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Abstract
Much of academic research on gas turbines is conducted at component level. Promising concepts such as 
enhanced blade design or active flow control are often investigated on isolated domains, e.g. single 
compressor stages. Possible interactions with adjacent components, such as effects on secondary power 
and air provision or the thermodynamic cycle are rarely or just subsidiary considered. Nevertheless, the early 
inclusion of those effects is crucial for a reliable assessment of novel concepts’ benefits. For example, the 
reduction of aero engine component weight or the increase of turbo-component stage efficiency is intangible 
regarding the quantified benefit on system level. This gap can be closed by a technique called component 
zooming. Here, a gas turbine performance model representing the cycle and components basic interaction is 
coupled with more detailed models which are capable of specific investigations on component level. This 
paper presents a suitable architecture of frameworks for component zooming in general.
In order to maintain high applicability especially for academic purposes, focus is put on flexibility in manifold 
sense: Adaptability to arbitrary concepts and zoomed components, expandability of available workflows,
expandability to new disciplines, exchangeability of used software (e.g. commercial or in-house) and 
portability to common platforms. Various examples will demonstrate the capabilities of component zooming 
performed with such a framework. The first case discusses zooming on the secondary air system (SAS) of
gas turbines. Another case demonstrates the coupling of engine performance with models for an initial 
assessment of aero engine components weight reduction benefit, e. g. realized by tandem blades or flow 
actuation in duct components. The resulting change in overall mass of the engine leads to basic, pragmatic 
options for aircraft operators.
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NOMENCLATURE
Δ [-] Difference
Π [-] Pressure Ratio
η [-] Efficiency
Alt [ft] Flight altitude
err [-] Error vector
i [-] Running variable
Ma [-] Mach number
n [-] Amount
p [Pa] Pressure
s [NM] Aircraft mission range
T [K] Temperature
t [min] Time
vTAS [kt] True air speed
w [kg/s] Mass flow
x [-] Guess vector

Indices:
CL Creep life
CR Cruise
date Current value
eng Engine
f Fuel
mat Blade material
mission Flight mission
h Hot gas
i Running variable
PSN Pre-swirl nozzle
ref Reference value
rel Relative value
SAS Secondary air flows

Abbreviations:
A Aircraft module
AFC Active flow control
C Correction model
CFD Computational fluid dynamics
CPU Central processing unit
CVC Constant volume combustion
DLR German Aerospace Center
E Evaluation model
File I/O File input/output writing and reading
G Geometry model
GUI Graphical user interface
HPC High pressure compressor
HPT High pressure turbine
IPSM Interface for performance and

secondary air system modeling
IRC Internet relay chat
LAN Local area network
LPT Low pressure turbine
N Network model
OEM Original equipment manufacturer
OP Operating point
OS Operating system
P Performance model
SAS Secondary air system
SND Swan neck duct
TOW Aircraft take-off weight
XML Extensible markup language
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1. INTRODUCTION
The demand for the development in gas turbine
technology is unbroken. Main drivers are today’s 
ecological requirements and economical enhancements 
with certain legal requirements and certification standards.
A frequent objective in gas turbine research is the 
increase of gas turbine efficiency. This can be achieved 
by novel cycles, integration of features and enhancements 
on component level. Examples for these three options 
might be pressure gain combustion, active flow control 
(AFC) or blade profile optimization. The range of possible 
measures is diverse and subject to manifold industrial and 
academic research.
Increases in component efficiency and the common 
increase of efficiency on system level may result in fuel 
flow reduction and hence reduced operational costs. In 
addition, the development is triggered by manufactural 
aspects, life time optimization and weight reductions. The 
latter is especially an objective for mobile applications of 
gas turbines. Thus, the successful integration of novel 
concepts must match a bunch of partly conflicting 
objectives. This can be ensured by multi objective 
optimization. Nevertheless, optimization on component 
level only, i.e. isolated from the context of the entire 
system, might still be insufficient: Interactions with 
aerodynamically, mechanically or thermally connected 
components must be considered. This usually results in 
highly iterative processes with other component 
departments.
Gas turbine performance is appropriate to represent the 
entire system and hence serves often as central
discipline. Its inputs are best knowledge component 
characteristics. Typical outputs are interface or overall 
system quantities, e.g. inter-component mass flows, 
temperatures, pressures or power offtakes and fuel flows.
However, gas turbine performance is not suitable for
detailed component design.
The need for final component matching is initially not 
necessary for research on new concepts. Nevertheless, 
academic research in particular tends to focus on
technological details, often without including effects at the 
overall system level. This also applies to the assessment 
of the actual benefit of concepts. For this reason, the 
justification of research sometimes cannot be perceived 
by the public. A suitable technique to counter this problem 
is the so-called component zooming: coupling of a whole 
system simulation such as gas turbine performance with 
higher fidelity component models. In this way, component 
zooming is closely related to conceptual pre-design.
However, the latter typically includes the interdisciplinary 
design of all relevant components. In contrast, component 
zooming tends to be limited to one component. A complex 
redesign of other components is initially not intended.

1.1 Existing Solutions
For the purpose of preliminary design, different software 
exists, e.g. the NASA code NPSS [1], the MTU Aero 
Engines code MOPEDS [2] or the German Aerospace 
Center (DLR) code GTlab [3]. A computer-aided solution 
to facilitate and accelerate the iterative, multidisciplinary 
component design is developed with the participation of 
Rolls-Royce Deutschland in the research project VIT [4].
Existing solutions vary in different ways. Some software is 
company’s in-house code and hence usually unavailable 
for other research institutions. Licensable software may 
not or only partially be extensible for specific purposes. 
Some key features may also be overload for academic 

research. For example, data management issues for the 
exchange of boundary conditions between different 
component departments such as described in [3] are vital 
in the multidisciplinary design process of bigger 
institutions or in companies. In university research, which 
is conducted in small groups or even by one person only, 
the resulting advantages are sometimes seen as 
disadvantageous or inefficient due to the complexity.
All presented characteristics of existing solutions can lead 
to a situation where the overall benefit assessment of 
novel concepts leads to the quick implementation of tools 
which are only suitable for studies on one specific 
concept. Adaptation to modified problems can then be
difficult so that such tools are rarely recycled. Exemplary 
reasons are hard coded parameters, deep embedded 
interfaces to required simulation software or rigid, non-
expandable equation systems in the case of iterative 
processes.
All in all, there is a dilemma between well-engineered,
complex commercial or industrial solutions on the one 
hand and one-way solutions on the other, mostly 
university side.

1.2 Objectives
This paper has three major objectives. The first is to 
introduce the reasons to use component zooming in early 
concept development phases. For this purpose, 
exemplary concepts will be introduced (section 2.1).
When zooming is performed e.g. from gas turbine 
performance to one or more components, different models 
are applied. The resulting coupled model effectively 
implements a workflow, which must manage the exchange 
of each models boundary conditions and run simulations 
in the right order, iteratively if required. The second 
objective is therefore the formulation of elementary 
workflow features and a guideline for the design of 
workflows (section 2.2).
Third, important decisions will be discussed in order to 
create a suitable framework which allows such workflows
to be run (section 3). A major topic will be flexibility in the 
problem definition itself as well as in the use of different
simulation software.
In addition, the implementation of the framework IPSM 
(interface for performance and secondary air system 
modeling) is shortly presented (section 4), which both 
serves as an example implementation of the before 
discussed aspects and is the vehicle for studies on the
previously introduced concepts. The results of these 
studies will be presented and discussed in section 5.

2. EXAMPLES FOR COMPONENT ZOOMING
The advantage to apply component zooming in gas 
turbine research and development is various. The 
subsequent examples are suitable to give first an
overview about different feasible approaches and second
to define the resulting requirements for workflow 
implementing applications.

