

Bemannte Marsmission – Status und Perspektiven

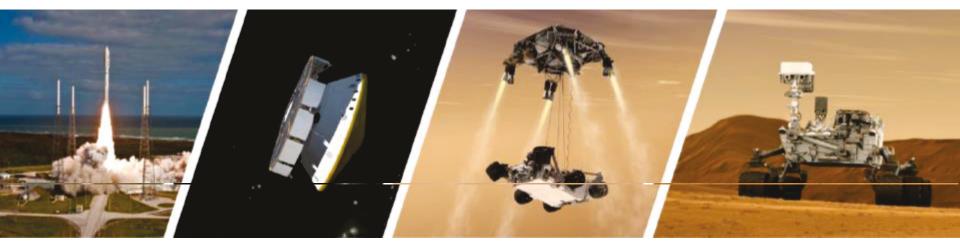
DGLR Fachausschuss R1.2 "Raumtransportsysteme" M. Obersteiner, R. Janovsky 1.10.2019, Darmstadt

©2019

Inhalt

- Einleitung (Zusammenfassung von 2018)
- Marsmissionen Aktuelle Missionen
- Bemannte Missionen Reduzierter Aufwand
 - Treibstoffgewinnung auf dem Mars
 - Elektrische Antriebe
- Vorhandene Systeme und Technologien
 - SLS Orion (mit ESM)
 - Habitate (ISS, Lunar Gateway)
 - Antriebe (LOX/Methan)
- Zusammenfassung

Einleitung



- Fazit der bisherigen Arbeit des DGLR-FAS Raumtransportsysteme
 - Die bemannte Marsmission ist weiterhin das herausragende Ziel der Raumfahrt, weltweit
- Viele Errungenschaften in verschiedenen Bereichen ermöglichen bereits heute sehr realistische Planungen
 - Kommerzielle Unternehmen bieten ihre Dienste an
 - Eine Vielzahl von Trägersystemen steht weltweit zur Verfügung
 - Vorbereitende Missionen auf der Erde, im LEO am Mond k\u00f6nnen kritische Systeme in relevanter Umgebung verifizieren
 - Eine Vielzahl von Technologien für die Durchführung von Marsmissionen stehen in unterschiedlichen Reifegraden zur Verfügung
- Eine international akzeptierte sichere Missionsdurchführung benötigt aber noch weitere Fortschritte
- Im Vordergrund stehen dabei:
 - Gesundheit und Leistungsfähigkeit der Crew
 - Leistungsfähige Transportsysteme, ggf. mit verifizierten alternativen Antrieben (Start, Transfer, Landung, Rückkehr)
 - Leistungsfähige Habitate, Mobilität, Energieversorgung auf der Marsoberfläche
 - Querschnittliche Technologien: ISRU
- Bemannte und unbemannte vorbereitende Missionen stehen auf der Agenda der Raumfahrtnationen und die Machbarkeit der bemannten Marsmission wird dadurch wahrscheinlicher

Marsmissionen – Aktuelle Missionen

NASA - Mars 2020

LAUNCH

- Atlas V 541 vehicle
- Launch Readiness Date: July 2020
- Launch window: July/August 2020

CRUISE/APPROACH

- ~7 month cruise
- Arrive Feb 2021

ENTRY, DESCENT & LANDING

- MSL EDL system (+ Range Trigger and Terrain Relative Navigation): guided entry and powered descent/Sky Crane
- 16 x 14 km landing ellipse (range trigger baselined)
- Access to landing sites ±30° latitude,
 ≤ -0.5 km elevation
- Curiosity-class Rover

NASA's Mars 2020 Comes Full Circle

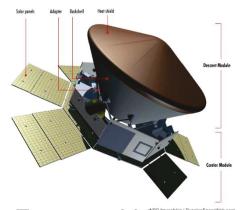
Aiming to pinpoint the Martian vehicle's center of gravity, engineers took NASA's 2,300-pound Mars 2020 rover for a spin in the clean room at JPL.

