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Abstract
Operating at an airspeed of about 30 m/s at an altitude of 18 km, solar powered, unmanned, high altitude
pseudo satellites (HAPS) are a good alternative to satellites to provide surveillance and communications
services. Being generally constructed as an ultra-lightweight unmanned fixed-wing aircraft, HAPS are sensitive
to critical weather conditions. Our work consists of developing a hybrid mission management system, equipped
with a human machine interface and a decision assistant, to aid the HAPS operator in choosing the ‘best’ plan
analytically. In this work, real weather forecast data from the past is integrated and used in the hybrid mission

management system.
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1. INTRODUCTION

The primary motivation of this article is to optimize the
planning for high altitude long endurance (HALE) platforms
contracted to carry out surveillance missions with an
electro-optic mission camera. The considered HALE is a
solar powered, fixed wing, ultra-lightweight (~100 kg)
unmanned aerial vehicle (UAV) operating at an altitude of
~18 km at a speed of ~30 m/s to provide satellite-like
services like communication and surveillance. HALE
platforms can be promising alternatives for satellites in
civilian and military use. A HALE platform used for such
application is sometimes also referred to as a high-altitude
pseudo satellite (HAPS). However, due to the properties of
the platform, diverse weather conditions must be
considered in the operation, making the mission planning
much more complicated.

A HAPS is currently operated by four crew members, in
charge namely of mission planning, flight control, sensor
operation and data assessment. To make the technology
economically viable, it is necessary to increase the
autonomy of the mission management system (MMS) in
order to reduce man power while maintaining the balance
between mission success and flight safety.

Considered in this work are surveillance missions of desired
locations of interest (LOIs), which must be carried out by
the HAPS with an electro-optic camera. Based on the
mission tasks and mission constraints, the MMS generates
multiple flight plans within the allowed planning time. The
flight plans are computed by taking the weather conditions
such as cloud and wind into account. The calculated plans
will be evaluated analytically by a decision-making tool
based on a set of parameters given by the operator. The
HAPS operator receives results in form of a ranking list and
selects, according to the situation, the most appropriate
mission plan.

The final output consists of a feasible flight path with
sequences of waypoints that will be transmitted to the on
board automatic flight management system. The plans are
generated and tested using the properties of a HAPS.

The paper is structured as follows. Section 2 describes the

problem space and the example missions considered in this
work. Section 3 gives an overview of the available realistic
weather data that are integrated and considered in the
MMS. The design of the hierarchical task scheduler/planner
is presented in section 4 and subsequently, the decision
assistant is presented in section 5. The interaction of the
operator with the human machine interface of the simulator
is described in section 6. The final conclusion of this work
is included in section 7.

2. PROBLEM DEFINITION

The work in this article is based on a realistic mission
environment as real weather data is used. Considered is a
HAPS carrying out its missions at a constant optimal true
air speed (TAS) at a constant operation altitude. A realistic
mission scenario is shown in Fig. 1. The missions are
carried out by a single HAPS during daytime. The platform
has the properties mentioned in the introduction:
lightweight, solar powered, long endurance cruising ability
and relatively low air speed. It is assumed that the HAPS
gains more energy than it consumes during daytime. The
feasibility study of the mission planning in this work is
limited to offline long-term mission planning, i.e. the plan is
computed for a long-term mission before execution.

Examples of surveillance missions a HAPS can execute are
border control, forest fires monitoring, whirlwinds tracking
etc. Fig. 1 shows an example of different surveillance
missions. The locations of interest (LOIs) are represented
by the green polygons. These are areas that the contracting
clients wish to monitor. Neighbouring LOls of a single client
are grouped together and encompassed in an allocated
airspace, i.e. the mission area (MA) that is represented by
the blue polygons. The HAPS is free to operate within the
MA’s. The yellow rectangles outline the waiting areas (W1
and W2). These areas must be accessible for the time the
HAPS is not in use to fulfil missions. Corridors between MAs
and waiting zones are negotiated and approved by the air
traffic control.