2.1 Introduction of Concepts
The subsequent examples focus on three different 
components. The first concept aims for an off-design 
optimized secondary air system (SAS), here applicable in 
both stationary gas turbines and aero engines. The other 
concepts primarily deal with new technologies in the swan 
neck duct (SND) and high pressure compressor (HPC) of 
common turbo fan engines. Figure 1 sketches a turbo fan 
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with integrated thrust nozzle. The considered components 
are highlighted. Some axial sections of radial adjacent 
components of the SND and HPC are also highlighted in 
advance of some later introduced assumptions. It is worth 
to note that the depicted components don’t match relative 
sizes in real engines. For example, the HPC is commonly
longer than the SND.

Figure 1 Sketched turbo fan engine with focused 
components and associated areas

2.1.1 Flexible Secondary Air Systems

The SAS is a subsystem, which provides secondary air for 
different purposes such as turbine blade and disk cooling 
or sealing against hot gas ingestion. Since most of 
secondary air is typically extracted in rear compressor 
stages, it is effectively bypassing the combustion process. 
The return to the main flow in different sinks of the turbine 
results in reduced turbine rotor work. In addition,
secondary air flows are the source of several other losses. 
Especially cooling air flows with the highest share of 
secondary air are usually designed to critical operating 
points (OP) such as warm day take-off in aero engines or 
warm day full/base load in common stationary gas 
turbines. At OPs with demands for lower power output the 
amount of cooling air frequently exceeds the 
requirements. In contrast, other SAS requirements such 
as sealing of bearing chambers against oil emission might 
be critical at very low power output demand. Overall, the 
design of secondary air flows must meet the requirements 
of different operational conditions. Operation within the 
off-design space will usually result in the local provision of 
too much secondary air, resulting in avoidable losses. A 
flexible SAS which is optimized to meet each SAS circuits 
requirements in various OPs will reduce overall losses 
and may reduce the fuel flow wf.
Nevertheless, the reduction of cooling air will result in 
higher blade metal temperatures Tmat, even if held on an 
acceptable level. The benefit of flexible SAS will hence 
result in a trade-off assessment between e.g. fuel burn 
and blade life reduction. This topic is also discussed in [5].
Finally, the zooming on the SAS as component requires
various models. The most important models are the gas 
turbine performance model, which provides the SAS 
sources and sinks boundary conditions on the one side, 
and a SAS model suitable for investigations on modified 
circuits on the other side. The consideration of changes in 
Tmat and blade creep life tCL requires additional evaluation 
models. All these models must be coupled in a workflow. 

2.1.2 Aircraft Mission at HPC Modifications

Compressors in stationary gas turbines and HPCs in aero 
engines are key components regarding overall engine 
efficiency. The trend to higher overall compressor ratios is 

unchanged. Nevertheless, axial compressors are also 
subject to flow stability requirements. An increase of 
compressor stage number or specific work per stage can 
be addressed with multi-shaft design, enhanced 
contouring, optimized aerofoils or AFC. Besides that,
shortening of the compressor is desired, since this 
component contributes to approximately 7-14 % share of 
total engine weight in common turbo fans [6]. Extra weight 
of new integrated concepts must at least compensate the 
penalty on aircraft operation by their benefits. The 
importance of HPC weight gets even more important, 
when surrounding components are considered as well: A 
shortening of the component would additionally result in 
reduced shaft, bypass duct and nacelle lengths.
As an example for novel concepts in axial compressors,
this paper focuses on possible advantages of so-called 
tandem blades [7]. One intent of introducing tandem 
blades is the increase of compressor stage work by highly
loaded blade rows still meeting the requirements of flow 
stability. An example for a tandem blade configuration is 
shown in Figure 2, here designed to achieve the same 
flow deflection as in the associated conventional blade 
row. The enhanced flow control by application of tandem 
blades could allow for the reduction of blades per stage, 
since the solidity can be increased.y

Figure 2 Conventional and tandem blade 
configuration

Analysing the overall impact of tandem blades requires an 
involvement of the aircraft and its flight mission. The 
effectively changed overall aircraft weight will result in 
either changed thrust requirements or a changed flight 
mission trajectory caused by altered accelerations. Both 
will result in a change of mission fuel burn, hence 
requiring engine performance as integral discipline of this 
topic. Compendious: Component zooming is applicable by 
coupling gas turbine performance with models for mass 
estimation, aircraft thrust demand and the flight mission 
itself.

2.1.3 Aircraft Mission at Shortened Duct 
Components

The SND is a critical duct component, which guides the 
low pressure compressor’s outlet flow to the inlet of the 
HPC, typically at a much smaller radius (Figure 3).

Figure 3 Principle of SND shortening, 
challenging flow control
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Besides of this S-shaped deflection the front struts of the 
engine frame are crossing this duct, too. Even if the 
benchmark of individual SND weight is given to only 3-4 %
of overall engine weight [6], surrounding components 
could also be scaled down in their axial dimension as 
described in sec. 2.1.2. Independent of the mass 
reduction effect are further possible benefits regarding a 
redesign of adjacent components. For example, a more 
aggressive deflection towards the HPC could allow for a 
design of the booster rear stages at higher radii, which 
could increase specific work or efficiency.
The challenge of SND shortening – basically a disturbed
inflow of the HPC – as well as concepts to overcome this 
problem by end wall contouring is described in [8].
Another field of interest is the introduction of active flow 
control (AFC), e.g. realized with plasma actuators [9].
These plasma actuators are assumed to be lightweight 
and less power consuming. If information on objected 
component design and AFC is available, component 
zooming is again suitable to estimate the expected overall 
benefit.
This topic is basically familiar to the previously presented 
HPC shortening. Furthermore, AFC is topic of research in 
HPCs as well, but not emphasized in this paper.

2.2 Generation of Coupled Model Workflows

2.2.1 Basic Approach

The following describes the approach creating a workflow
of a coupled model for component zooming. It is not this
paper’s objective to introduce single models. For more 
information about the applied disciplines and their typical 
models refer to [10], [5] (flexible SAS) and [11] (aircraft 
and flight mission model). It is also assumed that all 
required models are available and can be run as 
standalone models. The workflow definition just fixes their 
order and interactions.
Dealing with models of different order, or in other words 
dimensionality, is probably the major challenge in 
component zooming. The interfaces between models may 
be resolved in different ways. For example, gas turbine 
performance commonly considers only a small, fixed 
number of SAS sinks in the turbine. In the real engine, 
there are manifold sinks, which are typically represented 
in SAS network models by various axially and radially 
distributed sinks. This requires conversion methods of 
both sink boundary conditions (performance to SAS
network) and sink flow results (SAS network to 
performance). Different approaches are available to 
overcome this issue, e.g. correlations, inter-stage 
characteristics or meanline models (e.g. [12]). The range
of possible conversion methods indicates that workflows 
for the same problem can be implemented with different 
models. In this sense, flexibility for later implementations
is desirable, too.
All models have to be arranged in a clear order, i.e.
primarily sequential structured. Where iterative processes 
are required, those must be placed properly in the 
sequence, opening a child sequence on a lower 
embedded level. This means that the top level sequence 
will pause at this point, call an iterator which repeats the 
lower level sequence until convergence is reached and 
finally continue on top level.
Regarding iterative processes, two different types can be 
introduced:

1. Fixed-point iteration: Some matching procedures, 
where involved models are feeding themselves 
with new inputs are likely self-converging. This 
allows no hysteresis and demands high 
individual robustness of the simulations. In this 
case, the iterator just requires the definition of 
break criteria and will restart the iterated 
sequence until one break criterion is reached.

2. Complex problems and also those integrating 
simulations known to run not robust are not 
guaranteed to reach convergence with simple 
iterators. Replacing the iterator with an 
optimization algorithm may be the choice, since 
the algorithm is providing guess values for 
defined input parameters, following an individual 
approach in order to find convergence by 
evolving these guesses. The nature of 
optimization algorithms is of a different kind and 
should be fit to the problem to be solved 
iteratively. If an algorithm supports handling of 
side condition violations, which might be in 
general exceeding maximum or minimum values 
of any parameter, there is also the chance to 
treat robustness problems within the problem.