JPL/NASA-CALTECH | September 12, 2019

SURFACE MISSION

- 20 km traverse distance capability
- Enhanced surface productivity
- Qualified to 1.5 Martian year lifetime
- Seeking signs of past life
- Returnable cache of samples
- · Prepare for human exploration of Mars

New science and technology instruments



ALSO:


- new wheels
- Terrain Relative Navigation and Range Trigger for EDL
- new engineering cameras
- enhanced autonomy capabilities
 5 hour ops timeline
- enhanced EDL cameras, and microphone. Strengthened parachute.
- helicopter (still being assessed)

Exomars 2020

- ©2019
- Europas nächste Mission zum Mars wird einen mit einem wissenschaftlichen Labor ausgestatteten Rover (310 kg) zur Marsoberfläche bringen.
- Diese ExoMars 2020-Mission wird von ESA in Kooperation mit der russischen Raumfahrtagentur Roscosmos durchgeführt.
- Nach etwa 8 Monaten Transfer wird das Eintrittsmodul, durch die Atmosphäre, zwei Fallschirme und Triebwerke abgebremst, auf der Marsoberfläche an einem Ort mit sehr altem, möglicherweise organischem Material landen
- Der Rover wird mehrere Kilometer auf der Marsoberfläche zurücklegen und interessante Orte für Bohrungen erkunden.
- Der Rover wird Bohrungen bis zu einer Tiefe von 2m durchführen und die Bodenproben in seinem Labor unter anderem auf Spuren von Leben analysieren. Durch den Strahlungsschutz in 2 m Tiefe besteht eine größere Wahrscheinlichkeit, Spuren von Leben zu finden.
- Der Rover ist für eine operationelle Lebensdauer von ca. 218 Tagen ausgelegt

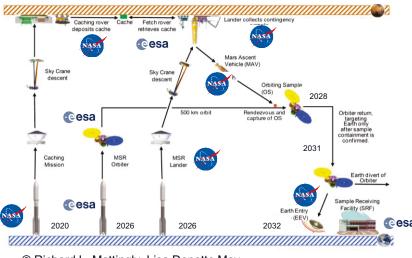
Exomars 2020

Carrier Module

Descent Module

Orbiter&Rover

China Mars 2020



- Render of China's Mars 2020 rover ahead of deployment. Credit: CNSA/Xinhua
 - ➤ 240kg Rover
 - Photo-voltaische Energieversorgung

Mars Sample Return - 2026

- Der Mars 2020 Rover (NASA) wird Bodenproben sammeln und für eine spätere Aufnahme auf der Marsoberfläche lagern
- Nach dem Start im Juli 2026 wird ein Landefahrzeug mit einer Aufstiegsstufe (MAV) (NASA) und einem Probensammelfahrzeug (ESA) in der Nähe des Mars 2020 Rover im August 2028 landen.
- Der ESA-Rover nimmt die vom Mars 2020 Rover zurück gelassenen Proben auf und bring sie zu der Aufstiegsstufe.
- Sobald die Proben verladen sind, wird die Aufstiegsstufe mit dem Probenbehälter im Frühjahr 2029 in einen niedrigen Marsorbit aufsteigen
- Das Rückkehrfahrzeug (MSRO, ESA) startet im Oktober 2026 mit Ariane 6, erreicht den Mars in 2027, und wird seine Bahnhöhe mit elektrischen Antrieben schrittweise bis Juli 2028 reduzieren
- Der ESA-Orbiter wird den Probenbehälter im Orbit aufnehmen und während des Mars-Erde-Transferfensters im Jahr 2031 zur Erde zurück bringen

Eine Wiedereintrittskapsel wird den Probenbehälter im Frühjahr 2032 zur Erdoberfläche bringen

© Richard L. Mattingly, Lisa Donette May

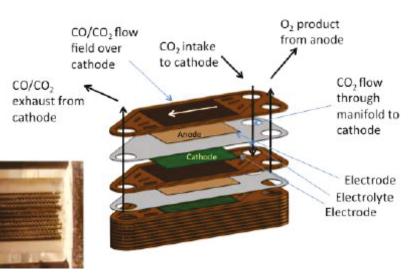
©2019

DGLR

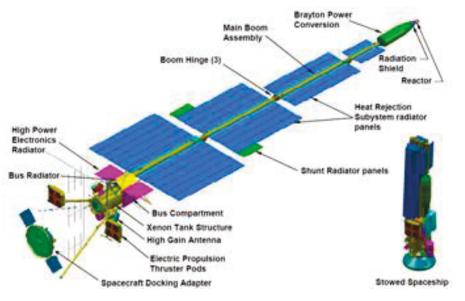
Reduzierter Aufwand (Startmasse vom Erdboden) im Vergleich mit "klassischer" Mission (2/3-Impuls Bahn (Hohmann Bahn), chemische Raketenantriebe)

- Gewinnung von Treibstoff auf dem Mars
 - NASA Mars 2020 Moxie
- Elektrische Antriebe für den Erde-Mars-Erde Transfer
 - VASIMR (NASA)
 - SX3 MPD-Thruster (IRS)

