
FROM A GRAPH TO A DEVELOPMENT CYCLE: MBSE AS AN APPROACH
TO REDUCE DEVELOPMENT EFFORTS

M. Obstbaum, U. Wurstbauer, C. König, T. Wagner, C. Kübler, V. Fäßler,
TWT GmbH Science & Innovation, Erni Singerl Straße 2, 85053 Ingolstadt, Germany

Abstract

The development of complex systems, such as airplanes, spacecraft or automobiles, requires sophisticated
and innovative approaches to reduce cost and time of the development cycle and to be able to cope with the
challenges that new concepts and architectures pose. Especially the continuity of methods and tools is often
missing between the different stages of the development cycle. Various barriers need to be overcome for an
initial idea to be transferred from requirements definition and functional development to first testing and
down to the final product. One suitable approach to lower these barriers and thus reduce development costs
and efforts is the application of model-based systems engineering (MBSE). This allows the collection,
combination and automatic further processing of information from SysML-graphs to requirements and even
first functional prototypes.

1. PRESSURE TO BE INNOVATIVE IN TIMES OF
COMPLEX SYSTEMS AND SHORT TIME-TO-
MARKET PERIODS

The market demands products and services that are
innovative at ever shorter time-to-market periods. Driven
by the software application industry with its short and
innovative development cycles and agile project
management methods the evolution of ambitious customer
demands reaches out to the realms of automotive and
aerospace industry. It is essential for these industries to
gain the needed dynamic robustness as well as the
required drive for evolutionary and disruptive innovations.
Affected fields are e.g. electrification of power units,
connected services, functions in terms of assistant and
autonomous mobility as well as real-time data acquisition
and data processing/supervision. To this end, the already
complex automobiles, aircraft and spacecraft are reaching
ever-higher levels of complexity. This has to be accounted
for in order to keep and further improve the high quality
levels of products and services.

One of the primary dedications of systems engineering
(SE) is to manage and diminish complexity [1, 2].
Therefore, especially in the aerospace domain with its
foremost interest in building reliable, safe and secure
systems it is widely spread ever since. However, in the
conflict of high complexity and short time-to-market
periods it is essential to improve methods and concepts
further. One of the most promising approaches is Model
Based Systems Engineering (MBSE) which at its heart
synthesizes the artefacts emerging in the specification and
design process in a graph. A graph is a network of
relations and in MBSE it is used to create ontologies. They
are typically created using graphical modeling languages
(like UML in software engineering) and the so-called model
tree collects the underlying machine readable and
interpretable relational data structure. It includes meta-
information and provides the possibility of automation of
essential aspects of the development cycle. This said, the
disciplines of requirements engineering, specification and

design, simulation, virtualization and testing are merging
into a holistic framework that allows for context adjusted
workflow approaches be it top-down, bottom-up, iterative,
waterfall-dominated or agile. Furthermore, the graph-like
specification and design basis reaches out to all of the
phases of a system’s lifecycle.

The aforementioned issues are addressed in detail in the
following paragraphs taking into account aspects of
applicable methodologies and the use of open standards
like the SysML (www.omgsysml.org), Open Services for
Lifecycle Collaboration OSLC (https://open-services.net),
and the Functional Mock-up Interface FMI (www.fmi-
standard.org). A special focus is put on the graph based
tailoring of development cycles. Finally, the theoretical
concepts will be demonstrated in the tool chain examples
of the INTO-CPS project.

2. DEVELOPMENT CYCLES AND THE
AUGMENTED V-MODEL

Modern development cycles require agile collaboration,
which does not fit to waterfall-like project management.
Software projects have proven that planning should be
permeable with respect to the continuous update of
requirements. Considering the evolving possibilities of (co-
)simulation and virtual product development this becomes
increasingly true also for general technical systems and
especially in the automotive and aerospace industry. A
framework for developing systems should allow for
iteration, incrementalism, and recursion as well as the
application of agile systems engineering methods. In this
paper, the concept of the V-Model [3] is the basis in terms
of evaluation and refinement of workflows in development
cycles by putting it in the context of MBSE and graphical
modelling. The adapted version of the V- Model used here
is presented

©2017

Deutscher Luft- und Raumfahrtkongress 2017
DocumentID: 450195

1

Figure 1: The augmented V-Model as the workflow
model for a generic development cycle

in Figure 1. In addition to the activities of “Specification
and Design”, “Implementation” and “Testing and
Integration” the V-Model is augmented with a parallel
bottom-up-branch to account for the activities of
“Simulation and Virtualization”. The red-colored triangle
shows the part of the development process where the use
of a graph is most advantageous. Here, the graph is
created and fostered in the “Specification and Design”
activity and allows for continuous verification and
validation in simulation and virtualization without breaking
the single-source-of-truth approach. The role of the graph
in development cycles, be they vintage or agile, is further
elaborated in Figure 2. Starting from the top left of the
augmented V-Model with setting up an adequate
framework in terms of both organizational aspects as well
as technological premises is implemented.

