
DLR-PROJECT DIGITAL-X

NEXT GENERATION CFD SOLVER ‘FLUCS’

T. Leicht1, D. Vollmer1, J. Jägersküpper1, A. Schwöppe1, R. Hartmann1, J. Fiedler2, T.
Schlauch3

DLR (German Aerospace Center)
1Institute of Aerodynamics and Flow Technology
Lilienthalplatz 7, 38108 Braunschweig, Germany

2Institute of Propulsion Technology
Linder Höhe, 51147 Köln, Germany

3Simulation and Software Technology
Linder Höhe, 51147 Köln, Germany

Abstract

The development of DLR’s ‘next-generation’ flow solver was initiated as part of the project Digital-X [1] to
provide a basis for a consolidated flow solver using modern software techniques with high flexibility and high
degree of innovation for a wide range of multidisciplinary applications. An overview of the design and
development of the resulting flow solver Flucs (FLexible Unstructured CFD Software) is presented, its current
status is described, and first results for internal and external flows are shown.
The development followed a top-down approach identifying significant drivers in terms of application range
and software design and was evaluated during the project to identify possible drawbacks in early stages and
is continuously monitored to keep maintainability and expandability. The development is supported by
modern software tools, such as distributed version control, web-based code reviews, and continuous
integration. The kernel of the resulting design is a framework whose data structures and methods serve as a
basis for implementing lean modules, for example equations, discretizations and time-integration methods.
The framework provides basic functionalities like efficient implementation of loops, parallelization, or the
provision of required data. Based on the framework, two discretizations are implemented: a second-order
finite-volume discretization and a discontinuous Galerkin discretization with variable order, both of them
using the same sets of implemented equations like the Euler-equations, the Navier-Stokes equations, or the
RANS equations. A focus of the next-generation solver is its efficient use on current and future parallel HPC
systems. The framework currently provides a two-level parallelization consisting of a domain decomposition
that features communication/computation overlap, and shared-memory parallel processing of a domain. The
simulation-setup layer of Flucs is designed as compatible Python API for the simulation environment
FlowSimulator [2] which provides a flexible interface to a wide range of multidisciplinary simulation-scenarios.

ACKNOWLEDGMENTS

The development of the next generation CFD solver Flucs would not have been possible without contributions from many
colleagues. The authors would like to thank all who supported the discussions and development activities over time with
various levels of involvement in the development itself and the software development environment, namely T. Gerhold1,
E. Hoffmann1, P. Kelleners1, F. Spiering1, A. Stück1, N. Kroll1, T. Kaller2, F. di Mare2, M. Meinel3, M. Klitz3, M. Litz3.

1. INTRODUCTION

The multidisciplinary project Digital-X (04/2012-06/2016)
[1] represents a basic component for the progressive
realization of the vision of digital aircraft design and virtual
flight testing at DLR. The project focused on the
development and industrialization of advanced simulation
methods and processes to pioneer their application for
exploring the whole flight envelope virtually. Part of its
activities was addressing the first development steps of
DLR’s next generation CFD (Computational Fluid
Dynamics) solver Flucs (FLexible Unstructured CFD
Software) to provide a basis for a consolidated flow solver
with high flexibility and high degree of innovation for a
wide range of multidisciplinary applications using modern
software techniques and utilizing upcoming HPC
architectures.

In parts of Digital-X, CFD was taken as given. Compared
to other disciplines it has been used for a long time and is
relatively mature but still has room for improvement, in
particular regarding current and upcoming progress in
computer hardware, numerical algorithms and software
development. The unstructured DLR CFD solver TAU [3],
which is routinely used in industry and research, was
further improved within Digital-X. However, integrating
recent developments for HPC (High Performance
Computing) hardware, implicit solver techniques or higher-
order discretizations into legacy codes with regard to a
sustainable software development can be a difficult task.
Also considering expanded requirements of
multidisciplinary scenarios this motivated an innovative
strategy for developing a next generation CFD solver.

Higher-order methods have been investigated world-wide

Deutscher Luft- und Raumfahrtkongress 2016
DocumentID: 420027

1©2017

over recent years [4]. In particular, the Discontinuous
Galerkin method has potential for reliable error estimation
and adaptivity [5], as well as scale-resolving simulations
[6]. DLR has its own experience due to collaboration in
several European projects like ADIGMA [7], IDIHOM [8],
or TILDA and participation and hosting of international
workshops on higher-order CFD methods [4], [9], [10],
[11], [12]. Additionally, DLR has gained experience
regarding the implementation of higher-order CFD codes
in several prototype codes [13], [14]. What was missing up
to now was the close integration into existing technologies
like process chains for multidisciplinary simulations.

