplary OP. The threshold marks the
tolerance level fcn has to fall below to rate a solution as
matched. In case of the optimization algorithm, the
simplex downhill algorithm presented by Nelder and Mead
[19] is applied, which has been implemented in IPSM
including a rudimentary handling of side condition
violations. Here, the latter includes overall simulation

robustness control by evaluation of the iterated process
chain’s overall NSI. It has to be denoted that the
presented plot cannot provide a final statement on the
benefits of the simple iterator. Each optimization algorithm
has another performance for a given optimization
problem. Besides, even for the switched network model
applies: No model can be guaranteed to run robust under
all reasonable conditions.

5.1.2 The Advantage of Zooming to Components

In [5], trades between blade creep life tCL and fuel flow wf
are presented for a hypothetical SAS modulation in an
aero engine’s high pressure turbine (HPT). Most of the
benchmarks are based on a shortened workflow, which
doesn’t consider a detailed SAS network model. Figure 10
shows the response of a full coupled model including the
network model. Throttling the major supply flow of the
inner SAS, which is injected through a pre-swirl nozzle
system (PSN), results in both a reduction of the fuel flow
(benefit) and creep life (penalty). For example, a fuel flow
reduction of Δwf,rel = -0.13 % is predicted by the full
coupled model to be reached at approximately 95 %
supply flow throttling, which corresponds to a blade
cooling flow of 93.5 % referred to the base setting, see
Figure 10-11. However, the drop in creep life to
approximately 66 % of the reference is remarkable.

-0,25

-0,2

-0,15

-0,1

-0,05

0

0,5

0,6

0,7

0,8

0,9

1

0,93 0,94 0,95 0,96 0,97 0,98 0,99 1

Δw
f,r

el
[%

]

tC
L,

re
l[

-]

wPSN,rel [-]

Creep life

Fuel consumption

Figure 10 Cruise blade creep life and fuel flow as
function of major supply flow

0,9

0,92

0,94

0,96

0,98

1

1,02

0,93 0,94 0,95 0,96 0,97 0,98 0,99 1

w
S

A
S

,re
l[

-]

wPSN,rel [-]

ROT1 blade cooling

Rim seal net

Figure 11 Cruise cooling and rim seal flow
distribution as function of major supply flow

Also confirmed is the fact that sink flows facing lower
annulus pressures are less affected by throttling of the
main supply. This is illustrated in Figure 11 with the
comparison of the rim seal net flow upstream of the first
rotor blade at a lower sink pressure than the rotor blade’s
film cooling. Since hot gas ingestion is an additional SAS
requirement, the here presented concept must consider

©2020

Deutscher Luft- und Raumfahrtkongress 2019

12

changes in the rim seal flows, too. For this reason,
component zooming is a proper approach for holistic
investigations on flexible SAS.

5.2 Aircraft Mission at Changed Engine Mass
In the studies of this subsection, the previously introduced
geometry models are applied. Their inputs are based on
published documents and illustrations and are therefore
subject to inaccuracies. Similar applies for the aircraft
model. Since this paper deals less with validation aspects
of single models than with the possible applications of the
framework, the presented results are preliminary
benchmarks.

5.2.1 Application of Tandem Blades in HPC

The investigations on application of tandem blades cover
three cases, which are compared to a setting with
conventional vane aerofoils:

a) Replacement of conventional vanes with tandem
configuration in all stages of the HPC

b) Like a), but reducing the number of vanes in
each stage to 75 %, motivated by the prediction
of enhanced flow control

c) Like a), but removing the second to last HPC
stage, motivated by the prediction of enhanced
specific work in all other stages. The last stage is
not considered for removal, because it is
structurally integrated to the interface with the
combustor.