Creating, collecting and, managing requirements, leads to
the initiation of MBSE and at its heart the synthesis of
graph ontology. The graph with its machine readable and
interpretable data structure is used as the basis for all
relevant activities within the development cycle. It is also
iteratively feeding back to requirements engineering. The
graph links detailed specification and design of technical
components, such as mechatronic, software or persistent
data.

Figure 2: The augmented V-Model and the activities
of a generic development cycle.

Furthermore, the augmented V-Model allows for
automated generation of simulation models and the
virtualization of their functionalities. It offers a consistent
fast track from conceptual design to functional prototyping.
This can for instance result in virtual test flights or virtual
test driving. Nowadays virtualization frameworks are based
on gaming engines to offer unprecedented possibilities of
realistic virtual testing.

The graphs are also the basis for the specification of
integrative XiL testing, such as model, software,
processor, or hardware in the loop tests. Model in the loop
(MiL) tests are executed efficiently when having a direct
link between simulation models and its corresponding
loop. The same is true for hardware in the loop (HiL) and
software in the loop (SiL). SiL can be implemented through
virtual electric control units, where the specification, the
design and the loop are linked through a graph.
Real and virtual system testing is completely continuous
on the basis of graph specification and design. There is
the possibility of going back and forth between virtual and
real systems. Furthermore, it is possible to have parallel
paths of the two worlds, picking out the best of both with
respect to efficiency and costs for each individual step in
development process. The integration of real and virtual
system testing is a key element in order to build safe and
secure automated or autonomous vehicles.
Finally, the graph as the basis of a system specification
integrates the development into the production domain. In
this respect the graph is the blue print for the production of
the system which, so to speak, knows by itself the “WHAT”
and “HOW” of the needed production steps.

3. APPLICATION OF MBSE AND GRAPH
ONTOLOGIES

The application of MBSE as a method of SE comprises
several methodological concepts. To this end it is very
important to use an adequate method, modeling language
and tool which support each other and the advantages of
MBSE paradigms. The paradigms are object oriented
analysis and design, focus on systems functionality in the
development process as well as automatization and
deduction of aspects from graph ontologies.

Figure 3: Representations of the System of Interest
cf. OOSEM and indication of permeability between the
different abstractions.

The original methodological concept of MBSE assumes
three different abstractions of the system of interest. This
can be identified as the collective property of four of the
most prominent methods in MBSE, which are: the Object-
oriented Systems Engineering Method (OOSEM) [4],
Harmony/SE [5], the Systems Modeling Toolbox SysMOD
[6] and the Functional Architecture of Systems (FAS) [7].
However, the strongest conceptual impact in the context at
hand is clearly made by OOSEM. The separation of
abstraction layers is a key to manage variation and to
diminish complexity by adding an inherent traceability
through the use of a graph. As shown in Figure 3 the
representations of the system of interest (SoI) are the SoI
as Black Box, the SoI Logical and the Technical
Candidates. In the following, the evolution of a holistic
graph, based on these representations of the SoI is
elaborated.

©2017

Deutscher Luft- und Raumfahrtkongress 2017

2

The name SoI as Black Box derives as a viewpoint of the
SoI’s context elements, viz. its stakeholders. It is crucial to
put the SoI in a specific context in order to uniquely define
the borders of the SoI and to be able to address valid
stakeholder needs, use cases as well as relevant use case
scenarios. The properties of the SoI as Black Box which
result from the analysis of stakeholder needs, use cases
and use case scenarios, are the measures of
effectiveness and performance plus the system functions
composing the functionality represented by the use cases.

Figure 4: The abstractions of the System of Interest
(SoI) represented by a graph ontology.

These properties are the input for the next abstraction
layer where the logical specification and design of the SoI
takes place. Figure 4 shows how the object-oriented
paradigm implemented in SysML creates the graph. The
SoI_Logical represents a specialization of the SoI as Black
Box, the latter is named SoI in the graph. It is the root of
the graph and is placed at the top of the diagram canvas.
Using the SysML’s generalization relation the SoI_Logical
inherits the properties of the SoI in order to detail them
with respect to functional and logical decomposition.
Logical decomposition is used to identify logical
components and their functional aspects. The model
element used here for decomposition is a directed part
association, with the filled diamond symbol at one
association end and the arrow symbol, which indicates the
part at the other end. The tentative components of the
SoI_Logical are herein classified as external interface
components, application components (this is where the
business logic of the SoI_Logical is elaborated) and
infrastructure components. Putting the letter x at the end of
the names of the respective model elements in Figure 4
simply indicates that it could be any logical component of
this type. While one can make a different classification
with respect to principle logical elements, it is essential to
keep the functional / logical component independent of
concrete technical solutions. It is about the creation of
functional / logical basis which is consistent with the
identified use cases and enables the selection of the
optimal technical solution candidate for current
circumstances. The corresponding modelling and analysis
results are usually synthesized in the logical architecture,
which specifies details of ports and flows between logical
components. However, the concept of logical architecture
shall not be further detailed here.