The potential of implicit schemes is well known and their
usage within CFD solvers on modern hardware has been
shown lately [14], [15], [16]. Their ability to converge to a
solution at all and to reduce the dependency on solver
settings for convergence as well as on meshes and their
quality can improve reliability and robustness. The
modified usage of multigrid schemes as algebraically
motivated formulation [14], [16], or the inclusion of linear
multigrid also for non-linear problems have the ability to
further improve reliability and robustness of the numerical
methods [14], [17]. Such numerical algorithms touch the
basic formulation and assumptions of a code and it can be
difficult to retrofit them in a large-scale legacy code
afterwards.

The architectures of modern HPC systems are changing
towards realizing multiple levels of parallelization. In
addition to the distributed-memory level which has been
used for decades since the advent of cluster systems,
today in particular the shared-memory level at which
multiple CPU cores of a multi- or many-core CPU make
use of the same memory has gained attention. Domain
decomposition using message passing (MPI), which
originally addressed distributed-memory parallelization,
has been the standard approach for decades. It has long
been known, however, that addressing the shared-
memory level differently within a hybrid parallelization
strategy can be beneficial in terms of parallel performance,
e.g. [19]. For an improved parallel implementation,
alternative communication and memory-access patterns
have been considered for modern high-performance
simulations. Experiences from the projects HiCFD [20] and
GASPI [21] and corresponding prototypes show the
potential of a multi-level parallelization. On the other hand,
it has also become apparent that it is difficult, if not almost
impossible, to realize such benefits enabled by modern
HPC systems within an existing large-scale legacy code
that is based on an MPI-only parallelization.

Advanced CFD software has to cover a wide range of
multidisciplinary scenarios these days. Modern software
engineering provides techniques to support a modular
code development towards highly flexible and
maintainable software [28]. Large legacy codes developed
over a long period of time can be difficult to maintain e.g.
due to possibly unclear interactions of features or code
parts, chronologically and logically unrelated development
activities, which could have profited from closer
collaboration, or the lacking involvement of an integrator
with substantial overall code knowledge for new
development activities. Additionally, it can be difficult to
apply modern forms of quality assurance [40] to a legacy
code after most of it has already been written. Although it
is common practice to use a testing environment and a
code-review process, their subsequent application within

development of legacy codes can be difficult to realize.

These aspects of modern CFD-software development
together with prior experiences in many aspects of CFD
software development [2], [3], [13], [14], [27], [36], [37],
[38] motivated a concerted effort in Digital-X into the new
common environment Flucs with particular focus on
exploiting current and upcoming HPC architectures,
attention to interactions of different disciplines, integration
of code for internal and external flows, and on an
innovative design to plan for the future and for future
extensibility. A focus is on quality assurance, testing and
maintainability to develop Flucs as an investment into a
sustainable capability for CFD. Among these innovative
aspects the transfer of established methods and models of
the TAU code into Flucs is considered.

The development and current status of Flucs is presented
in the following order: First an overview of the
development process realization is given. Then, the main
design decisions and their results are described. The
status of the implemented spatial discretizations and
iterative solvers is presented together with several
simulation results. Finally, concluding remarks are offered.

2. PROCESS REALIZATION

A development process realization consists of individual
parts from defining and managing requirements to
specifying the design, selecting tools which support the
actual code implementation, establishing a testing
environment, organizing communication among
developers, defining a documentation environment and
various evaluation steps like code reviews, performance
checks and overall software evaluations. In particular,
Flucs followed a top-down approach consisting of
identifying design drivers in terms of application range and
software design, specifying requirements and functionality,
implementing and evaluating a prototype and reworking
the prototype based on the evaluation. The development
process itself is supported by an infrastructure made up of
various tools to automate the process as much as
possible.

2.1. Requirements Management

Requirements for Flucs were gathered on the basis of the
experience of different groups. Design drivers were
identified by the development team and formulated as
project plan. The development team conducted about 20
dedicated interviews with experienced, in-house and
industrial CFD practitioners. Additionally, developers from
existing codes like TAU were interviewed. The results
were condensed into a requirement specification with
more than 150 individual requirements. Long-term goals
such as complex simulation scenarios for a ‘helicopter in
maneuver’ were assessed to complete the requirement
specification. The prioritization of the requirements yielded
a functional specification from which 104 issues were
classified as high-priority requirements. These issues were
entered into the web-based issue-management tool
Mantis [26] and organized within the tool to roadmaps
defining the content of different prototypes and releases.
The resulting long-term plan is well beyond the scope of
Digital-X, but with detailed planning for the duration of the
project. During Digital-X the focus was on tackling design
drivers and not on maximizing functionality.