To carry out upcoming missions, the crew of the HAPS
needs to plan the flight path (order of LOIs). The planning
process considers the knowledge of the weather situation
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within the operating airspace of the HAPS during the
mission execution. Under the consideration of mission- and
platform-specific constraints, the manual analysis of all
weather data is too time-consuming for the crew. Therefore,
the support from an automated mission management
system (MMS) to generate feasible flight plans is
necessary. The mission management system shown in this
work is intended to reduce the workload of the operator.

FIGURE 1. Mission scenario map with a partial flight path
3. WEATHER DATA

Due to the lightweight structure of the HAPS and mission
constraints, the consideration of weather information (long-
term forecast and regular updates of weather forecast) is
necessary for planning a mission. This section provides an
overview of the weather data in used. Unlike static
obstacles like uneven terrain, hazardous weather zones
vary over time and are described by moving polygons which
also deform over time. Hazardous weather conditions are
clouds, strong wind, thunderstorms and turbulences, which
have immense effects on the flight behaviour, could even
impede the platform if ignored during operation.

TAB 1 shows the used weather data and the provided
forecast durations. The recorded weather data are available
either in 2D or 3D at each time instant. The 2D data
assumes that the measurement is identical over all altitude
levels. The forecast set describes the number of predicted
forecast hours. Using an example weather data like the Cb-
LIKE with a forecast set of one to six. The data includes
forecast for the upcoming six hours.

The weather data are stored in comprehensive XML-
formatted text files [12]. The corresponding updating rate
for each data set is illustrated in Fig. 2

One of the greatest hazards for HAPS are the
cumulonimbus clouds (Cb). A Cb cloud can easily achieve
an expansion of over nearly the entire vertical atmospheric
layer [9]. The Cb clouds contain water, and icing, as well as
thunder and lightings. Therefore, a safety distance between
Cb clouds and platform must be kept. For the simulation of
these type of clouds the data of the Cb-LIKE
(Cumulonimbus-LIKElihood) algorithm [12] is used. With a
coverage of Germany and sections of neighbouring
countries, the clouds are shown as polygons consisting of
several longitude and latitude vertices. Each update of data
set consists of one to six forecast sets (i.e. Cb-polygons are
forecasted up to six hours into the future). Each forecast set
comprises up to five threshold sets, where the higher the
threshold value, the more likely a cloud polygon becomes a
thunderstorm. In Fig. 1, the red polygons represent the Cb-
LIKE objects.

Type of weather | Dimension Forecast set
data algorithm per update
Cb-LIKE 2D 1t06
Cb-Tram 2D Oto1
Wind field (NoGo- | 3D 21
Areas)
Cloud coverage 2D 21
Wind velocity 3D 21

TAB 1. Weather data

Another algorithm to show thunderstorms and Cb polygon
cells is Cb-Tram (Cumulonimbus TRacking And
Monitoring). The data compiled with the Cb-Tram algorithm,
includes three different developing states of intense
convective thunderstorms [12]. The forecast horizon is one
hour with an update rate of five minutes.

Besides the clouds, the wind also has a significant influence
on the flight dynamics of the UAV. The real wind data used
is taken from COSMO-DE [12], a model data developed by
the German Meteorological Service (DWD), with a forecast
horizon of 21 hours and eight updates per day. The grid
mesh size has a horizontal resolution of ~2.8 km and
contains 50 vertical layers [11]. New updates are available
every three hours. For each forecast set, the wind vector is
expressed in terms of three wind components based on the
numerical Arakawa-C-Grid [11]. The U wind component
represents the zonal velocity (the wind towards east), the V
wind component represents the meridional velocity (the
wind towards north) and W represents the vertical velocity.