2.2.2 Coupling SAS with Gas Turbine Performance

Examples for workflows coupling SAS network models 
with gas turbine performance models have been subject 
of different publications, e.g. [13] referring the approach of 
[14], further adapted in [5] and [10]. The latter two will now 
be discussed in a scope, which focuses on the before
mentioned challenges, hence using some simplified form 
of the workflows.
The very generic form of such a workflow is illustrated in 
Figure 4. In the focus is the matching between a gas 
turbine performance model (P) and a network model of 
the SAS (N). As mentioned before, different approaches 
exist for the conversion from the performance to the 
network model (CP→N) and reverse (CN→P).

Figure 4 Rudimentary workflow for component 
zooming on flexible SAS

The here presented workflow is very generic and its 
adaptions to even different types of gas turbines will most 
probably look a little different. This can be also seen when 
comparing the workflows presented in [13] and [10]. 
Usually there will also be more than two correction models 
C overall. For example:
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- One CP→N model converts compressor bleed 
pressures and temperatures from P to boundary 
conditions of the sources in N

- Another CP→N model converts sink pressures to 
sink boundaries in N

- The third CP→N provides a hot gas temperature 
distribution within the turbine, which would be 
required in case of local hot gas ingestions to the 
disk wheel space

- The model CN→P summarizes secondary air flows 
wSAS simulated in N in order to feed them to P

In the depicted case, the gas turbine performance model 
would model three sinks wSAS which have to be matched 
to the SAS network model flows summarized in CN→P.
Changed wSAS will result in an overall change of the gas 
turbine performance at remaining OP boundary 
conditions, hence changing source/sink pressures and 
temperatures. This part of the workflow is iterated until the 
errors between set mass flows in P and associated flows 
in N fall below a threshold value. The lower this threshold, 
the more accurate is the matching of the performance and 
network model.
In the end, the second, sequential part of the workflow 
evaluates certain requirements. In the here presented 
example for studies in aero engines, OP holding times in 
a reference flight mission are calculated (Emission), blade 
material temperatures approximated (ETmat) and with the 
results of both the current OP’s blade creep life is
calculated (ECL), see also [5]. The entire workflow may be 
repeated for several OPs considered in the reference 
flight mission.
What can be clearly seen in this example is the need for 
the introduced features, namely sequential arrangements 
combined with iterators and optionally the easy support of 
multiple workflow simulations at various boundary 
condition (OPs). The sketched workflow can only describe 
the structural arrangement of involved models. The 
workflow’s structure is mostly mandatory. Here, only 
Emission and ETmat could be switched in place, because they 
are independent from each other and only providing ECL
with inputs. Even if this generic workflow looks small and 
straight forward, the number of inter-model parameter 
exchanges can easily reach some hundred. In this matter, 
it is important that the parameter exchange is not bound 
to certain sub-workflows. For example, the creep life 
estimation ECL requires the shaft speed from P for the 
determination of current centrifugal stresses, blade 
coolant temperatures from N and hot gas temperatures 
from CP→N.

2.2.3 Aircraft Mission at HPC Modifications

New technologies in HPCs and turbo components can be
initially investigated at component level. In many cases 
there will be focus on either loss reduction at maintained 
specific work or vice versa. Changed outlet conditions will 
affect components downstream. This will finally require a 
re-matching of the overall cycle. This is a typical task for 
preliminary design with gas turbine performance as the 
central discipline.
The here discussed introduction of tandem blades will not
consider aerodynamics to hold down the complexity of 
this example. It is rather assumed that the application of 
tandem blades matches the performance of conventional 
blades. The benefit is assumed only to result in either 
stage or blade reduction. Recent studies such as [7] deal
with stator tandem vanes. For this reason, the subsequent
use of the term tandem blade refers to stator vanes only.
Engine mass changes have no practical relevance for the 

engine cycle when operating in steady state OPs. The 
effect of mass compensation addresses the aircraft 
mission and, if changes are significant, the aircraft design. 
Thus, the question of engine weight reduction benefit 
requires component zooming, which includes aircraft and 
flight mission models. The final question can be: How can 
an engine weight reduction decrease the mission fuel 
burn mf,mission?
Important to the workflow design are the constraints which
are formulated for the engine operation. There are two 
options:

1. The engines are considered to deliver defined 
thrust in order to match the flight mission’s 
current OP target quantities, e.g. flight altitude or 
velocity, with the relative low pressure shaft 
speed or aircraft lift coefficient as control 
parameters, see [11]. This respects flight mission 
trajectory changes during phases of aircraft 
acceleration and deceleration.

2. The flight mission trajectory is held constant. This 
requires matching of each individual OP’s thrust 
to the aircraft’s current operational requirements.

The second option comes with a relatively simple 
assumption, but is chosen for the here presented scenario 
for the purpose of clarity. Since the flight trajectory and 
hence the aircraft OPs are fixed to the reference case –
conventional instead of tandem blades –, the mission 
model Emission is not required to be iterated. It is arranged 
to be the initial model within the workflow. The definition of 
the here used long range mission as well as applied 
aircraft masses can be found in the appendix, Table 1.
The workflow for the here discussed concept studies is 
depicted in Figure 5.

Figure 5 Workflow for engine mass effect on 
aircraft mission

Every investigated concept requires the determination of 
the change in aircraft operational empty weight, which is 
assumed to be the change in the weight of aero engines 
Δmeng only. This is the difference of calculated masses in 
the geometry model Geng,ref of the reference and the 
current concept Geng,date. In both models G an engine part 
weight method is applied which is inspired by feature 
based preliminary component design as presented in [15].
This model includes a detailed geometrical representation 
of all relevant engine components, which are subdivided 
to part and even sub-part level. This allows the scaling of 
individual parts in order to derive mass changes at first 
order. In predesign, such models would be extended with 
e.g. mechanics models in order to ensure durability to 
stresses. This is neglected in the here presented studies. 
The model Geng,date is rather stretching the vane geometry 
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as well as associated, radial adjacent parts in axial 
direction. This is exemplary sketched in Figure 6:
Compressor stage shortening would include 
blades/vanes, associated casing structures, disk including 
drive arms and annulus hub wall. In addition, the low 
pressure shaft as well as bypass duct and nacelle would 
be affected – these components are not depicted here.

Figure 6 Principle of feature based HPC 
geometry model including axial segmentation to 
key parts (dashed lines)

Downstream in the workflow, two different types of 
iterative processes are embedded, see Figure 5. The 
middle part organizes the iteration over different OPs. 
Their ambient and flight conditions as well as individual
range and holding times have been calculated in Emission.
Each OP’s individual fuel burn mf,OP,i is unknown. For this 
purpose, the aircraft’s thrust demand is derived from 
aircraft force balance according to [11]. The thrust 
demand is hence a function of lift, drag and weight forces.
The applied polar curve relating lift and drag is unchanged
and there is hence no detailed modeling of any changes 
in the aircraft’s aerodynamics. The weight forces are 
calculated with the overall aircraft mass as unified point 
mass of all considered part weights.
The thrust result per engine from model A is set as target 
parameter to the engine performance model P with 
ambient conditions provided by the flight mission model. 
The current OP’s fuel flow wf,OP,i is integrated over holding 
time tOP,i. The result of the model sequence at the right 
hand side is mf,OP,i. However, this quantity as well as the 
entire amount of fuel required in later OPs is an input to A, 
since it is one term of the aircraft’s weight force. For this 
reason, an optimization algorithm or simple iterator is 
applied, providing a guess of mf,OP,i, which is added in 
Σmf,date to the fuel burn of all later flight segments. For this 
reason, the OP placed in the intermediate level of the 
workflow starts with the last OP in order to perform the 
matching for all OPs in reverse order. Finally, each OP’s 
fuel burn is added to the entire mission’s fuel burn. This 
workflow is repeated for different concepts.
The aircraft modeled in A is based on a common narrow 
body aircraft presented in [11]. The same applies for the 
engine in model P. Compared to the coupled aircraft-
mission-engine model presented in [11], the here applied 
workflow connects Emission, A and P as independent 
models, whereas the reference model just integrates the 
engine performance with lookup tables. In other words, 
the reference case, implemented in Matlab-Simulink, is a 
tailor made solution, optimized to computational 
performance.