The resulting mass reduction per engine as well as the
overall benefit in terms of aircraft mission fuel burn
reduction at two engine operation is depicted in Figure 12.
The diagram contains samples for predictions of general
engine mass reductions simulated with the workflow from
Figure 5. These samples can be transformed to an
exchange rate between mission fuel burn and aircraft
take-off weight (TOW), which results in
(Δmf,mission/ΔmTOW) = 0.785. This result generally
corresponds to the order of magnitude of exchange rates
presented in [20], which apply to an aircraft in the same
competition segment. However, those exchange rates
depend on the mission range. A correction to the mission
applied in [20] indicates that the here presented fuel burn
benefit is likely underestimated, see Table 2.
A fundamental result is that tandem blades tend not to
increase the engine mass. Indeed, there is a direct mass
reduction, which is caused by slightly shorter axial chord
length of the here applied tandem aerofoils compared to
the conventional reference design. Applying this
technology to the purpose of enhanced flow stability only
would come along with a minor positive effect regarding
fuel flow consumption, too. However, this effect is
negligible, since fuel burn savings are in the order of 1 kg
per referred flight mission.
Interestingly, similar applies for case b) which reduces the
number of aerofoils. The overall aerofoil mass accounts
only minor to the overall HPC mass, which is mainly
driven by disks, casing and blade/vane platforms.
More promising is the concept of increased specific work,
possibly allowing for the reduction of at least one stage. In
contrast to the previous case, this one affects the
shortening of radial adjacent components. It has to be
noted that these investigations, besides the shortening of
the HPC itself, only consider additional shortening of the
LP shaft. The associated bypass duct as well as the entire
nacelle are not modeled, but should be considered for a
more complete assessment.

-50

-40

-30

-20

-10

0

10

20

-100 -75 -50 -25 0 25 50

Δm
f,m

is
si

on
[k

g]

Δmeng [kg]

General mass change

SND scaling

Tandem Vanes

Reference

case
c) b) a)

70% 80% 90%
axial shortening

Figure 12 Concepts mass reductions per engine
to mission fuel burn

5.2.2 Shortened SND

The results for the axial downscaling of the SND are
attached to Figure 12, too. In this scenario, following parts
and segments of adjacent components are considered:
The SND inner and outer wall, SND strut hollow aerofoils
and each one segment of the LP shaft and bypass duct
chosen to have the same axial length at base setting.
Once again, the nacelle is not modeled. Frame structures
and pipes integrated to the SND struts are unchanged,
because they are designed to requirements unrelated to
the aerodynamics of the SND.
Similar to the introduction of tandem blades, the effect of
mass reduction regarding fuel burn savings is limited for
SND shortening. It has to be noted that the results don’t
yet include the masses of possibly required AFC
actuation.

-40

-30

-20

-10

0

10

20

-50 -25 0 25 50 75 100

Δm
f,C

R
[k

g]

Δmeng [kg]

SND scaling

Reference

η_Booster +0.5%

Π_SND +0.5%

Π_SND +0.5% and
η_Booster +0.5%
η_HPC +0.5%

axial shortening
70% 80% 90%

Figure 13 Exemplary SND mass reduction vs.
performance enhancements to cruise fuel burn

As mentioned in sec. 2.1.3, SND shortening might be an
option regarding mass reduction, but there are other
interesting aspects of this technology as well. For this
purpose, Figure 13 contains additional benchmarks, which
are aiming for enhancements in adjacent component
performance. These examples are unrelated to mass
changes. The first line marks the level of fuel burn
reduction at cruise that can be expected, if the booster
efficiency can be increased by 0.5 %. The second aims
for a reduction in the pressure loss of the SND, here
expressed to an increase of 0.5 % of the total pressure

©2020

Deutscher Luft- und Raumfahrtkongress 2019

13

ratio between SND inlet and outlet. The third line
combines both measures. It has to be denoted that these
benchmarks are just exemplary on the one side and
bound to the applied gas turbine performance model on
the other side.

