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Abstract

In the present work, a Monte-Carlo-based aerodynamic reduced-order modeling process is developed to estimate statistical
errors caused by the random training data segmentation. The reduced-order models (ROMs) considered here are constructed
by means of a linear or nonlinear system identification. Therefore, training, validation, and test datasets provided by a
computational fluid dynamics (CFD) solver are exploited. However, system identification tasks always involve parameter
optimization and function fitting problems that are sensitive to the choice of the initial parameters or the training data
composition, respectively. Consequently, an unfavorable random starting point may lead to a poor ROM performance.
A remedy to overcome those model uncertainties is the application of a Monte-Carlo training and application strategy.
To assess the effectiveness of the proposed ROM framework, the procedure is demonstrated by modeling the unsteady
transonic aerodynamics of the pitching and plunging NLR 7301 airfoil. Various ROM techniques are trained and applied
within the Monte-Carlo framework to show their simulation capabilities compared to the respective full-order CFD solution.
The focus is particularly laid on the evaluation of the ROM solution’s fluctuation due to different random initializations. It

is shown that some ROM approaches exhibit a very good agreement combined with a low sensitivity to the training data

partitioning, which is highly beneficial for a reliable and accurate application.

1 INTRODUCTION

In order to increase the efficiency and safety of future air-
craft within the scope of the set emission and fuel con-
sumption targets (ACARE 2050), it is necessary to under-
stand and efficiently predict the static and dynamic interac-
tions between the elastic, aerodynamic, and inertial forces.
The well-developed potential flow methods used so far for
the unsteady aerodynamic modeling, however, cannot fully
meet today’s accuracy requirements, especially, when the
focus is on the transonic flow regime. In contrast, the
air loads can be determined with sufficient accuracy using
modern CFD approaches. However, the extensive use of
CFD requires very high computational capacities, which
severely limits their application for aeroelastic purposes.
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A promising way to save computational resources is the
development and application of reduced-order models that
are calibrated by means of CFD-based data. In the course
of this investigation, CFD-generated training data repre-
senting the dominant input/output relations of the consid-
ered system are utilized in terms of a linear or nonlinear
Once the ROMs are available, the mod-

els can be used to provide accurate and reliable aerody-

identification.

namic responses, without the need to perform further time-
consuming CFD calculations. In the following, selected
identification-based ROM approaches are briefly recapitu-
lated.

An overview of aerodynamic ROMs such as Volterra-
theory-based methods [1, 2] or the POD [3,4] is given by

Dowell and Hall [5] as well as Lucia et al. [6]. Moreover,
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approaches developed within the system identification and
control community have been utilized for unsteady aero-
dynamic reduced-order modeling, e.g., the eigensystem
realization algorithm (ERA) [7-10], the auto-regressive
with exogenous input (ARX) model [11], and the auto-
regressive moving average (ARMA) model [12]. Consider-
ing linear systems only, the ERA, ARX, and ARMA iden-
tification techniques are suited to obtain a ROM of the un-
derlying unsteady aerodynamics. However, the prediction
of large amplitude motions or nonlinear parameter influ-
ences such as varying freestream conditions requires non-
linear system identification approaches in order to capture
the inherent nonlinearities. Thus, the use of multilayer-
perceptron (MLP) neural networks has been proposed by
Faller and Schreck [13], Voitcu and Wong [14] as well
as Mannarino and Mantegazza [15]. ROM approaches
based on Kriging interpolation were investigated by Glaz at
al. [16] and Liu et al. [17]. Furthermore, radial basis func-
tion (RBF) neural networks have been successfully applied
by Zhang et al. [18], Lindhorst et al. [19] and Winter and
Breitsamter [20]. Recently, very promising results for non-
linear unsteady aerodynamic reduced-order modeling have
been achieved by by Kou et al. [21,22] and Winter and Bre-
itsamter [10,23].

Nonetheless, nonlinear identification techniques are
always sensitive to the choice and composition of the
training data or the selection of the initial parameters [24].
Commonly, the available dataset characterizing the system
to be investigated is partitioned, while about 70% of the
randomly chosen samples are used for the parameter
see Nelles [24] or Winter and

Breitsamter [23] for instance. In contrast, the remaining

estimation (training);

samples are used for validation and test purposes. Hence,
the ROMs as well as the results generated by them are
subject to uncertainties induced by the random data
composition. As a consequence, it is unclear whether the
ROM output is a coincidence/outlier or if the ROM results
are reproducible with high probability. Two scenarios can
be considered exemplarily: On the one hand, a good model
performance might be ascertained for a specific ROM,
whereas models trained by other data compositions or
initial settings yield a comparatively poor agreement with
the reference/test data. On the other hand, it is possible
that a given ROM performs not satisfactory, although
all representative and necessary information about the

underlying system are available within the training dataset.
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Both cases should be avoided since they cover the true

potential of the identification approach.