2.2.4 Aircraft Mission at Shortened SND

This scenario is almost identical to the one presented in 
sec. 2.2.3. It uses the same base work flow. The only 
difference is the simulation within Geng,date, which accounts 
for other geometrical changes. These are namely the 
SND component instead of the HPC and associated parts 
of the LP shaft, bypass duct and nacelle. It has to be 
noted that the areas highlighted in Figure 1 will not 
mandatorily reflect the parts to be modified in the objected 
studies. For example, the LP shaft segment in the axial 
region of the SND has some structural features, which 
cannot be directly scaled with the SND component. A 
shortening of the SND would most probably result in the 
adequate reduction of LP shaft length located more 
towards the middle of the shaft where no structural 
reinforcements can be found.

2.2.5 Considerations Regarding Models of Higher 
Order

For both HPC and SND modifications, the presented 
workflows do not consider aerodynamics as key discipline 
of the presented concepts. Fundamental assumptions are 
that the conceptual measures maintain the performance 
of their reference components. However, component 
zooming is intended to be free for extension with 
additional models. The additional integration of HPC 
meanline is advisable and even stationary CFD duct 
models are feasible. The extension of workflows as well 
as the type of integrated models always require the 
consideration of following questions:

- What is the benefit of probable accuracy 
enhancement regarding the overall quality of the 
concept studies to be carried out?

- How does a model from higher order increase
the workflow’s computational time? Will the 
model be a bottleneck?

- Is the originally zoomed component the overall 
workflow’s bottleneck? If not, is the 
computational expense of large bottlenecks 
compatible with the requirements of the 
conducted concept studies?

- Is it possible to resolve the interfaces between 
models of different orders in a reasonable way?

3. FRAMEWORK ARCHITECTURE

The design of a framework architecture applicable for
arbitrary use cases of component zooming, requires some 
decisions to be made at an early design phase. 
Programming a reusable and extendable framework might 
come along with relatively high expenditure in the 
beginning of this process, but will allow for very quick 
extensions with e.g. new disciplines or model approaches 
at a later point of time. Subsequently, such a framework 
will often be ready for simulations later than very tailor-
made solutions. However, the adaptation of those tailor-
made solutions to other cases is mostly relatively complex 
or even impossible and therefore often requires the 
development of a new solution. This section introduces 
those aspects, which are recommended to be considered 
from the beginning of the design process on.

3.1 Level of Model Integration
First to be discussed is the basic nature of concept 
studies to be conducted with the framework. In numerical 
gas turbine research, there are two major domains:

©2020

Deutscher Luft- und Raumfahrtkongress 2019

6



1. Novel concepts on component level: These 
demand for benefit assessments on the overall 
system, usually the gas turbine. A detailed 
component model is available and formally 
requires the extension with gas turbine 
performance.

2. Concepts on system level, e.g. novel cycles: The 
gas turbine performance model is available and 
subject to optimization studies. In order to 
increase the significance of the study results, key 
requirements are included via additional low-
dimensional models. An example could be the 
estimation of turbine vane and blade 
temperatures as limiters, i.e. side conditions in 
the optimization.

In both cases, gas turbine performance is a key discipline.
However, there is an additional use case of component 
zooming that doesn’t aim for evaluations on whole system 
level:

3. Novel concepts on sub-component or part level: 
An example could be studies on overall 
compressor performance reflected by a meanline 
model, but coupled with a detailed high order 
model such as 3D CFD of a single stage.

All these three cases emphasize that the framework must 
allow for extremely flexible, arbitrary workflows. In 
consequence, the probably most important decision is 
whether the framework is supposed to be an independent 
application or not.
Regarding flexibility, the extension of e.g. a gas turbine 
performance code by integrating interfaces to potential 
other models should be seen as disadvantage regarding 
both arbitrary workflows and software integration. Another 
conclusion is that the framework should essentially 
contain a core process that connects the individual 
models with each other and organizes their data 
exchange.

3.2 Different Disciplines
Component zooming requires the capability to couple 
models from different disciplines with each other. The 
most obvious disciplines are gas turbine performance, 
aerodynamics (e.g. meanline, 3D CFD), network models 
(e.g. SAS or arbitrary pipe systems) or optimization itself. 
Depending on the kind of researched problem or modeling 
depth, mechanics and thermo-mechanics (e.g. FEM), 
aero elasticity and weight assessment might be necessary 
as well.
The core process of the framework must support all these 
disciplines by provision of interfaces, which are designed 
to enable the coupling of state of the art software. For this 
reason, all subsequent uses of the term discipline will 
refer to less physical disciplines than the nature of 
models, e.g. performance, network, meanline or CFD.
In addition, a totally generic interface is recommended to 
support any other disciplines, which are not yet 
considered.

3.3 Different Disciplines Implementations
There is usually a variety of software available, which 
features the same discipline. In the following, such 
software will be described as implementation of a specific 
discipline. Not exclusive examples for different 
implementations of some disciplines are e.g.

- performance: GTlab-Performance (in-house code 
DLR, conditionally licensable), Mars (in-house 
code Rolls-Royce Deutschland),

- network: Flowmaster V7, Flownex SE (both 
commercial),

- CFD: Ansys CFX (commercial), Numeca 
(commercial), OpenFOAM (open source).

These examples show some fundamental challenges. 
One is the availability of the implementation. Free and 
commercial software is basically available everywhere. In 
contrast, in-house codes of gas turbine OEMs (original 
equipment manufacturer) are barely available at other 
institutions or their use is restricted to certain projects. In 
other words: The specification of an entire discipline to 
one implementation only tends to be insufficient, since 
future work could require the use of another 
implementation.
Another challenge is the coupling of the implementation to 
the core process. Open source software allows the direct 
integration of an interface on side of the implementation,
realized via libraries. Commercial software optionally 
provides an API (application programming interface). If 
not, it is at least required to provide possibilities for batch 
processing, which is most popular realized by pre-
processing, running and post-processing the software via 
command-line interpreters.
Finally, implementations may differ in the nature and 
scope of their modeling and customization for specific 
applications.
In consequence, the interfaces of the core process to on
discipline must also be generic to support different, 
sometimes unknown implementations.

3.4 Integration of Implementations and their
Computational Performance

All implementations need an interface in order to be 
coupled to the core process. This may also be a specific 
interface, which communicates through one of the 
previously introduced discipline interfaces. Talking about 
specific interfaces: The introduced ways for integration –
either via library or bash process – have different benefits 
and disadvantages also worth to be considered.
A bash process is commonly the easiest and fastest way 
to address a software as long as it offers file input reading 
and file output generation. The framework would then 
require the implementation of a specific interface, which 
exports new input to the appropriate format and read 
generated output to be converted for the core process. 
Common disadvantages are the relatively computational
time consuming input/output writing and reading (file I/O)
as well as the continuous reinitialization of the software in 
iterative processes. Furthermore, not every software 
supports bash processing in an effective way. An example 
is software, which is optimized to operate on a database 
service instead of fie I/O.
The usually better choice is the direct coupling by loading 
the implementation as library to the framework at runtime.
This way also requires the implementation of a specific 
interface, which initializes the model once and manages 
the data exchange with the core process via objects. In 
this scenario, file I/O is usually not required.
A special case is embedding the implementation as 
module directly into the framework, which is only possible, 
if the source code of the framework is available.
The modular plugging of any implementation’s library may 
be challenging in following terms:

- The provided API or open source implementation 
is written in another programming language: This 
can be solved by intermediate wrapper libraries
with the purpose to transform the data types 
between the languages.
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- The implementation runs on another operating 
system (OS) or in another process architecture 
(e.g. 32- vs. 64-bit model): This requires inter-
process communication, which can also be
realized by wrapper libraries. These are acting as 
client application on the framework side and host 
application on the implementation side. In fact,
host-client services can solve almost every 
problem regarding the communication between
processes, but are relatively complex solutions.