5.2.3 Resulting Options

One conclusion from the presented investigations is that
fuel burn benefits are limited when dealing with concepts
for engine mass reduction on component level. Other
effects of novel concepts should be rather put to the
foreground, e.g. the enhancements in flow control, turbo
component efficiency or duct pressure losses.
Furthermore, today’s gas turbine development requires
various novel concepts for significant enhancements of
the overall performance [21]. For this reason, relatively
small benefits in certain fields of the research should not
be underestimated. The concept of SND shortening is
also interesting in the scope of future engines, e.g. ultra
high bypass ratio engines.
One aspect which is likely coming too short in the
academic research is the view of the gas turbine or airline
operator. Novel concepts providing fuel burn reductions
as presented in Figure 12 and Figure 13 are often
introduced to real engines as features without an overall
gas turbine or aircraft redesign. Assuming an aero engine
allowing for a mass reduction per engine in the order of
the tandem blade case c) (removal of one HPC stage): In
place of reducing the mission fuel burn, the operator may
reoffer the mass as additional payload. This allows e.g. for
two items of extra luggage per flight cycle, which can be
easily translated to an economical benefit.
Remembering the constraint of matching the flight mission
trajectory, not all feasibilities resulting from mass
reductions can’t be discussed here. When the thrust is not
rematched to those OPs, which are subject to aircraft
acceleration – primarily take-off, climb and descent – the
trajectory is adjusted to the changed overall aircraft
weight. Cruise altitude can then be reached earlier as well
as the initialization of descent. The aspect of acceleration
may also be from higher significance in military
applications. Last but not least, mass reduction may be
converted to mission range extension, too.

6. CONCLUSIONS
Component zooming is a technique that allows for
investigations of novel concepts thereby exceeding the
boundaries of associated components and technical
disciplines. Coupling detailed numerical models with gas
turbine performance can assess the benefits of a concept
in the context of the surrounding system. One associated
challenge is the appropriate definition of model interfaces.
Even more challenging might be the establishment of
such assessments in a research environment. This paper
makes proposals to address this problem.
The early application of component zooming can help to
identify the most promising objectives in research on
concepts based on the expected benefits. Regarding the
results of tandem blade and SND studies presented here,
the future focus of research should be put on
improvements in aerodynamics rather than on the weight
aspect. Nevertheless, it must be emphasized once again
that the presented results do not claim to make any final
statements about this. The here presented results should
be interpreted as conservative benchmarks, strictly
considering the assumptions made within the geometry

and flight mission model. Follow up studies require the
replacement of the current geometry and aircraft models
with more accurate models.
In fact, the introduced generic workflows are starting
points of more comprehensive investigations. Especially
the mass reduction examples allow for the extension with
models regarding aerodynamics within the focused
components. One of the key disciplines identified by the
authors are turbomachinery meanline models, which may
serve both for the better modeling of aerodynamics and
as interface models, e.g. between gas turbine
performance and network simulation. The extension of the
here discussed workflows with such models shall be
conducted in subsequent works.
All studies presented in this paper focus on the gas
turbine. Nevertheless, the workflow for mass benefit
assessment may also serve as starting point for deeper
integrative studies including both aircraft and engine
models. This may also include additional system
interfaces such as cabin air supply from the SAS.
All this proves that the sustainable development of a
framework for component zooming is worthwhile. It can be
applied to nearly arbitrary problems, allows for future
extension of available workflows and also facilitates the
before mentioned replacement of single models. Besides
of that component zooming may promote the inter-
disciplinary exchange on institutional level, which is
beneficial regarding the overall competence.

7. ACKNOWLEDGEMENTS
The investigations were essentially conducted as part of
the joint research programs COORETEC-turbo (AG Turbo
2020) and ECOFlex-turbo in the frame of AG Turbo. The
work was supported by the Bundesministerium für
Wirtschaft und Energie (BMWi) as per resolution of the
German Federal Parliament under grant numbers
03ET2013P and 03ET7091I. The authors gratefully
acknowledge AG Turbo and Rolls-Royce Deutschland Ltd
& Co KG for their support and permission to publish this
paper. The responsibility for the content lies solely with its
authors.
Additional thanks go to the student researchers at Chair
for Aero Engines who were involved in the implementation
of IPSM and test case creation, namely in the order of
their employment: Silvio Chemnitz, Jonas König, André
Resag, Phong Tran, Jiri Dehmel and Bojan Pijanovic.
The authors thank Jan Mihalyovics and Liesbeth Konrath
for provision of conceptual input to the presented studies
on SND and tandem blades. Martin Bolemant, Tim Sauer
and Nicolai Neumann are valued for manifold general
discussions about test cases and study results.
Additionally, we thank the German Aerospace Centre as
chair’s partner providing the performance code GTlab-
Performance.