To address the aforementioned issues, a Monte-Carlo-
based training and application framework for unsteady
aerodynamic reduced-order modeling is suggested in this
work, which is independent from the employed identifi-
cation algorithm. By estimating statistical errors due to
the model construction process, it can be ensured that the
ROM results become both reproducible and comparable.
This also leads to an increased transparency between the
solutions obtained by different identification-driven ROM
techniques. For demonstration purposes, the Monte-Carlo
procedure is used to model the unsteady transonic aero-
dynamics of the pitching and plunging NLR 7301 airfoil.
In this regard, selected ROMs, namely the ARX [11],
MLP [15], LOLIMOT [23], and LOLIMOT-MLP [10]
approaches, are constructed and applied within the pro-
posed Monte-Carlo framework to show their simulation
capabilities. For all cases, the respective full-order CFD
solution serves as the reference. It is shown that some
ROM approaches produce severe simulation output vari-
ations caused solely by the random data segmentation.
In contrast, there are also ROM methods that seem less
sensitive to those initialization uncertainties. Hence, the
importance of the present research in terms of selecting
and comparing various aerodynamic ROM algorithms is

outlined.

2 MONTE-CARLO FRAMEWORK

FOR AERODYNAMIC REDUCED-

ORDER MODELING

In order to make the previously motivated model uncer-
tainties measurable, a Monte-Carlo-based training and ap-
plication strategy is employed. In general, Monte-Carlo
approaches are characterized by repeated numerical simu-
lations that are initialized by random processes [25]. Here,
Nyc independent ROMs are trained in parallel as can be
seen in Fig. 1, whereas all model and identification pa-
rameters are kept constant. Due to the random data seg-
mentation process, which is performed autonomously for
each of the Nyc models, the finally obtained ROMs are
different from each other. Consequently, they won’t pro-

duce the same response for a given user-defined input sig-



Deutscher Luft- und Raumfahrtkongress 2017

nal. However, it is important to emphasize that the CFD-
based dataset containing the training, validation, and test
data is the same for all ROMs. As the CFD simula-
tion yielding the training data is the main computational
cost driver for system-identification-based unsteady aero-
dynamic reduced-order modeling, the additional effort of
the suggested Monte-Carlo procedure can be justified.

Monte-Carlo
Training

Training Data: | |
Input

Training Data:
Output

Figure 1: Monte-Carlo training procedure for system-

identification-based aerodynamic reduced-order modeling.

After the Ny c ROMs have been trained, they can be uti-
lized for the intended application purposes. According to
Fig. 2, the same user-defined input signals are fed into each
ROM resulting in Ny¢ different output time series. Given
those ROM responses, statistical methods can be applied
to analyze the data. In the present work, the mean of the
response (U;) as well as the standard deviation (o;) is eval-
uated for comparison and classification purposes. Defining
i,j(k) as the ith model output element at time step k pro-

duced by ROM J, the following equations are evaluated:

ey pi(k) = ——

3 RESULTS

For demonstration of the Monte-Carlo methodology, the
aerodynamic characteristics of the NLR 7301 airfoil are
studied.
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Monte-Carlo
Simulation

Output 2 Mean

Output

Figure 2: Application procedure using the previously gen-
erated Ny;c ROMs.

3.1 TEST CASE

The supercritical NLR 7301 airfoil undergoing a pitching
and plunging motion is a well-known test case in the un-
steady aerodynamic and aeroelastic community [26, 27].
As it can be seen in Fig. 3, the flow at a freestream Mach
number of Ma.. = 0.753 and an angle of attack of @ = 0.6°
is dominated by a strong shock located on the airfoil’s suc-
tion side. For sufficiently large excitation amplitudes, the
variation of both the shock intensity and the shock position
becomes non-linearly related to the displacement. Hence,
also the forces and moments are influenced in a nonlin-
ear way. For the sake of simplicity, viscous effects are
excluded from these considerations by solving the Euler
equations using the in-house CFD code AER-Eu [28, 29].
As the focus in this work is laid on an intermethod compar-
ison, the Euler-based modeling does not restrict the validity
of these studies.

The geometrical properties of the NLR 7301 airfoil can
be described by a chord length of c,.,; = 0.3 m, while the
pitching axis is located at 40% of the chord according to
Zwaan [26]. The structured multi-block grid used for the
CFD simulations (see also Fig. 3) contains 14,396 volume
cells [10].