Gewinnung von Treibstoff auf dem Mars NASA Mars 2020 – Moxie



Tech Specs


Main Job	To produce oxygen from the Martian carbon-dioxide atmosphere
Power	300 watts
Volume	9.4 x 9.4 x 12.2 inches (23.9 x 23.9 x 30.9 centimeters)
Oxygen Production Rate	About 10 grams per hour (About 0.022 pounds per hour)
Operation Time	Approximately two hours of oxygen (O2) production per experiment, which will be scheduled intermittently over the duration of the mission

SOXE design and sample stack. The side view of an actual stack is shown at left

©2019

Mars

Jupiter Monde

Saturn Monde

Anforderungen:

Schub bzw. Schubdichte: > 25 N / MW (Mars: 100 N)

Austrittsgeschwindigkeit: 10 – 100 km/s (Mars: 30 km/s)

Schubwirkungsgrad: > 50 %

Energieversorgung: maximal, W/kg

Zusätzlich (oft vernachlässigt):

Lebensdauer: > 40 000 h (8 760 h/a, 4,56 a)

Treibstoffverfügbarkeit: (Kosten)

ISRU Nachhaltigkeit

Jupiter Icy Moons Orbiter Concept (JIMO). JPL / NASA

Mars Atmosphäre

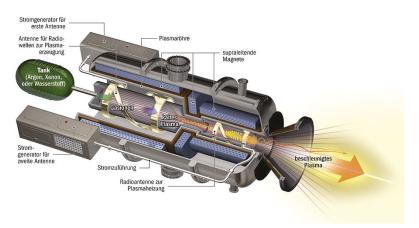
 $CO_2 - 95 \%$ $N_2 - 2,7 \%$

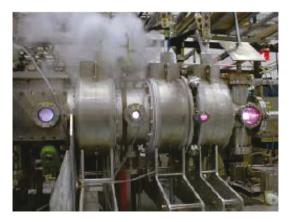
Ar – 1,6 %

Nur wenige Antriebskonzepte erfüllen alle Kriterien !!!

(Beitrag G.Herdrich)

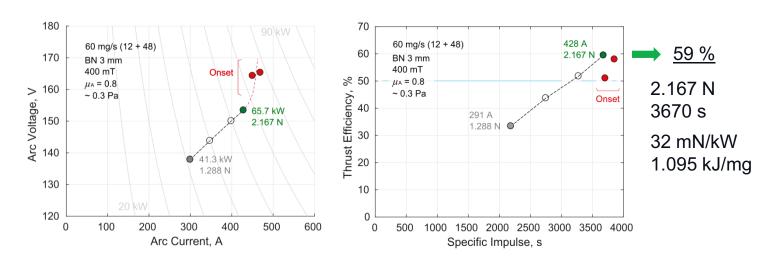
VASIMR


Variable Specific Impulse Rocket (Ad Astra Rocket Company)


- Zweistufige Plasmaheizung beide Stufen induktiv
- Forschung in USA seit ca. 1988
- Möglicherweise Probleme beim stationären Betrieb (Dauerbetrieb)

Vorteile:

- Variabler Spezifischer Impuls
- Hohe effektive Austrittsgeschwindigkeit durch magnetische Düse
- Die zweite Stufe ist so ausgelegt, dass die Ionen direkt geheizt werden



(Beitrag G.Herdrich)

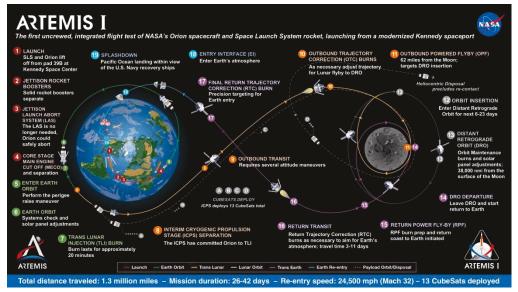
Experimental Results using the 100 kW steady state Applied-field MPD Thruster SX3

Most Efficient Operation

Arc current was limited by onset phenomenon above ~ 430 A
High voltage oscillations in the range of 150-200 V
Visual plume oscillations

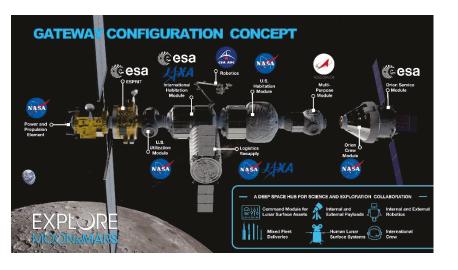
Adam Boxberger, Peter Jüstel, Georg Herdrich, Performance of 100 kW Steady State Applied-Field MPD Thruster, 31st International Symposium on Space Technology and Science, Matsuyama, Japan, June 3-9, 2017.