Wind Velocity, Wind Velocity,

Cloud Coverage, Cloud Coverage,

+ hour update 3 hour update

Chb-LIKE, Ch-LIKE. Ch-LIKE, Cb-LIKE, Cb-LIKE, Ch-LIKE,

30 Wind, 3D Wind, 3D Wind, 30 Wind, 30 Wind, 3D Wind,

1 hour update 1 hour update 1 hour update 1 hour update 1 hour update 1 hour update

LI B B w m m m s m e

Cb-Tram, updated every 3 min Time [hl
1] 1 i ] 4 ] B

FIGURE 2. Timeline of the weather data update frequency
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On the map of the human-machine interface on the ground
control station, the wind velocity is represented by wind
barbs (Fig. 7), which is a concise way of representation [9].
To understand the wind data displayed, it is important to
note that the wind barb points to the direction the wind
originates and the wind arrow to the direction the wind
blows. Since wind vectors are provided for 50 different
airspace layers (from 10 m to 21500 m over the ground),
only a selected layer will be displayed on the human-
machine interface. The operator can select the layer to be
shown and adjust the resolution of displayed wind barbs.

Another form of wind data is represented by the three-
dimensional wind no-go areas (3D-Wind field). The term
“no-go area” denotes a region which should be avoided by
the UAV. This set of data stores wind objects in form of
polygons which represent areas with a certain wind strength
[11]. Threshold sets range between 2.5 to 40 m/s in 15
different flight levels. Since the wind no-go areas are
derived from the COSMO-DE data, the weather data has a
forecast horizon of 21 hours.

Similar to the wind velocity data made available by
COSMO-DE, cloud coverage data has a forecast horizon of
21 hours and are updated every three hours, as shown in
Fig 2. The data includes information on the cloud coverage
in form of percentage for each grid point.

Given the complexity due to the dynamic weather
conditions, the HAPS operator faces the challenge of
finding the long-term ‘best’ feasible flight path to fulfill the
missions. Coupled with a Markov decision process (MDP)
based policy  generator, a hierarchical task
scheduler/planner can compute feasible and promising
plans much faster than a HAPS crew member can. These
plans will be presented to the operator. The ‘best’ plan
among the suggested plans will subsequently be selected
by the operator with regard to reward, risk, weather
situation and execution time.

4. HIERARCHICAL TASK SCHEDULING AND
PLANNING

As the light-weight HAPS is a fixed wing platform equipped
with solar panels to ensure energy supply and with a very
week electro-motor for an economical energy consumption,
the HAPS has very restricted motions, making it more
difficult to follow any random path, especially in a wind field.
Therefore, many conventional flight path planning methods
such as the Dubins [8, 13] path cannot be applied for HAPS.
Many existing planners deal with the kinodynamic
constraints by considering the effects of the control inputs
of the vehicle [6, 15]. By doing so, the wind effect on the
kinematics of the HAPS can be easily taken into account.

However, such action-based discrete-time planner uses a
search function that grows exponentially with the number of
search nodes. Since the operating area involved is in the
order of magnitude of 100 km, it is almost impossible to
determine a flight path in due time that complies with the
kinodynamic constraints of the HAPS while avoiding
obstacles (areas with critical weather conditions) and
considering mission optimality. A rather intuitive method to
reduce the search space of the planning problem is to adopt
a hierarchical  planning/scheduling approach by
decomposing a plan from a higher abstraction level into
lower abstraction level plans [7].

As described in the work from Kiam and Schulte [7], the
abstraction levels can be ordered according to the
dimension of the mission elements as shown in Fig. 3. The
surveillance mission is first decomposed into subtasks to
determine the order of the mission areas to monitor (MA-
level). Inside each mission area, the ordering of the
locations of interest is decided (LOl-level), and
subsequently, the flight pattern (P-x) for each location of
interest as well as the start point (SP-x) of the flight pattern
(FP-level). Once the flight patterns are determined,
waypoints to fly can be computed based on the field of view
of the camera, as long as the flight path in the wind field is
kinematically feasible.

The first three abstraction levels involve logical planning
approach while the flight paths (represented by sequences
points) are computed with an analytical planner.

FIGURE 3. Hierarchical planning and scheduling
4.1.