3.2 TRAINING METHODOLOGY

For the unsteady forced-motion CFD computations, a con-
stant freestream Mach number of Ma., = 0.753 and an an-
gle of attack of & = 0.6° have been defined corresponding
to Fig. 3. Moreover, rigid body deflections are enforced
in order to investigate the motion-induced aerodynamics of
the NLR 7301 airfoil. The resulting air load response is
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Figure 3: Computational grid of the NLR 7301 airfoil along
with the computed steady-state Mach number contours at
Ma., =0.753 and o = 0.6° (AER-Eu).

computed by means of the AER-Eu solver. Here, the re-
spective lift and pitching moment coefficient time series
CL(7) and Cy,(7) are the CFD outputs of interest, while
the reference point for the pitching moment is defined as
the quarter-chord point. Thus, the system inputs are con-
sidered with the pitching angle 0(7) and the plunging de-
gree of freedom A(7), whereas the system outputs are Cy(7)
and Cy, (7). According to Fig. 4, a total excitation range of
—5.5°< 0 <5.5%and —11% c,r < h < 11% cyf is chosen
for the training signals. As a consequence of the conducted
time step convergence study, the excitation signals are re-
solved with a nondimensional time step size of AT = 0.01.
However, for the ROM training datasets a time discretiza-
tion of AT = 0.1 is sufficient. Hence, the data used for ROM
identification consists of 8200 samples; see Fig. 4. Result-

ing from a single CFD run, the unsteady aerodynamic re-
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Figure 4: Training signals for the forced-motion excitation

of the pitch and plunge degrees of freedom (A7 = 0.1).
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Figure 5: Lift and pitching moment coefficient response
caused by the user-defined excitation (NLR 7301, Ma., =
0.753, ¢ = 0.6°, At = 0.1, AER-Eu).

sponse caused by the forced pitching and plunging motions
is obtained. The AER-Eu output time series in terms of Cy,
and Cy, is depicted in Fig. 5. It should be emphasized that
the information contained in Figs. 4 and 5 represents the
full dataset from which all identification-based models are
derived in the following. In order to highlight the advan-
tages of the Monte-Carlo simulation framework discussed
in Sec. 2, four different ROM methods have been trained

exploiting the available data:

1) ROM/ARX [11]
2) ROM/LOLIMOT [23]
3) ROM/MLP [15,24]

4) ROM/LOLIMOT-MLP [10]

As detailed information about the identification proce-
dures, the user-defined settings, and the modus operandi
of the ROMs are out of the scope of this paper, the reader
is referred to the work of Winter and Breitsamter [10] for a
thorough discussion.

For each of the four ROM approaches listed above,
Nuyc = 10 models have been constructed according to the
As a result, 40 differ-

ent models are available for simulating the aerodynamic

schematic presented in Fig. 1.

system. However, since the models were trained by the
same dataset, the computationally most expensive step of
the ROM generation, namely the CFD computation, had
to be performed only once. As it will be shown in the
following, the additional insights arising from the Monte-
Carlo methodology justify the marginally increased com-

putational effort.
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3.3 APPLICATION AND DISCUSSION

In the following, the reduced-order models are utilized for
generically designed application tests. In this way, the
Monte-Carlo application procedure in combination with a
statistical analysis of the ROM responses is outlined.

In Fig. 6, the filtered white Gaussian noise (FWGN) sig-
nals, which have been defined for testing purposes, are
shown. Using the a priori trained ROMs, the aerodynamic
response caused by the FWGN signal excitation can be ef-
ficiently computed. However, in order to assess the quality
of the ROM results, a reference AER-Eu computation has
been carried out as well. The lift coefficient resulting from
this consideration is presented in Fig. 7.
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Figure 6: Generic FWGN signals for the simultaneous ex-
citation of the pitch and plunge degrees of freedom. Am-
plitude range: —5° < 0 < 5°, —10% cop < h < 10% cppp.

Based on the Monte-Carlo framework, the mean and the
standard deviation of the ROM outputs can be calculated
for the Nyc = 10 models. In the following, the mean u

0.5
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for a particular ROM type is visualized by the main line. In
contrast, the standard deviation ¢ is shown by a transparent
shade.

Supported by Fig. 8 displaying the pitching moment co-
efficient, the following conclusions about the ROM out-
put’s mean and standard deviation can be drawn: For com-
paratively small standard deviations there is a high prob-
ability that also individual models produce approximately
the mean response. Besides, a small ¢ can indicate that
representative and well-resolved training data had been
available in the associated amplitude and frequency regime.
However, small standard deviations are not a guarantee for
a high accuracy of the ROM result. In contrast, large stan-
dard deviations can indicate a lack of training data or a
possible unstable simulation behavior. Consequently, high
standard deviations are usually linked to model outputs of

poor quality.