The input towards specification and design of possible
technical candidates are the logical components and their
properties. An important step towards technical candidates

of the SoI is to analyze and model the partitioning of
logical components upon nodes. The identification of
nodes takes place against considerations of physical
location, technological framework and measures of
performance. In the graph representation of Figure 4 this
principle corresponds to the SoI_NodeLogical being a
specialization of the SoI and being composed by the
identified partitions as parts. The node logical partitions
are composed of distinct logical components. The possible
technical candidates are then modeled by allocating the
properties of logical to distinct technical components, viz.
hardware, software and persistent data. For this purpose
the allocate relationship between the logical and technical
components, represented by the dashed arrows in Figure
4 is used. The graph ontology is completed by composing
the partitions of the SoI_NodePhysical by the identified
technical components. The SoI_NodePhysical is a
specialization of the SoI.

A few things are important to notice in terms of the graph
ontology displayed in Figure 4. Every path between the
elements of the path can be traced and used for
verification in terms of coherent form and content using
model checks. On each layer of the graph’s hierarchal
structure all elements can be used as variation points
while keeping the traceability of aspects. Last but not least
simulation and virtualization activities can be used
continuously to each hierarchy level and element or
holistically to the whole graph.

4. CONTINUITY IN PROCESSES AND TOOLS

To demonstrate the real-life application of the MBSE
approach, discussed in the previous sections, the
implementation in a tool chain is presented in this section.

The aim of the INTO-CPS project [8] is to provide an
Integrated Toolchain for model-based design of Cyber-
Physical Systems (CPSs). The different regions of the V-
cycle are represented by several specialized tools.
However, one key aspect of INTO-CPS is the openness of
the tool-chain, so that the tool-chain can be extended, or
single tools can be replaced with alternative tools that
comply with the standards that are described below. This
takes into account the fact that each use-case for MBSE is
slightly different, and organizations may have legacy tools
that they need to keep.

The abstract specification of the system is done in SysML,
where a specific profile for INTO-CPS was created, suited
specifically for the design of CPS. Here, the Modelio tool
(www.modelio.org) is used for SysML modelling and
requirements definition. While several diagrams are
created for the INTO-CPS profile, two are of prime
importance from the tool-chain point of view.

©2017

Deutscher Luft- und Raumfahrtkongress 2017

3

Figure 5: an Architecture Diagram of a simplified vehicle,
using the INTO-CPS profile for SysML

Figure 6: a Connections Diagram of a simple cruise control
system using the INTO-CPS profile for SysML

The architecture diagram (see Figure 5) represents the
SoI on different levels of abstractions, down to single
blocks with flow ports (where flow is in this context a signal
that is exchanged in the following Co-simulation) and
parameters. The architecture diagram only represents the
system architecture with its constituent parts on an
abstract level. A specific implementation is described in a
connections diagram, where the flow of signals between
the different system parts is described. Such a
connections diagram is shown in Figure 6. A crucial step
for the tool-chain aspect is the export from SysML to FMI.
For example, a SysML block of a sub-system already
contains all the relevant information to describe the
interface of the sub-system according to the FMI standard.
Furthermore, a complete connections diagram already
describes the flow of signals between models in a Co-
simulation scenario.

To add the logical or physical behavior of the sub-systems
to the abstract interface definition, the interface (described
in the FMI standard) is then imported into modeling tools
that are suited for the specific modeling task. In the
context of INTO-CPS, these are OpenModelica
(www.openmodelica.org), 20-sim (www.20-sim.com) and
Overture (www.overturetool.org). The logical behavior of a
controller can be modelled in Overture for example, while
the physics of the surrounding system can be modeled in
20-sim or OpenModelica.

When the different parts of the complete system are
modeled on their own, or imported from model libraries,
they are exported from the modeling tools to a Functional

Mock-up Unit (FMU). An FMU uses the FMI as interface
and can either contain executable models or serve as a
wrapper to control the stand-alone simulation tool. The
models are then simulated together in a Co-simulation
setting. In INTO-CPS a Co-Simulation Orchestration
Engine is created, that is fully FMI 2.0 compliant. This task
corresponds to the “simulation and virtual integration”
branch of the V in Figure 2.