The logical scheduling for the first abstraction levels
consists mainly of deciding the order in which the tasks
have to be carried out (see Fig. 3). Figure 4 shows an
example of determining the order of mission areas to fly to.
The HAPS can either first fly to MA1 and then to MA2 or
vice-versa. The order of MA to fly is decided manly based
on cloud coverage and time frame for mission success.

Logical Scheduling

Since the mission success rate is probabilistically
correlated to the cloud coverage, Markov decision process
(MDP) provides a convenient method to decide for the order
in which the monitoring of the mission areas should be
carried out. Kiam and Schulte [7] uses the k-best policies
[2] to determine more than one plans with the most
promising expected rewards.

Carry out

surveillance mission

|
|

Plan 1

MA1L MA2 MAI

FIGURE 4. Mission area abstraction level in hierarchical
scheduling
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4.2.

The last abstraction level consists of planning for the flight
path from a start position to a goal position while avoiding
obstacles that represent hazardous areas in the airspace
and while considering the kinodynamic constraints of the
HAPS. The start and goal positions are given by the logical
scheduler, since the logical scheduler dictates which
mission element to fly to next.

Analytical Planning

The path planning is carried out using the method described
in [10]. The influence of the wind on the velocity of the
HAPS relative to the ground in the inertial North-East-Down
frame v9 = (x9,y9,29) is given by

(1) %9 = v*cosip cos O + w?,
(2) y9 = v%siny cos 6 + w,
3) 29 = —p%sinf +w?,

where v%is the optimal airspeed of the HAPS, ¢ and 6 are
respectively the yaw and pitch angle and w? is the wind
speed.

The yaw rate is limited by the speed as well as the turn
radius of an aircraft.

A'L[J = {_llpmax ’ _llpmax | + €y wes |¢max | — € |¢max |} and
Ag = {(~0max |, —10max | + €6, s [Omax | — €, [Omax |}
represent respectively the set of acceptable turn angles and
acceptable climb angles. These sets also denote the
feasible actions that can be considered as control inputs of
a control-based planner like the RRT-planner from the
Open Motion Planning Library [6] or a domain independent
planner like the Expressive Numeric Heuristic Search
Planner (ENHSP) [4].

4.3.

The hierarchical scheduler/planner suggests several
feasible plans. Fig. 3 shows the plan suggestions. The
black route in Fig. 1 displays the selected partial flight plan
highlighted in green in Fig. 3 of the abstraction level “Flight
Pattern (FP)".

Several complete plans will be provided within the allowed
planning time using the MDP-based k-best policies [2]. The
plans in Fig. 3 for example are depicted in the order of
optimality ranking at the “MA” abstraction level. Generally,
the optimization is more approximative at a higher
abstraction level than at a lower abstraction level, since the
state space of the higher level scheduling is more abstract
or rather more simplified. Therefore, the optimality ranking
of the higher-level plans might not be aligned with the
optimality ranking of the lowest-level plans.

Hierarchical Plans

An analysis is required at the waypoint abstraction level to
better rank the suggested plans to help the HAPS operator
make the final decision. Furthermore, by performing a
profit/risk analysis of the resulting plan suggestions
posterior to the scheduling/planning, one gains more
flexibility in the sense that the operator is free to define the
risk factor to rank the suggested plans based on how much
risk he is willing to accept. The following section describes
the decision assistant used for a reward/risk analysis to
help the operator choose the best feasible plan among the
given plan suggestions.

5. DECISION ASSISTANT (DA)

Several plans are suggested by the scheduler/planner as

shown in Fig. 3. These plans differ in the order of tasks to
execute and hence the flight paths and execution time
elapsed. Different profit and risk can ensue depending on
which plan is selected.

In this work, we consider an operator in-the-loop decision-
making system. The final decision to select the best plan
among the suggestions lies in the hands of the operator in
order to maintain a high level of situation awareness [14].