3.5 Performance of Core Process
Codes generated in academic research projects tend not 
to be effectively written from the point of view of computer 
science. It is important to note that this is an acceptable 
matter, since research projects are time limited and must 
focus on the scientific contents. Nevertheless, both 
implementations and framework itself should be designed 
to run studies in a reasonable frame of time. When 
dealing with component zooming, the question arises, if 
the framework must be considered as critical factor
regarding computational time.
In fact, this matter highly depends on the kind of workflow 
and even more important the implementations used within 
the workflow. Some disciplines in general tend to be 
consuming much computational time, e.g. 2D/3D CFD. In 
contrast, gas turbine performance is originally designed to 
run fast on a specific set of boundary conditions. Thus the 
order of the model is the first indicator to define 
bottlenecks in the workflow. Besides there are other 
characteristics indicating bottlenecks, e.g. an
implementation’s internal solver performance and the 
already introduced data exchange with the core process.
Overall, typical implementations should be rather 
considered as issues regarding computational 
performance than the framework itself. Beyond that it is 
more beneficial to identify the actual bottlenecks and put 
effort into their performance enhancements, if possible.

3.6 Portability
Another important issue is the likely portability of the 
framework to other operating systems. This might be 
required because of following reasons:

- Different institutions or companies willing to work 
with the framework might have different OS
defined as standard.

- The same might apply to different departments
within one institution or the freedom of 
employees to choose the OS.

- Some machines in one institution might work on 
different OS. A prominent example is Windows 
as OS of employees’ desktop computers and a 
computer cluster operating on a Unix derivate.

- Available implementations might be compiled for 
certain OS or process architectures. A 
recompilation is not possible at the institutions 
site. This also frequently applies for commercial 
software.

This can be solved by implementing the framework itself 
in a way that allows the portability to other OS. The choice 
of programming language is important in this matter.
Unfortunately, it is not possible to resolve this problem
completely. Possible restrictions can be resolved by the 
use of virtual machines or once again host-client services.
It is obligatory that the topic of portability doesn’t solely 
apply to the development of the framework, but also to the 
development of any associated implementation.

3.7 Parallelization, Cluster Operation and 
Remote Job Distribution

Broad concept studies can require a lot of computational 
resources. Where already standalone gas turbine 
performance studies may be a candidate for operation on 
computer clusters, workflows including models of higher 
order with the need of inner matching procedures are
consuming even more computational time.
A popular used approach enhancing the performance of 
used computational resources is parallelization, realized 
by multi-threading: Parts of the workflow or the simulation 
in general are split into independent problems in order to 
assign them to individual central processing unit (CPU)
cores. Branching the workflow and reasonable merging of 
threads at their end is a complex affair that can, in the 
worst case, increase the cumulated CPU time.
Looking at the exemplary workflows presented in sec. 2.2, 
there is only little potential for branching them. Best 
options are provided in iterative processes. If such loops 
are controlled by optimization algorithms which include 
independent function evaluations, multi-threading is an 
option. This is e.g. the case by application of evolutionary 
algorithms, in which broad populations are evaluated and 
results are merged in the creation of the next generation.
Another example are gradient algorithms when evaluating
the Jacobi matrix. Another option would be the 
parallelization of different OPs. However, this is not 
applicable in the workflows presented in sec. 2.2.3-2.2.4,
since the results of OPs at the beginning of the flight 
mission depend on results in later OPs: The amount of 
fuel mass required in later mission segments affects the 
thrust demand of the current OP, but not vice versa.
Overall, typical workflows for component zooming are 
more or less sequential with only embedded loops, which 
are typically sequential themselves. For this reason, a 
parallelization is only a minor business case when 
designing the framework. In contrast, some 
implementations may benefit from parallelization. Best 
examples are commercial FEM and CFD codes, which are 
commonly computed for effective multi-threading.
If a workflow supports multi-threading, it tends to be 
running effectively on a computer cluster, too. But even if 
parallelization is not considered, cluster operation might 
be an issue regarding the parallel, independent simulation 
of workflows on either different OPs such as suggested in 
sec. 2.2.2 or on any concept study dealing with different, 
independent geometries such as applying for both the 
flexible SAS and aircraft mission vs. engine mass 
assessments. However, this type of parallelization doesn’t 
need multi-threading, but just running multiple instances 
of the framework. Then, the requirements of the 
framework would be limited to the issues discussed in 
sec. 3.4 and 3.6.
Even if there might be justification to run workflows on a 
computer cluster, it might not always be a reasonable 
solution. There might be conflicts with departments 
running software, which is highly optimized for cluster 
operation, e.g. again CFD. This dispute can be avoided by 
a relatively simple alternative: remote job distribution,
which became especially popular with the SETI@home 
project with the publication of the software BOINC [16].
The implementation of a remote job capability is relatively 
simple, if it is aimed to be realized in a trustworthy 
environment, namely the institution’s local area network
(LAN). Everything required is a thin client-host service, 
which allows for the submission of rudimental prompts 
such as load, run or stop a simulation, and another 
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service, which allows the update of new workflow input 
files and the collection of results. Assuming the framework 
and all required implementations to be installed on a 
remote client desktop computer and ramping up after 
system start, it can be an effective solution regarding 
computational resources. E.g. the evaluation of 
computational resources at desktop computers at the 
Chair for Aero Engines, TU Berlin showed high shares of 
operation at CPU loads below (1/nCPU), with nCPU defining 
the number of cores located on the main processor. A
significant deviation has arisen only for computers 
frequently used for simulations with 3D CFD models.
However, remote job distribution should only be seen as 
feature, but never as requirement for a new framework.

3.8 Framework Integration to Parental 
Processes

The very first question discussed the integration level with 
some good arguments to design the framework as 
independent application with all required simulations 
plugged in. If choosing this way, every end-user should 
understand the benefits of this approach and hence 
respect that decision. In other words: It should never be 
the intent to plug the framework itself as external service 
to another simulation.
However, there might still be one reasonable situation 
providing an interface to plug the framework to an external 
process: Making two different frameworks interact with 
each other. For this purpose, it is advisable to provide at 
least one way to run the framework as batch process.

3.9 A Word About GUI Programming
Graphical user interfaces (GUI) can support the engineer 
e.g. by setting up workflows, checking simulation outputs 
at runtime and review errors. Especially for users who are 
not familiar with a software, they show advantages. On 
the other hand, daily users sometimes prefer the manual 
configuration of projects. A good example of this are 
common performance codes, which tend to offer only very 
rudimentary GUIs.
Since GUI programming can also be time-consuming,
because usability requires high robustness, it should be
prioritized rather low for such a framework. However, the 
integration of GUI features should be discussed from time 
to time as the complexity of a program grows. This might 
especially apply for the academic area, when the 
framework is considered to be used in teaching or
scientific staff is frequently changing.

4. IMPLEMENTATION OF IPSM

This section will shortly describe, how the before 
formulated questions have been answered by 
implementing the framework IPSM, which has been 
mostly developed in the scope of the framework AG Turbo 
and which was introductory presented in [13]. It is also 
intended to give suggestions for the application of 
techniques, which are more or less available platform and 
programming language independent.

4.1 Choice of Programming Language
The first decision has been the choice of an object 
oriented programming language because of their
universally known benefits, most of all class inheritance
facilitating the recycling of code and support later 

extensions. Further, a relatively modern and common 
language should be chosen such as C++, C# or Java.
Regarding platform portability, C++ and Java are originally 
suited with support of different, common OS. In contrast 
C# as .NET programming language was primarily
designed for Microsoft Windows OS, even if there are 
different projects aiming for a more general support on 
other platforms.
Finally, Java was chosen as major programming language 
for IPSM. However, C++ is also evident for a proper 
framework implementation and may generally provide a
higher flexibility to enhance the computational
performance of the framework. But as stated in sec. 3.5, 
the framework is not considered to be a bottleneck. In the 
end, this paper won’t discuss advantages and 
disadvantages of these two programming languages –
both are suitable. At least it should be clarified that such 
languages for the here presented purpose are preferable 
to implementations in e.g. VBA, see also [17].