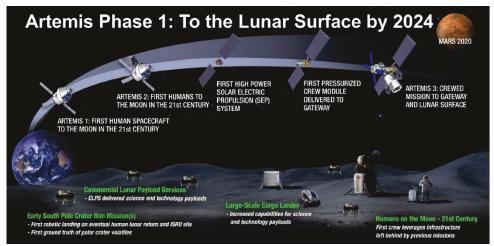
Vorhandene Systeme und Technologien


- SLS Orion (mit ESM)
- Habitate (Lunar Gateway)
- Antriebe (LOX/Methan)

Vorhandene Systeme SLS und Orion mit europäischem ESM

- Artemis hat der NASA-Planung einen neuen Fokus gegeben: Dauerhafte bemannte Rückkehr zum Mond
- Mars ist weiterhin als Ziel in der Planung
- Eine Vielzahl an Technologiethemen erhalten neuen Schwung
- (Kommerzielle bemannte RF)





Lunar Gateway

- Seit 2014 untersuchen die Partner der ISS (ESA, NASA, CSA, JAXA, Roscosmos) ein Konzept für eine bemannte Station "Gateway" in einem Mondorbit
- Das Gateway wird ein zeitweise bemannter Außenposten in einem hochelliptischen Mondorbit (NRO, 2000km*75000 km, Umlaufzeit 6-8 Tage) sein
- Es unterstützt die Entwicklung und den Langzeittest von Systemen und Technologien für den Zugang zur Mondoberfläche, dem Transfer zum Mars und den Zugang zur Marsoberfläche
- Im März 2019 hat NASA in ihrem Artemis-Programm ihre Pläne dahingehend konkretisiert, bis 2024 einen Astronauten auf der Mondoberfläche zu landen
- Das Gateway spielt im Artemis-Programm eine zentrale Rolle für das Andocken des Lande- und des Aufstiegsfahrzeug, des Crewmoduls, Logistik etc.
- Stand heute wird sich Europa mit zwei Modulen (International Habitat 2025, ESPRIT 2027) und dem Servicemodul des Transferfahrzeugs Orion am Aufbau des Gateway beteiligen

Technologien: Antriebe und Treibstoffe (Beitrag J.Alting)

LOX/CH4 – Die Treibstoffalternative:

- BK-Versuche in 2015/2016
- Triebwerks-Architektur (Prometheus)
- weitere Komponenten inkl. Test (Gasgenerator, Ventile etc.)
- Erweiterung der CH4-Kenntnisse (Anwendung in unterschiedlichen Schubklassen möglich)

Brennkammer Test LOX/CH4

Turbopump LOX/CH4

LOX/CH4 - Triebwerk

Zusammenfassung

Fazit der bisherigen Arbeit des DGLR-FAS Raumtransportsysteme:

Die bemannte Marsmission ist weiterhin das herausragende Ziel der Raumfahrt, weltweit

- Neben der "klassischen" Mission gibt es Ansätze zur Aufwandsreduzierung
 - Treibstoffgewinnung auf dem Mars für den Rückflug
 - Elektrische Antriebe für den Transfer Erde-Mars
- Ein Workshop wird eine erweiterte Möglichkeit zur Präsentation und Diskussion der Thematik bieten:
 - LST f. Raumfahrttechnik der TU München (Prof. U.Walter)
 - 2.-3.4.2020
 - Inhalte
 - Planungshorizont (Historie, Heute)
 - Zielsetzung und Missionsvarianten (ISECG / Roadmap, Integration LEO, Hohmann Transfer, Alternative Missionskonzepte)
 - Vorbereitende Missionen / Zwischenschritte (Space Station, SLS-Orion (NASA/ESA), Lunar Gateway, Analog-Mission z.B.
 Mars 500)
 - Systeme (Start von Erdoberfläche mit Trägerraketen, Interplanetarer Flug, Kommunikation und Autonomie, Landung auf dem Mars, Nutzung von Mars-Ressourcen)
 - Technologien (Antriebe und Treibstoffe, Habitate und Strahlenschutz, Hochleistungsfähige Solarpaneele, Autonomes Systemmanagement, Zuverlässige Lebenserhaltungssysteme, Geschlossene Lebenserhaltungssysteme, Kommunikation)
- Teilnahmewünsche und Themenvorschläge sind willkommen:

Michael.Obersteiner@airbus.com oder Rolf.Janovsky@ohb.de