©2020

Deutscher Luft- und Raumfahrtkongress 2019

14

8. LITERATURE
[1] R. W. Claus et al.: ‚Numerical propulsion system

simulation‘, Computing Systems in Engineering,
Cleveland, 2 (4), 1991.

[2] P. Jeschke et al.: ‚Preliminary Gas Turbine Design
Using the Multidisciplinary Design System MOPEDS‘,
Proceedings of ASME Turbo Expo 2002, GT-2002-
30496, Amsterdam, 2004.

[3] S. Reitenbach et al.: ‚Design and Application of a
Multidisciplinary Predesign Process for Novel Engine
Concepts‘, Journal of Engineering for Gas Turbines
and Power, 141 (1), 011017, 2019.

[4] M. Swoboda: ‚Abschlussbericht LuFo 3: VIT
(virtuelles Triebwerk)‘, final report to project Nr. 8.1
NKBF 98, FKZ 20T0307B, 2007. doi:
10.2314/GBV:557848172.

[5] D. Woelki, D. Peitsch: ‚Modeling and Potentials of
Flexible Secondary Air Systems Regarding Mission
Fuel Burn Reduction and Blade Creep Life‘,
Proceedings of ISABE 2019, ISABE-2019-24435,
Canberra, 2019.

[6] F. Donus et al.: ‚Accuracy of Analytical Engine
Weight Estimation During the Conceptual Design
Phase‘, Proceedings of ASME Turbo Expo 2010,
GT2010-23774, Glasgow, 2010.

[7] A. Heinrich, D. Peitsch: ‚Recent Insights Into the Flow
Topology Around Highly Loaded Tandem Vanes‘,
Proceedings of GPPS 2019, GPPS-BJ-2019-225,
Beijing, 2019.

[8] T. Stürzebecher et al.: ‚Automated Aerodynamic
Optimization of an Aggressive S-Shaped Intermediate
Compressor Duct‘, Proceedings of ASME Turbo Expo
2018, GT2018-75184, Oslo, 2018.

[9] V. Motta et al.: ‚Numerical Assessment of Virtual
Control Surfaces for Load Alleviation on Compressor
Blades‘, MDPI Applied Sciences, 8(1), 125, 2018.

[10] D. Woelki et al.: ‚Simulation on part load controlled
cooling air supplied in stationary gas turbines‘,
Proceedings of GPPS 2019, GPPS-BJ-2019-0221,
Beijing, 2019.

[11] T. Sauer et al.: ‚Development of a Flight Mission
Model and Its Application in Order to Illustrate the
Influence of Variable Thrust Nozzles‘, Proceedings of
GPPS 2019, GPPS-BJ-2019-0217, Beijing, 2019.

[12] N. Neumann, D. Peitsch: ‚Introduction and Validation
of a Mean Line Solver for Present and Future
Turbomachines‘, Proceedings of ISABE 2019,
ISABE-2019-24441, Canberra, 2019.

[13] D. Woelki, D. Peitsch: ‚Modellierung variabler
Sekundärluftsysteme zur Bewertung ihrer
Auswirkungen auf das Gesamtsystem Gasturbine‘,
Proceedings of DLRK 2014, DLRK 2014-340112,
Augsburg, 2014.

[14] P. Zeller: ‚Effizienzsteigerung von Turboluftstrahl-
triebwerken durch Optimierung des sekundären
Luftsystems‘, Dissertation, University of Stuttgart,
Stuttgart, 1995.

[15] S. Bretschneider et al.: ‚Compressor Casing
Preliminary Design Based on Features‘, Proceedings
of ASME Turbo Expo 2008, GT2008-50102, Berlin,
2008.