4.2 Core Process and Parameter Exchange
The fundamentals of the core process design have been 
published in [13], but will be covered due to extensions in 
the meantime. The framework’s entire architecture is 
organized in a modular way, where the core process itself, 
the individual generic interfaces of each discipline and 
different auxiliary tools are stored in various Java libraries. 
These libraries are connected with each other as plugins,
forming the entire framework application. This is depicted
in Figure 7 with gas turbine performance, network and an
arbitrary additional discipline, specified by each one 
implementation. The direction of edge arrows defines the 
dependency of plugins. For example, all modules depend 
on the auxiliary modules and the specific implementation 
interfaces always inherit certain classes from its 
associated generic discipline interfaces. The latter are 
registered at the core process, so that it can communicate 
with these interfaces. Indeed, the core process doesn’t 
have to know about the specific implementations behind 
the generic discipline interfaces: These are resolved at 
runtime by using a technique in Java called instantiation 
via so-called META-INF services. In this way, it is also 
possible to provide the framework to a third party ‘as is’, 
still allowing the third party to attach own implementations 
to the framework without the need of recompiling it.
Comparing Figure 7 with the original from [13], the 
changed hierarchy of dependencies becomes clear – the 
former structure didn’t allow the independent integration of 
third party implementations.

Figure 7 Modular architecture of IPSM, extended 
from [13]
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Figure 8 demonstrates the basic implementation of 
workflows, which are combined of following key features:

- Modules: Each module is the computational 
representation of usually one model. The kind of 
model is arbitrary, both regarding its discipline as 
well as its complexity. A module can basically 
represent the 3D CFD model of an entire 
component or just a scaling equation of a certain, 
single parameter.

- Process chains: Common modules are arranged 
in their sequential order in process chains. 
Process chains itself can be handled as common
modules, too.

- Optimization modules: Suited with the same base 
properties as common modules, they are 
primarily representing optimization as discipline. 
A special feature is that the optimization is 
performed on a problem, which must be 
represented by a process chain. The simulation 
run of an optimization module hence opens an 
embedded loop, which is iterated until user-
defined break criteria are reached.

- Operating points: In the scope of the workflow, 
OP means the run of the entire workflow or a part 
of it under a certain set of input parameters. 
These might be associated to e.g. different 
boundary conditions, but may in principle also 
represent changed geometries or even solver 
settings. Operating points may be placed on the 
very top level – hence repeating the entire 
project several times – or on the level of any 
process chain. The latter allows for multi OP 
studies as e.g. required by the workflows 
presented in sec. 2.2.3-2.2.4.

- Constraints: In the context of the core process, 
the term constraint refers to a parameter
exchanged between modules. The evaluation of 
each module is managed by the core process.
This includes one initialization while loading the 
workflow and three typical steps at runtime. The 
first is preprocessing by means of transferring 
new input values registered at a central 
constraint map to the module. This is followed by 
the simulation run at current inputs. Result 
parameters registered in a workflow’s definition 
file are extracted and stored to the central 
constraint map, where they are available for the 
preprocessing of other modules. The definition of 
constraints is not bound to any workflow level so 
that modules from embedded modules may 
interchange parameters with modules in other 
process chains and even with OP definitions.

Figure 8 Principle of an IPSM workflow with all 
available key features, extended from [13]

The implementation of these five features is sufficient to 
support nearly arbitrary workflows. Even the here 
implemented feature of running IPSM as slave in external 
workflows (see sec. 3.8), not to be emphasized here in 
detail, integrates the external process as common 
workflow module.
The workflow itself is defined in a small set of XML-files.
XML (extensible markup language) is a file standard, 
organizing data in tree structures. All IPSM input and most 
output files are using this format, which facilitates usability 
and is relatively robust at parsing. Workflow input files are

- one project file defining the entry point and top 
level OPs,

- each one process chain definition file including 
the specifically included modules in their correct 
order and

- one overall file with the definition of all 
constraints.

Extension of available workflows is straight forward, since 
additional modules may be inserted to process chain 
definitions by adding XML-elements declaring the new 
module’s discipline, implementation and fundamental 
information such as the location of required input or 
generated output files. In this way, it is also easy to switch 
between different implementations by just updating these 
entries.
Considering the constraint definition, the most important 
entries are, which unique module is acting as provider of 
the constraint’s value and which are the modules 
receiving updated values as new inputs. Since both inputs 
and outputs as well as their transfer through the specific 
implementation interfaces may be arranged in total 
different ways, the parameters to be addressed as 
inputs/outputs must be declared with a so-called link. This 
link is effectively a string, which must be parsed in the 
specific implementation interfaces, usually including a 
trace e.g. to the targeted component, part and finally the 
parameter description on side of the implementation.
When switching the implementation, these links must be 
adjusted as well. This might be overcome in future 
versions by naming conventions for all implementations of 
a discipline. This is in fact an optional requirement, which 
solutions like GTlab already support due to their strict 
necessity in collaboration of different departments.

4.3 Interface Example: The Generic Discipline
The direct communication between the core process and 
all generic discipline interfaces is hard integrated in the 
core process plugin and is effectively not of interest for 
third party developers, who want to extend the framework 
with a new implementation. Coding the specific 
implementation interface requires a dependency setting of 
the most appropriate discipline interface or in worst case 
the generic discipline’s interface. The latter is described in 
this subsection referring to the most important, not 
exclusive methods to be implemented by the developer.
This gives a good inside of what to be considered when 
creating a similar framework on its own. The prefix of each 
method declares its return type. Boolean return values 
always indicate the success of the method’s intent.

- boolean setSetup(IDiscSettings)
This method hands over a prepared, 
standardized object from an IPSM specific type 
called “IDiscSettings” including information about 
the represented model’s configuration, e.g. 
location of input and output files. All of this is 
information previously read from the associated 
process chain definition file.
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- boolean initInstance()
This performs the rudimental initialization of the 
module, which might contain loading a dynamic 
link library or starting the application.

- boolean setProject()
Initializes the “real” model on side of the 
implementation, e.g. loading a network model 
defined by contents of the configuration object 
from the data base.

- boolean editProject(ITreeStructure)
Represents the preprocessing method of the 
interface according to the depictions in Figure 8.
The object from type “ITreeStructure” is a 
standardized object, which represents an XML-
tree – here containing the links to the input 
parameters and the new value of each.  
Documented classes implementing the Java 
interface “ITreeStructure” are accessible for the 
developer and contained in the auxiliary plugins.
It is also the type of data structure evaluated and 
generated by the core process.

- boolean runSimulation()
Performs the simulation on the preset model
under the current input conditions.

- int getNSI()
Returns the so-called numerical status indicator 
(NSI) of the last simulation run, which is a four-
digit number. It represents a return code, which 
can be used to rate the overall validity of results 
and partly trace errors. The specific 
implementation interface or the implementation 
itself should define those return values in 
accordance to the standards defined in [18].

- ITreeStructure getResultParse()
Returns – depending on the implementation – all
or partial results. Hence that method is 
responsible for the module’s postprocessing. The 
specific implementation interface must transfer 
the results to the standardized XML-tree 
structure from type “ITreeStructure”. Contained 
are the available output parameters and its 
values, where the XML-tree reflects the links to 
be used when applying those parameters as 
constraint value providers.

These are the methods regarded to be required for any 
implementation working on any framework. Additional 
operations are usually very specific and hence can be 
ignited within one of these methods. In IPSM, technical 
spoken, the developer implements a Java interface, 
effectively the pendant to the implementation of virtual 
methods in C++.

4.4 Remote Job Distribution and Control
The remote job distribution and control is realized with the 
provision of two network clients. One of them is a simple 
IRC client (internet relay chat), which receives messages 
from a channel logged to. These messages are parsed by 
an interpreter for certain keywords and forwarding 
identified commands by calling certain methods of the 
core process. This includes e.g. loading, running or 
stopping of workflows or sending feedbacks on specific 
workflow or module states. The major advantages of using 
the IRC protocol are that the protocol is compact, the host 
doesn’t need to be implemented itself, since various hosts 
are yet existing, and even the remote control from any 
arbitrary platform is possible, which provides an IRC client 
software, e.g. smartphones, too. In order to avoid 
unwanted operation of the remote control, different 

authorization requests are integrated in this IRC client.
The data exchange for the configuration of remote jobs as 
well as the collection of results is realized via a purposely 
independent, separate client. This client is bound to LAN
operation and equipped with a relatively strict security 
concept, which e.g. only allows communication between 
fixed defined network addresses.