A decision assistant (DA) is developed in the frame of this
work as an analytical support to help the operator select the
best plan. Using parameters set by the operator, the
decision assistant computes analytically the profit as well
as the risk of the operation and returns a ranking of the
plans. Besides aiding the operator to decide at the
beginning of the operation, the decision assistant also acts
as a continuous monitoring tool to check and rank the plan
suggestions according to the latest weather updates
between the computation of the plans and the selection of
the ‘best’ plan to execute. The ranking of the plans can
change during the course of the operation since the plans
recommended by the MMS are computed with forecast
weather data at the planning time and these weather data
are regularly updated (see Fig. 2).

In order to find the best plan among the suggested plans as
shown in Fig. 3, the plans have to be assessed using up-to-
date weather data. The assessment is performed by
computing [3]:

e the profit of each plan, which consists of the
reward for successful missions, modulo the
operation cost,

e the crash risk of each plan to account for the risk
of a crash due to hazardous weather conditions or
low energy level.

The planning problem for surveillance mission of a HAPS is
a multi-objective optimization problem, in which one
regards a maximization problem (reward) and a
minimization problem (risk), along with constraints on each
function. In general, an optimal solution does not always
exist and a reasonable trade-off among the objectives has
to be considered [1]. Before proceeding to determine a
ranking, the used objective functions and their contributing
factors have to be defined.

5.1.

The operator needs a ranking of all the possible plans.
Considered in this work are the profit and risk of each plan.
The following subsections describe how they are
determined.

5.1.1. Profit

In our example mission scenario, the HAPS is used to
accomplish civilian client’s orders, therefore the commercial
profit of the operation is important. To maximize the profit,
the operator has to find the plan with the optimal margin
between cost and reward. The total profit of a plan can be
determined with the following function:

Objective Functions

@) forofit(plan) = LM R; * ms; — (toutiCout + tini Cin),

where R; is the reward paid by each customer for each
fulfilled mission, ms; is the mission success that takes 1 as
value if the forecast cloud coverage is less than 30% and 0
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otherwise (see section 3).

The last term of the profit function shows the operation cost
that has to be subtracted from the reward. C represents the
hourly operation cost of the HAPS. There are however two
different costs: C,,; describes the cost per hour needed,
when the HAPS is flying outside a MA, while C;, is the cost
per hour needed when the HAPS is inside a MA. The higher
operation cost inside a MA results from the use of mission
camera and the data communication with the ground
control station. The hourly cost needs to be multiplied by
the total mission duration, i.e. ty,; for the travel time
outside the mission area and t;,; for the time spent in a
mission area.

In this study, the durations t, are computed using the
waypoints determined by the flight path planner described
in section 4.2 and the predicted ground speed of the HAPS
that is computed using the latest forecasted wind velocity.
It is important to note that the planner described in Section
4 is an offline planner, i.e. the weather information used for
planning is acquired before the planning process begins.
Since the forecast of wind velocity vectors can vary and are
unlikely to be identical to the forecast at planning time, the
computed durations t, can differ from the estimated
durations given by the MMS.

The total profit of a plan fyoc(plan) is calculated as the
sum of the profit for each MA;, i € {1, ..., nma}-

5.1.2. Risk

The risk is determined by the probability of a crash. The
HAPS may crash due either to a collision with a no-go area
with hazardous weather or an energy deficiency. However,
the latter is ignored in this work since we focus only on the
mission operation during daylight.

The risk objective function of a plan fs(plan) has the
following form:

frisk(plan) = P(Collision)
=1 — P(@ Collision)
(5) =1-N, P,(2 Collision)
=1- n?% ﬂﬁﬁi’;l P; ops (@ Collision)
=1- N2y NGy (1= Peons(Collision)),

where t, is the total number of discretized time instances of
aplan, and obs; are the obstacles or rather no-go areas that
can be encountered.

Let d be the minimum distance of the HAPS from a given
obstacle. The risk of colliding with the obstacle is defined by

(6) P, ops(Collision) = e~A(@=dmin),

if d > d, or otherwise, Py o5 (Collision) = 1.