To test systematically if a sub-system fulfills all its
functional requirements, a test automation tool is used to
create all relevant scenarios for the Co-simulation. In the
INTO-CPS project, the RT Tester tool suite
(www.verified.de/products/rt-tester) is used to create a
FMU from the requirements that are defined in SysML.
This FMU generates signals for the Co-Simulation to
create the relevant test cases and analyzes the results.
This represents another important part of the tool-chain in
MBSE, where a SysML tool is coupled to a Test-
automation tool, which then is used by a simulation tool.

While so far everything is done on the virtual level,
generation of actual code that is executed on a hardware
controller is the next step in the development cycle. All the
modeling tools allow code generation. The hardware
running its code is then connected to the rest of the
system that is still virtual in a Hardware-in-the-loop
scenario, again using the Co-Simulation Orchestration
Engine to exchange the simulation signals. This task
relates to the “integration and testing” branch of the V in
Figure 2.

From the previous description, it is implicitly clear that
many artifacts are created along the development cycle.
These artifacts range from requirements to interface
definitions, models, results, test-cases, code and more. All
of these artifacts might exist in multiple versions and are
created in different tools (themselves probably evolving in
multiple versions) by multiple people. To master this
complexity, and to answer questions such as “which
requirements are related to this particular sub-model?”, or
“which model versions were used to create this simulation
result file?” traceability features are implemented in the
INTO-CPS tool-chain. Here, traceability relies on the
OSLC and Prov-N notations (www.w3.org/TR/prov-
overview) for describing relations between artifacts.

One aspect that is of prime importance for the creation of
such a tool-chain, and in particular for its openness, is the
usage of standards. Here, the FMI standard is heavily
used for simulation models and for exchange of signals
between models. The OSLC and Prov-N standards are
used to describe the traceability relations. The system
architecture and specification is described by using the
SysML standard.

By using open industrial standards as described, it is
possible to combine various tools and process steps which
are typical for the development of CPS. The shown steps
allow or already use hooking on continuous integration
mechanisms or coupling with companywide data-bases
during the simulation and virtualization steps. This is
essential to achieve on the one hand side correct results
closing the development loops and on the other hand side
for a consistent traceability. The details of such co-
simulation and database coupling have been discussed

©2017

Deutscher Luft- und Raumfahrtkongress 2017

4

already in literature [9].

5. CONCLUSION

The paper presented here shows how central and powerful
graphs and Model-Based Systems Engineering (MBSE)
are in the development process of Cyber Physical
Systems (CPS). Complexity and short time frames for
system development require traceability and verification of
requirements and functional design, especially in dynamic
domains such as the automotive or aerospace industry.
MBSE can help to reduce costs and time of developments
by providing consistent specifications. This allows for
frontloading of subsequent development. It cuts down
error rates and diminishes unnecessary interactions, such
as setting up simulation with adapted boundary conditions
due to different stages of specification. MSBE requires
collaboration across different tools and methodologies,
which can be reached by relying on standards. In this
paper, this is demonstrated with the INTO-CPS project.

Therefore, the evaluation of MBSE approaches for the
individual development process can be valuable. However,
introducing MBSE is not just a technical issue, it also
requires changes in processes and habits of the
engineers.

6. ACKNOWLEDGEMENTS

The INTO-CPS project is funded by the Horizon2020
programme under Grant Agreement Number 644047.

7. REFERENCES

[1] ISO/IEC/IEEE 15288:2015; Systems and software
engineering – System lifecycle processes (2015)

[2] J. Holt, S. Perry; SysML for Systems Engineering: A
Model-Based Approach, Computing and Networks (2014)

[3] B. P. Douglass: Agile Systems Engineering, Elsevier /
Morgan Kaufmann (2016)

[4] S. Friedenthal, A. Moore, R. Steiner; A practical guide
to SysML, Morgan Kaufmann (2014)

[5] IBM Rational Harmony Deskbook Release 4.1 (2014)

[6] T. Weilkiens, SYSMOD – The Systems Modeling
Toolbox – Pragmatic MBSE with SysML (2016)

[7] T. Weilkiens, J. Lamm, S. Roth, M. Walker; Model-
based system architecture, Wiley (2015)

[8] P.G. Larsen et al, Integrated tool chain for model-based
design of Cyber-Physical Systems: The INTO-CPS
project, 2nd International Workshop on Modelling,
Analysis, and Control of Complex CPS (CPS Data) (2016)

[9] U. Wurstbauer, M. Herrnberger, A. Raufeisen, V.
Fäßler; Efficient Development of Complex Systems Using
a Unified Modular Approach, Deutscher Luft- und
Raumfahrtkongress (2015)

©2017

Deutscher Luft- und Raumfahrtkongress 2017

5