5. CONCEPT STUDIES

5.1 Coupling Secondary Air System Modeling 
with Engine Performance
The workflows and some results for flexible SAS 
approaches were presented in [5] (aero engine) and [10]
(stationary gas turbine). New results from ongoing 
concept studies are not in the focus of this subsection. 
Although, both cases are suitable for demonstrating the 
advantages of the flexibly designed framework.

5.1.1 Switching of Implementations

In case of the aero engine application, the originally 
applied implementation of the discipline performance has 
been GTlab-Performance. In a later phase, this tool has 
been exchanged by a customized library of the industrial 
partner’s in-house performance code, including the 
reference engine’s original model as hard coded version. 
Performance code input and output parameters are 
relatively well standardized. For this purpose, the generic 
discipline interface of performance has been extended 
with constraint link interpreters, which allow the use of 
standardized links to be translated in each implementation 
interface. In this way, switching between performance 
implementations almost only requires to change few 
entries of the module definition within the associated 
process chain definition file.
Another example is the network discipline, originally 
implemented with Flowmaster V7, version 7.9.3 (software 
A). The SAS network model is subject to problems
regarding solver robustness, both in the coupled model of 
the aero engine and the stationary gas turbine. In the 
latter case, there is an appropriate network model existing 
for Flownex SE, version 8.9 (software B), which showed 
comparatively better robustness. In consequence, the 
implementation was switched for the studies presented in 
[10]. This required in addition to the module definition 
some manual changes of constraint links. A small set of 
constraints had to be redefined because of minor general 
differences in the network model setups. The latter can’t 
be finally avoided, but are low, the more similar the model 
setup of two implementations is. Most important: All 
changes had to be done in workflow definition files 
presented in sec. 4.2, hence without the need of any code 
changes. However, it is trivial that implementation 
switching always requires the specific implementation 
interface to be coded or provided once before.
Another advantage of adapting the workflow of the 
stationary gas turbine model to a more robust overall 
version allows for additional enhancements. The two 
different types of iterative processes – simple iterator and 
optimization algorithm – have been introduced in sec. 
2.2.1. Previously, the robustness problems required the 
application of an optimization algorithm. Expecting the 
alternative SAS network model in software B to run
robust, the simple iterator has been selected for 
subsequent studies. In IPSM, the simple iterator is 
technically an optimization algorithm, too. The difference 
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is that it doesn’t provide guess values on its own, but can 
simply forward the new derived secondary mass flows as 
new input to the performance model. This approach is 
valid for that type of workflow. This basically self-
converging process is beneficial in terms of computational 
time – or being more precise: less iterative steps.
This exercise also provides the following reverse 
conclusion: The applicability of a theoretically self-
converging iterative process should always demand for 
the possibility, to be controlled by an optimization 
algorithm as well. This must be considered both when 
setting up the workflow and deciding for or programming a 
framework. Models may run robust in a certain, well 
known scope, e.g. at design point conditions, but are 
sometimes not known to run problem free in other OPs 
are with certain geometry changes.
Figure 9 highlights the changes made in the workflow for 
flexible SAS studies in the stationary gas turbine 
presented in [10]. Also included is a plot demonstrating, 
how the overall simulation time can be accelerated. It 
includes the optimization algorithm’s and simple iterator’s 
convergence progress in the objective function value fcn 
over function evaluations, hence iterations. 
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Figure 9 Workflow modifications for flexible SAS 
in stationary gas turbine and benefit regarding 
computational time

The recorded progress of fcn represents the matching 
process of an exemplary OP. The threshold marks the 
tolerance level fcn has to fall below to rate a solution as 
matched. In case of the optimization algorithm, the 
simplex downhill algorithm presented by Nelder and Mead 
[19] is applied, which has been implemented in IPSM 
including a rudimentary handling of side condition 
violations. Here, the latter includes overall simulation 

robustness control by evaluation of the iterated process 
chain’s overall NSI. It has to be denoted that the 
presented plot cannot provide a final statement on the 
benefits of the simple iterator. Each optimization algorithm 
has another performance for a given optimization 
problem. Besides, even for the switched network model 
applies: No model can be guaranteed to run robust under 
all reasonable conditions.

5.1.2 The Advantage of Zooming to Components

In [5], trades between blade creep life tCL and fuel flow wf
are presented for a hypothetical SAS modulation in an 
aero engine’s high pressure turbine (HPT). Most of the
benchmarks are based on a shortened workflow, which 
doesn’t consider a detailed SAS network model. Figure 10
shows the response of a full coupled model including the 
network model. Throttling the major supply flow of the 
inner SAS, which is injected through a pre-swirl nozzle 
system (PSN), results in both a reduction of the fuel flow 
(benefit) and creep life (penalty). For example, a fuel flow 
reduction of Δwf,rel = -0.13 % is predicted by the full 
coupled model to be reached at approximately 95 %
supply flow throttling, which corresponds to a blade 
cooling flow of 93.5 % referred to the base setting, see
Figure 10-11. However, the drop in creep life to 
approximately 66 % of the reference is remarkable.
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Also confirmed is the fact that sink flows facing lower 
annulus pressures are less affected by throttling of the 
main supply. This is illustrated in Figure 11 with the
comparison of the rim seal net flow upstream of the first
rotor blade at a lower sink pressure than the rotor blade’s
film cooling. Since hot gas ingestion is an additional SAS 
requirement, the here presented concept must consider 
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changes in the rim seal flows, too. For this reason, 
component zooming is a proper approach for holistic 
investigations on flexible SAS.

5.2 Aircraft Mission at Changed Engine Mass
In the studies of this subsection, the previously introduced 
geometry models are applied. Their inputs are based on 
published documents and illustrations and are therefore 
subject to inaccuracies. Similar applies for the aircraft 
model. Since this paper deals less with validation aspects 
of single models than with the possible applications of the 
framework, the presented results are preliminary 
benchmarks.

5.2.1 Application of Tandem Blades in HPC

The investigations on application of tandem blades cover 
three cases, which are compared to a setting with 
conventional vane aerofoils:

a) Replacement of conventional vanes with tandem 
configuration in all stages of the HPC

b) Like a), but reducing the number of vanes in 
each stage to 75 %, motivated by the prediction 
of enhanced flow control

c) Like a), but removing the second to last HPC 
stage, motivated by the prediction of enhanced 
specific work in all other stages. The last stage is 
not considered for removal, because it is 
structurally integrated to the interface with the 
combustor.

The resulting mass reduction per engine as well as the 
overall benefit in terms of aircraft mission fuel burn
reduction at two engine operation is depicted in Figure 12.
The diagram contains samples for predictions of general 
engine mass reductions simulated with the workflow from
Figure 5. These samples can be transformed to an 
exchange rate between mission fuel burn and aircraft 
take-off weight (TOW), which results in
(Δmf,mission/ΔmTOW) = 0.785. This result generally 
corresponds to the order of magnitude of exchange rates 
presented in [20], which apply to an aircraft in the same 
competition segment. However, those exchange rates 
depend on the mission range. A correction to the mission 
applied in [20] indicates that the here presented fuel burn 
benefit is likely underestimated, see Table 2.
A fundamental result is that tandem blades tend not to 
increase the engine mass. Indeed, there is a direct mass 
reduction, which is caused by slightly shorter axial chord 
length of the here applied tandem aerofoils compared to 
the conventional reference design. Applying this 
technology to the purpose of enhanced flow stability only 
would come along with a minor positive effect regarding 
fuel flow consumption, too. However, this effect is 
negligible, since fuel burn savings are in the order of 1 kg 
per referred flight mission.
Interestingly, similar applies for case b) which reduces the 
number of aerofoils. The overall aerofoil mass accounts 
only minor to the overall HPC mass, which is mainly 
driven by disks, casing and blade/vane platforms.
More promising is the concept of increased specific work, 
possibly allowing for the reduction of at least one stage. In 
contrast to the previous case, this one affects the 
shortening of radial adjacent components. It has to be 
noted that these investigations, besides the shortening of 
the HPC itself, only consider additional shortening of the 
LP shaft. The associated bypass duct as well as the entire 
nacelle are not modeled, but should be considered for a 
more complete assessment.
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Figure 12 Concepts mass reductions per engine 
to mission fuel burn