Eq. 6 dictates that the closer the platform is to a no-go area
(obs), e.g. a cumulonimbus cloud, the higher the risk of a
damage or a crash. In the decision assistant, a minimum
safety distance d,,;, is defined and can be altered by the
operator. The factor 0 < 1 < 1 is predefined and depends
on the airspeed and turning radius of the HAPS.

5.2.

Equations (4) and (5) return a profit and risk for every plan
suggested by the planner. The operator is interested in
minimizing risk and maximizing profit simultaneously. Only
in the rarest cases, a plan attains the maximal reward and
the minimal risk, hence complicating the operator’s task to
select the best plan. In most cases, the operator needs an
analytical ranking of the plans.

Analytical Selection of the ‘Best’ Plan

The aim is to find the ‘best’ plan while regarding the two
criteria: profit and risk. In general, these two criteria could
be in conflict with each other and an appropriate trade-off
between reward and risk has to be considered while
selecting the ‘best’ plan. The DA is intended to help the
operator decide for the best plan.

The decision making is done in two steps: filtering and
ranking. In the filtering step, the operator enters a value for
the minimum profit P,;, and a value for the maximum risk
Rax-These hard constraints work as a selection filter. Only
plans that fulfil these constraints are ranked, as shown in
Fig. 5. Subsequently, the soft constraints (maximum reward
and minimum risk) are evaluated. For each plan the two-
dimensional weighted Euclidean distance [5] to the point
P = (Pnin, Rmax) has to be calculated with the following:

2
(7) d(P: Plani) = \/(dprofitwprofit) + (driskwrisk)zs

where the indices i stands for the index of feasible plans.
The plan with the maximum weighted distance to the lower
threshold (point P) represents the ‘best’ of the suggested
feasible plans. The difference between P.;, and the profit
of the i-th plan, is denoted by dpone. Similarly, the
difference between R, and the risk of the i-th plan, is
represented by dsx-

The weight factors wp,r.fic and wyisi are used because of the
different units of the contributing factors in the objective
function: risk in percentage and profit in Euro. The weights
can also be adapted by the operator, depending on how
safety-oriented he is. With the variable weight w, (Eq. 5)
the operator can define the effect of the risk for the overall
ranking result. Typically, the smaller the value of wg is,
the more risk seeking is the operator. In contrast, the higher
wrisk 1S, the more safety-oriented is the operator.

The following flow chart in Fig. 5 gives an additional
overview of the running decision assisting process. At first
the DA receives the suggested plans, formatted in one XML
data, and the -current weather updates. With this
information, the profit and risk value of each plan will be
calculated. The next steps is to review the returned profit
and risk values by the operator. If the operator needs more
support to find the ‘best’ plan, as described above, the
selection filter is used and afterwards the plans are
compared again including the ranking with Eq. 7.

5.21.

An example profit-risk analysis for the computed plans is
shown in Fig. 6 with the exact values of the output shown in
Fig 8. The axes represent the two objective functions: profit
(vertical axis) and risk (horizontal axis). Each point in the
figure depicts the computed profit and risk of one plan.

Implementation of the Decision Assistant
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Long-term Mission
Planning

receives plan
suggestions

acceptable thresholds (Pyin, Rmax)- These thresholds are
used to filter out plans, as shown in Fig. 6 with the shaded
region and subsequently, Eq. 7 is used to rank the
remaining plans. Using the parameters in TAB 2, plan 3 is
the ‘best’ solution.

| Variables Values
receives A 0.000247937
Decision —| Weather
8 Assistant . j:;igi Data Cout 1000 €
Cin 1500 €
@ v 30 m/s
Profit and Pmin 50000 €
Risk Value of Rmax 0.4
each Plan Wrisk 278713.6

if “best"” plan is not obvious

.

