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Abstract 

The development of complex systems, such as airplanes, spacecraft or automobiles, requires sophisticated 
and innovative approaches to reduce cost and time of the development cycle and to be able to cope with the 
challenges that new concepts and architectures pose. Especially the continuity of methods and tools is often 
missing between the different stages of the development cycle. Various barriers need to be overcome for an 
initial idea to be transferred from requirements definition and functional development to first testing and 
down to the final product. One suitable approach to lower these barriers and thus reduce development costs 
and efforts is the application of model-based systems engineering (MBSE). This allows the collection, 
combination and automatic further processing of information from SysML-graphs to requirements and even 
first functional prototypes. 

 
 

1. PRESSURE TO BE INNOVATIVE IN TIMES OF 
COMPLEX SYSTEMS AND SHORT TIME-TO-
MARKET PERIODS 

The market demands products and services that are 
innovative at ever shorter time-to-market periods. Driven 
by the software application industry with its short and 
innovative development cycles and agile project 
management methods the evolution of ambitious customer 
demands reaches out to the realms of automotive and 
aerospace industry. It is essential for these industries to 
gain the needed dynamic robustness as well as the 
required drive for evolutionary and disruptive innovations. 
Affected fields are e.g. electrification of power units, 
connected services, functions in terms of assistant and 
autonomous mobility as well as real-time data acquisition 
and data processing/supervision. To this end, the already 
complex automobiles, aircraft and spacecraft are reaching 
ever-higher levels of complexity. This has to be accounted 
for in order to keep and further improve the high quality 
levels of products and services.  

One of the primary dedications of systems engineering 
(SE) is to manage and diminish complexity [1, 2]. 
Therefore, especially in the aerospace domain with its 
foremost interest in building reliable, safe and secure 
systems it is widely spread ever since. However, in the 
conflict of high complexity and short time-to-market 
periods it is essential to improve methods and concepts 
further. One of the most promising approaches is Model 
Based Systems Engineering (MBSE) which at its heart 
synthesizes the artefacts emerging in the specification and 
design process in a graph. A graph is a network of 
relations and in MBSE it is used to create ontologies. They 
are typically created using graphical modeling languages 
(like UML in software engineering) and the so-called model 
tree collects the underlying machine readable and 
interpretable relational data structure. It includes meta-
information and provides the possibility of automation of 
essential aspects of the development cycle. This said, the 
disciplines of requirements engineering, specification and 

design, simulation, virtualization and testing are merging 
into a holistic framework that allows for context adjusted 
workflow approaches be it top-down, bottom-up, iterative, 
waterfall-dominated or agile. Furthermore, the graph-like 
specification and design basis reaches out to all of the 
phases of a system’s lifecycle. 

The aforementioned issues are addressed in detail in the 
following paragraphs taking into account aspects of 
applicable methodologies and the use of open standards 
like the SysML (www.omgsysml.org), Open Services for 
Lifecycle Collaboration OSLC (https://open-services.net), 
and the Functional Mock-up Interface FMI (www.fmi-
standard.org). A special focus is put on the graph based 
tailoring of development cycles. Finally, the theoretical 
concepts will be demonstrated in the tool chain examples 
of the INTO-CPS project. 

2. DEVELOPMENT CYCLES AND THE 
AUGMENTED V-MODEL 

Modern development cycles require agile collaboration, 
which does not fit to waterfall-like project management. 
Software projects have proven that planning should be 
permeable with respect to the continuous update of 
requirements. Considering the evolving possibilities of (co-
)simulation and virtual product development this becomes 
increasingly true also for general technical systems and 
especially in the automotive and aerospace industry. A 
framework for developing systems should allow for 
iteration, incrementalism, and recursion as well as the 
application of agile systems engineering methods. In this 
paper, the concept of the V-Model [3] is the basis in terms 
of evaluation and refinement of workflows in development 
cycles by putting it in the context of MBSE and graphical 
modelling. The adapted version of the V- Model used here 
is presented 
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Figure 1: The augmented V-Model as the workflow 
model for a generic development cycle 

in Figure 1. In addition to the activities of “Specification 
and Design”, “Implementation” and “Testing and 
Integration” the V-Model is augmented with a parallel 
bottom-up-branch to account for the activities of 
“Simulation and Virtualization”. The red-colored triangle 
shows the part of the development process where the use 
of a graph is most advantageous. Here, the graph is 
created and fostered in the “Specification and Design” 
activity and allows for continuous verification and 
validation in simulation and virtualization without breaking 
the single-source-of-truth approach. The role of the graph 
in development cycles, be they vintage or agile, is further 
elaborated in Figure 2. Starting from the top left of the 
augmented V-Model with setting up an adequate 
framework in terms of both organizational aspects as well 
as technological premises is implemented. 