5.2.2 Shortened SND

The results for the axial downscaling of the SND are 
attached to Figure 12, too. In this scenario, following parts 
and segments of adjacent components are considered: 
The SND inner and outer wall, SND strut hollow aerofoils 
and each one segment of the LP shaft and bypass duct 
chosen to have the same axial length at base setting. 
Once again, the nacelle is not modeled. Frame structures 
and pipes integrated to the SND struts are unchanged, 
because they are designed to requirements unrelated to 
the aerodynamics of the SND.
Similar to the introduction of tandem blades, the effect of 
mass reduction regarding fuel burn savings is limited for 
SND shortening. It has to be noted that the results don’t 
yet include the masses of possibly required AFC
actuation.
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Figure 13 Exemplary SND mass reduction vs. 
performance enhancements to cruise fuel burn

As mentioned in sec. 2.1.3, SND shortening might be an 
option regarding mass reduction, but there are other 
interesting aspects of this technology as well. For this 
purpose, Figure 13 contains additional benchmarks, which 
are aiming for enhancements in adjacent component 
performance. These examples are unrelated to mass 
changes. The first line marks the level of fuel burn 
reduction at cruise that can be expected, if the booster 
efficiency can be increased by 0.5 %. The second aims 
for a reduction in the pressure loss of the SND, here 
expressed to an increase of 0.5 % of the total pressure 
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ratio between SND inlet and outlet. The third line 
combines both measures.  It has to be denoted that these 
benchmarks are just exemplary on the one side and 
bound to the applied gas turbine performance model on 
the other side.

5.2.3 Resulting Options

One conclusion from the presented investigations is that 
fuel burn benefits are limited when dealing with concepts 
for engine mass reduction on component level. Other 
effects of novel concepts should be rather put to the 
foreground, e.g. the enhancements in flow control, turbo 
component efficiency or duct pressure losses. 
Furthermore, today’s gas turbine development requires 
various novel concepts for significant enhancements of 
the overall performance [21]. For this reason, relatively 
small benefits in certain fields of the research should not 
be underestimated. The concept of SND shortening is 
also interesting in the scope of future engines, e.g. ultra 
high bypass ratio engines.
One aspect which is likely coming too short in the 
academic research is the view of the gas turbine or airline 
operator. Novel concepts providing fuel burn reductions 
as presented in Figure 12 and Figure 13 are often 
introduced to real engines as features without an overall 
gas turbine or aircraft redesign. Assuming an aero engine 
allowing for a mass reduction per engine in the order of 
the tandem blade case c) (removal of one HPC stage): In 
place of reducing the mission fuel burn, the operator may 
reoffer the mass as additional payload. This allows e.g. for 
two items of extra luggage per flight cycle, which can be 
easily translated to an economical benefit.
Remembering the constraint of matching the flight mission 
trajectory, not all feasibilities resulting from mass 
reductions can’t be discussed here. When the thrust is not 
rematched to those OPs, which are subject to aircraft 
acceleration – primarily take-off, climb and descent – the 
trajectory is adjusted to the changed overall aircraft 
weight. Cruise altitude can then be reached earlier as well 
as the initialization of descent. The aspect of acceleration 
may also be from higher significance in military 
applications. Last but not least, mass reduction may be 
converted to mission range extension, too.

6. CONCLUSIONS
Component zooming is a technique that allows for 
investigations of novel concepts thereby exceeding the 
boundaries of associated components and technical 
disciplines. Coupling detailed numerical models with gas 
turbine performance can assess the benefits of a concept 
in the context of the surrounding system. One associated 
challenge is the appropriate definition of model interfaces. 
Even more challenging might be the establishment of
such assessments in a research environment. This paper 
makes proposals to address this problem.
The early application of component zooming can help to
identify the most promising objectives in research on
concepts based on the expected benefits. Regarding the 
results of tandem blade and SND studies presented here,
the future focus of research should be put on
improvements in aerodynamics rather than on the weight 
aspect. Nevertheless, it must be emphasized once again 
that the presented results do not claim to make any final 
statements about this. The here presented results should 
be interpreted as conservative benchmarks, strictly 
considering the assumptions made within the geometry 

and flight mission model. Follow up studies require the 
replacement of the current geometry and aircraft models 
with more accurate models.
In fact, the introduced generic workflows are starting
points of more comprehensive investigations. Especially 
the mass reduction examples allow for the extension with 
models regarding aerodynamics within the focused 
components. One of the key disciplines identified by the 
authors are turbomachinery meanline models, which may 
serve both for the better modeling of aerodynamics and 
as interface models, e.g. between gas turbine 
performance and network simulation. The extension of the 
here discussed workflows with such models shall be 
conducted in subsequent works.
All studies presented in this paper focus on the gas 
turbine. Nevertheless, the workflow for mass benefit 
assessment may also serve as starting point for deeper 
integrative studies including both aircraft and engine 
models. This may also include additional system 
interfaces such as cabin air supply from the SAS.
All this proves that the sustainable development of a 
framework for component zooming is worthwhile. It can be 
applied to nearly arbitrary problems, allows for future 
extension of available workflows and also facilitates the 
before mentioned replacement of single models. Besides 
of that component zooming may promote the inter-
disciplinary exchange on institutional level, which is 
beneficial regarding the overall competence.
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APPENDIX

OP Alt *
[ft]

vTAS
[kt]

Ma
[-]

ΔAlt/Δt 
[ft/min]

s
[NM]

t
[min]

01 Take-Off 0 145 0 1.183 ► 0.49
02 Initial Climb 5000 600 2500 ► 20.0 ► 2.0
03 Initial Climb to FL150 15000 290 2000 ► 24.2 ► 5.0
04 Initial Climb to FL240 24000 290 1400 ► 31.1     ► 6.4
05 Climb at Ma constant 39000 0.78 1000 ► 112 ► 15.0

11 Cruise 39000 450 0 300 ► 40.0
… descretized to nine segments … … … … … …
19 of each same range 39000 450 0 300 ► 40.0

21 Initial Descent to FL240 20000 0.78 -1000 ► 152 ► 19.0
22 Descent to FL100 10000 290 -3500 ► 13.8 ► 2.86
23 Approach 0 230 -1500 ► 25.6 ► 6.67

31 Go-Around Take-Off 2800 230 2500 ► 4.29 ► 1.12
32 Go-Around Circle 2800 230 0 ► 38.3 10.0
33 Go-Around Approach 0 230 -1500 ► 7.16 ► 1.87
34 Landing 0 137 0 0.778 ► 0.34

bold Calculation mode based on parameter
► Calculated parameter
* Defines the final OP altitude, since initial altitude set to the final altitude of the previous OP

Operating empty weight 42600 kg
Payload 12000 kg
Fuel regular mission calculated
Fuel reserve 500 kg

Table 1 Flight mission definition [22] extended with go-around procedure and aircraft mass 
assumptions

(Δmf,mission/ΔmTOW)
[-]

reference aircraft reference mission description

0.73 Boeing 737 according to [20],
smission = 1080 NM

literature based 
exchange rate

0.785 Airbus A320 alike according to Table 1,
smission = 3130 NM

exchange rate for 
presented model

0.59 Airbus A320 alike according to Table 1, but
AltOP05 according to AltCR from [20]
AltOP11…19 according to AltCR from [20]
MaOP11…19 according to MaCR from [20]
smission according to [20]
without Go-Around (OP31-33)
without fuel reserve

exchange rate for 
presented model, 
corrected to mission 
of literature based 
exchange rate

Table 2 Exchange rates for fuel burn change to TOW change
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