Selection

. — Filter

2

“best”
Plan

FIGURE 5. Decision making process for the search of the
‘best’ plan

It is evident that Plan 4 has the highest profit (128235 €)
and the most substantial risk (0.793) values and Plan 1 has
the lowest profit (46885€) but therefore the lowest risk value
(0.00001). It is hence not intuitive to a human operator to
select the best plan without an analytical tool.

14 Plan 4

12

10 Plan 3

Plan 2

Plan 1

Profit in 10,000€
()]

Risk
FIGURE 6. Profit - Risk graph

The profit and risk of the plans as shown in Fig. 6 are
calculated using selected parameters shown in Tab. 2. For
the example mission described in section 2, four plans were
generated and evaluated, although the hierarchical
scheduler/planner can generate more plans, to the
detriment of the computation time.

In this case shown in Fig. 6, there is no plan which has the
maximum profit with the minimum reward. As mentioned in
the previous subsection, the operator defines the

TAB 2. Parameters used for test implementation
6. HUMAN MASCHINE INTERFACE

The human-machine interface (HMI) on the ground control
station is supposed to provide the HALE crew with
information about the weather conditions around the UAV
and the geographic environment. Its main interface is
equipped with a map that displays the weather situation, as
shown in Fig. 7.

The scope of the mission planning involves operations at a
constant flight level of 18-20 km. In order to maintain its
altitude, the HALE avoids horizontally zones with critical
weather conditions. Therefore, the user interface displays
information only on a two-dimensional map, because the
altitude change of the HAPS is negligible compared to the
horizontal position change. For example, on the map shown
in Fig. 6, the following weather data are displayed:

1. Wind velocity in form of wind barbs,
2. Cb-LIKE Clouds, in form of red polygons.
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FIGURE 7. Visualization of weather data (Cb-LIKE and
wind velocity) on the HMI

Showing all available weather information listed in Tab. 1 at
the same time will be overwhelming for the operator.
Therefore, it is more reasonable to show only weather
information that is necessary. Forecast time and altitude
level can be selected by the operator (upper left corner and
lower left corner respectively).
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StraVARIA Declsion Assistant

Risk: Calculate Plan Order

ran:
Profit:
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Suggest Plan:

FIGURE 8. Interface of the decision assistant

The graphical user interface (GUI) of the DA (Fig. 8) is
realised as an interactive add-on side screen window,
which can be launched if the operator needs it. As
described earlier, the DA returns an overview of calculated
profit and risk. The operator can now decide if more support
is needed to make a decision or if the ‘best’ plan is clear to
be selected directly without further analysis. If more support
is needed, the operator first enters the desired maximum
risk and minimum profit to filter suggested plans that do not
fulfil these requirements. Subsequently, the operator
provides the risk weight factor ws, of the total weighted
objective function (Eq. 7).

7. CONCLUSION

This article presents a mission management system for a
HALE with a primary focus on dealing with highly dynamic
weather data. Designed to support the operation crew, the
management system complies with the aviation abilities of
the chosen HAPS. To create a realistic mission scenario,
we implemented real weather data that includes wind, cloud
coverage, turbulences and thunderstorms. Using an
example mission scenario in the Bavarian region, we tested
the feasibility of the concept developed for the MMS.
Multiple flight plans are computed by the hierarchical
scheduler/planner. The operator is required to make the
final decision by selecting the ‘best’ plan among the
suggestions. We developed a decision assistant that
compares the profit and risk of all plans. An advantage of
the decision assistant is the possibility to rank the
suggested plans interactively, by adapting to different
weight factors imposed by the operator. This makes it
possible to respond effectively to situation changes.

Another outcome of this work is the integration of weather
data in the human machine interface. The HMI provides a
weather situation map, which ensures an overview of the
current and future situation in the vicinity of the HAPS. In
summary, it can, therefore, be said that by the usage of the
described MMS reduces the workload of the operation crew
and subsequently, operation costs can be saved without
compromising safety.

Further research work could focus on the integration of live
weather data recorded by on-board sensors to help the
HAPS react to hazards. Another interesting work would be
to consider a mission scenario with multiple HAPS.
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