Creating, collecting and, managing requirements, leads to 
the initiation of MBSE and at its heart the synthesis of 
graph ontology. The graph with its machine readable and 
interpretable data structure is used as the basis for all 
relevant activities within the development cycle. It is also 
iteratively feeding back to requirements engineering. The 
graph links detailed specification and design of technical 
components, such as mechatronic, software or persistent 
data. 

 
Figure 2: The augmented V-Model and the activities 
of a generic development cycle.  

Furthermore, the augmented V-Model allows for 
automated generation of simulation models and the 
virtualization of their functionalities. It offers a consistent 
fast track from conceptual design to functional prototyping. 
This can for instance result in virtual test flights or virtual 
test driving. Nowadays virtualization frameworks are based 
on gaming engines to offer unprecedented possibilities of 
realistic virtual testing.  

The graphs are also the basis for the specification of 
integrative XiL testing, such as model, software, 
processor, or hardware in the loop tests. Model in the loop 
(MiL) tests are executed efficiently when having a direct 
link between simulation models and its corresponding 
loop. The same is true for hardware in the loop (HiL) and 
software in the loop (SiL). SiL can be implemented through 
virtual electric control units, where the specification, the 
design and the loop are linked through a graph. 
Real and virtual system testing is completely continuous 
on the basis of graph specification and design. There is 
the possibility of going back and forth between virtual and 
real systems. Furthermore, it is possible to have parallel 
paths of the two worlds, picking out the best of both with 
respect to efficiency and costs for each individual step in 
development process. The integration of real and virtual 
system testing is a key element in order to build safe and 
secure automated or autonomous vehicles.  
Finally, the graph as the basis of a system specification 
integrates the development into the production domain. In 
this respect the graph is the blue print for the production of 
the system which, so to speak, knows by itself the “WHAT” 
and “HOW” of the needed production steps. 

3. APPLICATION OF MBSE AND GRAPH 
ONTOLOGIES 

The application of MBSE as a method of SE comprises 
several methodological concepts. To this end it is very 
important to use an adequate method, modeling language 
and tool which support each other and the advantages of 
MBSE paradigms. The paradigms are object oriented 
analysis and design, focus on systems functionality in the 
development process as well as automatization and 
deduction of aspects from graph ontologies.  

 
Figure 3: Representations of the System of Interest 
cf. OOSEM and indication of permeability between the 
different abstractions. 

The original methodological concept of MBSE assumes 
three different abstractions of the system of interest. This 
can be identified as the collective property of four of the 
most prominent methods in MBSE, which are: the Object-
oriented Systems Engineering Method (OOSEM) [4], 
Harmony/SE [5], the Systems Modeling Toolbox SysMOD 
[6] and the Functional Architecture of Systems (FAS) [7]. 
However, the strongest conceptual impact in the context at 
hand is clearly made by OOSEM. The separation of 
abstraction layers is a key to manage variation and to 
diminish complexity by adding an inherent traceability 
through the use of a graph. As shown in Figure 3 the 
representations of the system of interest (SoI) are the SoI 
as Black Box, the SoI Logical and the Technical 
Candidates. In the following, the evolution of a holistic 
graph, based on these representations of the SoI is 
elaborated. 

©2017

Deutscher Luft- und Raumfahrtkongress 2017

2



The name SoI as Black Box derives as a viewpoint of the 
SoI’s context elements, viz. its stakeholders. It is crucial to 
put the SoI in a specific context in order to uniquely define 
the borders of the SoI and to be able to address valid 
stakeholder needs, use cases as well as relevant use case 
scenarios. The properties of the SoI as Black Box which 
result from the analysis of stakeholder needs, use cases 
and use case scenarios, are the measures of 
effectiveness and performance plus the system functions 
composing the functionality represented by the use cases.  

 
Figure 4: The abstractions of the System of Interest 
(SoI) represented by a graph ontology. 