[16] D. P. Anderson et al.: ‚Designing a Runtime System
for Volunteer Computing‘, SC ’06 Proceedings of the
2006 ACM/IEEE conference on Supercomputing,
126, Tampa, 2006.

[17] P. Kupijai et al.: ‚System Integration as Key for
Improving and Speeding up the Preliminary Design

Phase of Aero Engines‘, 2013 SIMULIA Community
Conference, Vienna, 2013.

[18] SAE Aerospace: ‚Aerospace Standard AS4191: Gas
Turbine Engine Performance Presentation for
Computer Programs Using FORTRAN‘, SAE
International, 2008.

[19] J. A. Nelder, R. Mead: ‚A Simplex Method for
Function Minimization‘, The Computer Journal 7,
Cambridge, 1965.

[20] F. Deidewig et al.: ‚Methods to Assess Aircraft Engine
Emissions in Flight’, 20th Congress of the Int. Council
of the Aeronautical Sciences 1996, ICAS-96-4.1.2,
Sorrent, 1996.

[21] National Academies of Sciences, Engineering, and
Medicine: ‚Commercial Aircraft Propulsion and
Energy Systems Research: Reducing Global Carbon
Emissions‘, The National Academies Press,
Washington D.C., 2016.

[22] EUROCONTROL Institute of Air Navigation Services:
‚Aircraft Performance Database A320‘, web link, URL:
https://contentzone.eurocontrol.int/aircraftperformanc
e/details.aspx?ICAO=A320&ICAOFilter=a320 ,
called: 30th August 2019.

©2020

Deutscher Luft- und Raumfahrtkongress 2019

15

APPENDIX

OP Alt *
[ft]

vTAS
[kt]

Ma
[-]

ΔAlt/Δt
[ft/min]

s
[NM]

t
[min]

01 Take-Off 0 145 0 1.183 ► 0.49
02 Initial Climb 5000 600 2500 ► 20.0 ► 2.0
03 Initial Climb to FL150 15000 290 2000 ► 24.2 ► 5.0
04 Initial Climb to FL240 24000 290 1400 ► 31.1 ► 6.4
05 Climb at Ma constant 39000 0.78 1000 ► 112 ► 15.0

11 Cruise 39000 450 0 300 ► 40.0
… descretized to nine segments … … … … … …
19 of each same range 39000 450 0 300 ► 40.0

21 Initial Descent to FL240 20000 0.78 -1000 ► 152 ► 19.0
22 Descent to FL100 10000 290 -3500 ► 13.8 ► 2.86
23 Approach 0 230 -1500 ► 25.6 ► 6.67

31 Go-Around Take-Off 2800 230 2500 ► 4.29 ► 1.12
32 Go-Around Circle 2800 230 0 ► 38.3 10.0
33 Go-Around Approach 0 230 -1500 ► 7.16 ► 1.87
34 Landing 0 137 0 0.778 ► 0.34

bold Calculation mode based on parameter
► Calculated parameter
* Defines the final OP altitude, since initial altitude set to the final altitude of the previous OP

Operating empty weight 42600 kg
Payload 12000 kg
Fuel regular mission calculated
Fuel reserve 500 kg

Table 1 Flight mission definition [22] extended with go-around procedure and aircraft mass
assumptions

(Δmf,mission/ΔmTOW)
[-]

reference aircraft reference mission description

0.73 Boeing 737 according to [20],
smission = 1080 NM

literature based
exchange rate

0.785 Airbus A320 alike according to Table 1,
smission = 3130 NM

exchange rate for
presented model

0.59 Airbus A320 alike according to Table 1, but
AltOP05 according to AltCR from [20]
AltOP11…19 according to AltCR from [20]
MaOP11…19 according to MaCR from [20]
smission according to [20]
without Go-Around (OP31-33)
without fuel reserve

exchange rate for
presented model,
corrected to mission
of literature based
exchange rate

Table 2 Exchange rates for fuel burn change to TOW change

©2020

Deutscher Luft- und Raumfahrtkongress 2019

16