Furthermore, the statistical information can be exploited
to obtain further insights regarding the strengths and weak-
nesses of different ROM approaches. It can be asserted
that the linear ROM/ARX model captures the trend of the
response quite well. However, the linear model is not flex-
ible enough to reproduce the correct amplitude levels. This
is an indicator that the system is governed by pronounced
nonlinearities. In contrast, the ROM/MLP approach per-
forms much better than the previously considered linear
model. Though, the MLP neural network employed in re-
current operation frequently encounters simulation insta-
bilities. This behavior can be seen by means of the locally
increased standard deviation in Fig. 8. Although the large
fluctuations of the MLP solution are restricted to a certain

Nondimensional Time 7

ARX-«+MLP +LOLIMOT +LOLIMOT-MLP--CFD (Reference) ‘

Figure 7: Lift coefficient response due to the FWGN excitation depicted in Fig. 6 (NLR 7301, Ma., = 0.753, a = 0.6°).
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Figure 8: Top: Pitching moment coefficient induced by the FWGN excitation shown in Fig. 6 (NLR 7301, Ma.. = 0.753,
a = 0.6°). Bottom: Detail cutout from the diagram depicted on top.

region in the present case, they can become globally domi-
nant and, consequently, corrupt the ROM results. Both the
ROM/LOLIMOT and ROM/LOLIMOT-MLP approaches
accurately reproduce the CFD reference, while the influ-
ences of the random training data composition on the solu-
tion are comparatively small. The LOLIMOT-MLP method
yields the best agreement, which can be underpinned by the

very low standard deviations.

Finally, the ROMs are tested using an amplitude-scaled
variant of the previously considered FWGN signals; see
Fig. 9. Hence, the excitation amplitudes have been lim-
ited to the range —0.1° < 8 < 0.1° and —0.5% ¢,y <h <
0.5% crer. As it has been shown in [10], the application of
ROMs trained with large amplitude motions towards small
amplitude cases is a challenging task. Based on the graphs
for Cr, depicted in Fig. 10, it can be seen that the ARX
model exhibits the largest discrepancies compared to the
CFD reference. A distinct offset can be detected for the

linear model along with drastically increased values for
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Figure 9: Generic FWGN signals for the simultaneous ex-
citation of the pitch and plunge degrees of freedom. Ampli-
tude range: —0.1° < 0 <0.1°, —0.5% cror <h <0.5% cef.

the standard deviation. Also the outputs of the indepen-
dently trained Ny;c = 10 LOLIMOT models (see the bot-
tom of Fig. 10) deviate from each other. Thus, the mod-
els strongly depend on the random training data initializa-
tion. At this point it is worth to indicate a very helpful
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Figure 10: Top: Lift coefficient response due to the FWGN excitation depicted in Fig. 9 (NLR 7301, Ma.. = 0.753,
a = 0.6°). Bottom: Visualization of the ROM/LOLIMOT responses for all Ny;c = 10 cases along with the mean ROM

output and the CFD reference.

feature of the Monte-Carlo strategy: Without the knowl-
edge about the CFD reference, the user becomes able to
judge about the possible accuracy of the ROM solution by
considering the standard deviation. Both the ROM/ARX
and the ROM/LOLIMOT solutions seem to be unreliable
as they are characterized by large o values. This can be
confirmed by a comparison between the mean response
and the additionally computed reference result. In contrast,
ROM/MLP and ROM/LOLIMOT-MLP match the CFD-
generated curve with good accuracy, while also exhibiting
comparatively small standard deviations of the model re-

sponses.

Last but not least, the comparability and reproducibility
of different ROM results is enhanced via the Monte-Carlo
strategy since outliers and poor performing individual mod-
els can be identified.
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4 CONCLUSIONS

In this paper, a Monte-Carlo-based framework for unsteady
aerodynamic reduced-order modeling was presented in the-
ory and application. It was demonstrated that in many
cases the ROM approaches produce pronounced simula-
tion output variations that are caused for example by the
random training data partitioning. The suggested training
and application strategy combined with a statistical post-
processing can be utilized to quantify and assess the so-
lution quality of identification-based ROMs. In this way,
the Monte-Carlo approach leads to an increased knowl-
edge concerning the reliability and robustness of the trained
models. Moreover, if several ROM approaches are avail-
able, a decision about the most appropriate model can be
made based on the statistical information. Finally, the com-
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parability and reproducibility of results generated by aero-

dynamic reduced-order models can be enhanced.
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