These properties are the input for the next abstraction 
layer where the logical specification and design of the SoI 
takes place. Figure 4 shows how the object-oriented 
paradigm implemented in SysML creates the graph. The 
SoI_Logical represents a specialization of the SoI as Black 
Box, the latter is named SoI in the graph. It is the root of 
the graph and is placed at the top of the diagram canvas. 
Using the SysML’s generalization relation the SoI_Logical 
inherits the properties of the SoI in order to detail them 
with respect to functional and logical decomposition. 
Logical decomposition is used to identify logical 
components and their functional aspects. The model 
element used here for decomposition is a directed part 
association, with the filled diamond symbol at one 
association end and the arrow symbol, which indicates the 
part at the other end. The tentative components of the 
SoI_Logical are herein classified as external interface 
components, application components (this is where the 
business logic of the SoI_Logical is elaborated) and 
infrastructure components. Putting the letter x at the end of 
the names of the respective model elements in Figure 4 
simply indicates that it could be any logical component of 
this type. While one can make a different classification 
with respect to principle logical elements, it is essential to 
keep the functional / logical component independent of 
concrete technical solutions. It is about the creation of 
functional / logical basis which is consistent with the 
identified use cases and enables the selection of the 
optimal technical solution candidate for current 
circumstances. The corresponding modelling and analysis 
results are usually synthesized in the logical architecture, 
which specifies details of ports and flows between logical 
components. However, the concept of logical architecture 
shall not be further detailed here. 

The input towards specification and design of possible 
technical candidates are the logical components and their 
properties. An important step towards technical candidates 

of the SoI is to analyze and model the partitioning of 
logical components upon nodes. The identification of 
nodes takes place against considerations of physical 
location, technological framework and measures of 
performance. In the graph representation of Figure 4 this 
principle corresponds to the SoI_NodeLogical being a 
specialization of the SoI and being composed by the 
identified partitions as parts. The node logical partitions 
are composed of distinct logical components. The possible 
technical candidates are then modeled by allocating the 
properties of logical to distinct technical components, viz. 
hardware, software and persistent data. For this purpose 
the allocate relationship between the logical and technical 
components, represented by the dashed arrows in Figure 
4 is used. The graph ontology is completed by composing 
the partitions of the SoI_NodePhysical by the identified 
technical components. The SoI_NodePhysical is a 
specialization of the SoI. 

A few things are important to notice in terms of the graph 
ontology displayed in Figure 4. Every path between the 
elements of the path can be traced and used for 
verification in terms of coherent form and content using 
model checks. On each layer of the graph’s hierarchal 
structure all elements can be used as variation points 
while keeping the traceability of aspects. Last but not least 
simulation and virtualization activities can be used 
continuously to each hierarchy level and element or 
holistically to the whole graph. 

 

4. CONTINUITY IN PROCESSES AND TOOLS 

To demonstrate the real-life application of the MBSE 
approach, discussed in the previous sections, the 
implementation in a tool chain is presented in this section.  

The aim of the INTO-CPS project [8] is to provide an 
Integrated Toolchain for model-based design of Cyber-
Physical Systems (CPSs). The different regions of the V-
cycle are represented by several specialized tools. 
However, one key aspect of INTO-CPS is the openness of 
the tool-chain, so that the tool-chain can be extended, or 
single tools can be replaced with alternative tools that 
comply with the standards that are described below. This 
takes into account the fact that each use-case for MBSE is 
slightly different, and organizations may have legacy tools 
that they need to keep. 

The abstract specification of the system is done in SysML, 
where a specific profile for INTO-CPS was created, suited 
specifically for the design of CPS. Here, the Modelio tool 
(www.modelio.org) is used for SysML modelling and 
requirements definition. While several diagrams are 
created for the INTO-CPS profile, two are of prime 
importance from the tool-chain point of view.  
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Figure 5: an Architecture Diagram of a simplified vehicle, 
using the INTO-CPS profile for SysML 

 

Figure 6: a Connections Diagram of a simple cruise control 
system using the INTO-CPS profile for SysML 

The architecture diagram (see Figure 5) represents the 
SoI on different levels of abstractions, down to single 
blocks with flow ports (where flow is in this context a signal 
that is exchanged in the following Co-simulation) and 
parameters. The architecture diagram only represents the 
system architecture with its constituent parts on an 
abstract level. A specific implementation is described in a 
connections diagram, where the flow of signals between 
the different system parts is described. Such a 
connections diagram is shown in Figure 6. A crucial step 
for the tool-chain aspect is the export from SysML to FMI. 
For example, a SysML block of a sub-system already 
contains all the relevant information to describe the 
interface of the sub-system according to the FMI standard. 
Furthermore, a complete connections diagram already 
describes the flow of signals between models in a Co-
simulation scenario.  

To add the logical or physical behavior of the sub-systems 
to the abstract interface definition, the interface (described 
in the FMI standard) is then imported into modeling tools 
that are suited for the specific modeling task. In the 
context of INTO-CPS, these are OpenModelica 
(www.openmodelica.org), 20-sim (www.20-sim.com) and 
Overture (www.overturetool.org). The logical behavior of a 
controller can be modelled in Overture for example, while 
the physics of the surrounding system can be modeled in 
20-sim or OpenModelica.  

When the different parts of the complete system are 
modeled on their own, or imported from model libraries, 
they are exported from the modeling tools to a Functional 

Mock-up Unit (FMU). An FMU uses the FMI as interface 
and can either contain executable models or serve as a 
wrapper to control the stand-alone simulation tool. The 
models are then simulated together in a Co-simulation 
setting. In INTO-CPS a Co-Simulation Orchestration 
Engine is created, that is fully FMI 2.0 compliant. This task 
corresponds to the “simulation and virtual integration” 
branch of the V in Figure 2.  

To test systematically if a sub-system fulfills all its 
functional requirements, a test automation tool is used to 
create all relevant scenarios for the Co-simulation. In the 
INTO-CPS project, the RT Tester tool suite 
(www.verified.de/products/rt-tester) is used to create a 
FMU from the requirements that are defined in SysML. 
This FMU generates signals for the Co-Simulation to 
create the relevant test cases and analyzes the results. 
This represents another important part of the tool-chain in 
MBSE, where a SysML tool is coupled to a Test-
automation tool, which then is used by a simulation tool. 

While so far everything is done on the virtual level, 
generation of actual code that is executed on a hardware 
controller is the next step in the development cycle. All the 
modeling tools allow code generation. The hardware 
running its code is then connected to the rest of the 
system that is still virtual in a Hardware-in-the-loop 
scenario, again using the Co-Simulation Orchestration 
Engine to exchange the simulation signals. This task 
relates to the “integration and testing” branch of the V in 
Figure 2. 

From the previous description, it is implicitly clear that 
many artifacts are created along the development cycle. 
These artifacts range from requirements to interface 
definitions, models, results, test-cases, code and more. All 
of these artifacts might exist in multiple versions and are 
created in different tools (themselves probably evolving in 
multiple versions) by multiple people. To master this 
complexity, and to answer questions such as “which 
requirements are related to this particular sub-model?”, or 
“which model versions were used to create this simulation 
result file?” traceability features are implemented in the 
INTO-CPS tool-chain. Here, traceability relies on the 
OSLC and Prov-N notations (www.w3.org/TR/prov-
overview) for describing relations between artifacts.  

One aspect that is of prime importance for the creation of 
such a tool-chain, and in particular for its openness, is the 
usage of standards. Here, the FMI standard is heavily 
used for simulation models and for exchange of signals 
between models. The OSLC and Prov-N standards are 
used to describe the traceability relations. The system 
architecture and specification is described by using the 
SysML standard.  

By using open industrial standards as described, it is 
possible to combine various tools and process steps which 
are typical for the development of CPS. The shown steps 
allow or already use hooking on continuous integration 
mechanisms or coupling with companywide data-bases 
during the simulation and virtualization steps. This is 
essential to achieve on the one hand side correct results 
closing the development loops and on the other hand side 
for a consistent traceability. The details of such co-
simulation and database coupling have been discussed 
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already in literature [9]. 

5. CONCLUSION 

The paper presented here shows how central and powerful 
graphs and Model-Based Systems Engineering (MBSE) 
are in the development process of Cyber Physical 
Systems (CPS). Complexity and short time frames for 
system development require traceability and verification of 
requirements and functional design, especially in dynamic 
domains such as the automotive or aerospace industry. 
MBSE can help to reduce costs and time of developments 
by providing consistent specifications. This allows for 
frontloading of subsequent development. It cuts down 
error rates and diminishes unnecessary interactions, such 
as setting up simulation with adapted boundary conditions 
due to different stages of specification. MSBE requires 
collaboration across different tools and methodologies, 
which can be reached by relying on standards. In this 
paper, this is demonstrated with the INTO-CPS project. 

Therefore, the evaluation of MBSE approaches for the 
individual development process can be valuable. However, 
introducing MBSE is not just a technical issue, it also 
requires changes in processes and habits of the 
engineers. 
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