Deutscher Luft- und Raumfahrtkongress 2016

2©2017

2.2. Version control and code reviews

Both version control and code reviews are basic
components for current software development [28], [29].
For Flucs the distributed version control of source code is
done via the tool git [31] which supports different version-
control work-flows. The central code version is maintained
with a clean history and coherent steps of moderate size,
while local backups, branches and merges can be
exploited to the taste of individual developers.

The review process follows a four+ eyes principle [29].
Each commit into the central Flucs development branch is
checked by at least one additional developer. The process
itself can be seen as an iterative development cycle, which
consists of a code-change proposal, its review and a
corresponding improvement, typically with more than two
or three iterations. A review considers both form and
content and is supported via the Gerrit [33] web-interface.
The web-interface provides visualizations of differences
between proposed code and the base version as well as
differences between subsequent iterations. It allows inline
comments to discuss individual code parts. Furthermore,
automated testing is integrated via the continuous
integration tool Jenkins [25]. Each commit has to pass the
testing environment before a review begins. One-click
download of the proposed code version for local testing by
the reviewer is also provided. Several further features are
available to facilitate the review process and make it as
little time-consuming as possible.

2.3. Testing

In general, a suite of automated tests is required for
quality assurance and as a basis for code extensions and
design changes, in particular in a growing team of
developers. Following [28], the testing environment of
Flucs defines different categories of testing: build testing,
functional testing, and formal testing.

Build testing uses different compilers to check basically for
errors and warnings and additionally, compatibility of the
code against the standard of the programming language.
Furthermore, the exchange of individual network-
communication libraries like MPI vs. GASPI is provided.
Functional testing includes unit tests, integration tests and
system tests. Unit tests use the Google Test library [22] for
expected behavior or expected failure modes of individual
methods and classes. Integration tests check the interplay
of different methods and classes. System tests run the full
code as intended and check output against independent
references. Formal testing checks the code for typical
programming mistakes and the coding standard using
static code analysis tools Cppcheck [22] and Vera++ [24].

The complete testing environment is fully integrated into
the web-interface for code-review via Jenkins [25] and
runs for each commit proposed for the central code
version and designated points in time, e.g. every night.

2.4. Core team, communication and
documentation

The development of Flucs is handled by a small core team
of experienced developers with overall code knowledge.
At least one core-team developer acts as reviewer for
each commit to avoid problems based on too little
knowledge of existing code or corresponding concepts.
Complex extensions have to be done in collaboration
between the developer and the core team. Extensions in

foreseen areas, e.g. adding a new turbulence model or
system of equations, are more easily performed by a
developer and can directly jump into the review process.

Meetings in form of a phone conference of the core team
with currently involved developers are conducted weekly.
In these meetings the status of each active development is
discussed and further development steps are arranged.
Additionally, there are frequent meetings of smaller groups
of developers involved in a particular development task
(collaborative development). During Digital-X a breakout-
review-session after mid-term was conducted. The aim
was to identify weak points in the current design and the
development process itself, in particular after the start-up
phase.

All weekly meetings are documented in a dedicated Wiki.
Code reviews are documented in Gerrit, requirements and
roadmaps are documented via Mantis that is also used as
bug-tracking system. The documentation generator
Doxygen [34] is used to write the API API (Application
Programming Interface) documentation of Flucs itself
directly within the code.

3. DESIGN

The design of Flucs includes abstractions and their
interactions derived from the identified design drivers and
the definition of the requirement specification. The
identified main design drivers were multi-disciplinary
simulations, a modular software design with high level of
abstraction to facilitate testing, maintenance and
extensibility, multi-level HPC support, an efficient overset-
grids technique, mixed-element unstructured grids with
hanging nodes, higher-order discretizations via a
Discontinuous Galerkin method, and implicit solution
algorithms based on consistent derivatives via AD
(Automatic Differentiation). Harmonized with design
solutions to the diverse requirements these led to
fundamental decisions for Flucs overall, but in particular
concerning consistency aspects, HPC support, the
abstraction of discretizations and derivative information.

3.1. Fundamental decisions

Future CFD applications are predominantly found inside a
multidisciplinary setting. DLR’s integration platform for
MDA (Multi-Disciplinary Analysis) is the FSDM (Flow
Simulator Data Manager) [2]. Flucs is designed as FSDM-
plugin to provide best possible compatibility with this type
of workflow. To avoid inconsistencies from the beginning
no stand-alone version exits. Instead the simulation set-up
layer is implemented as control layer (Fig. 1) in Python
[30]. Accordingly, the data exchange between FSDM and
Flucs is organized via the FSMesh-object (Fig. 2).

Deutscher Luft- und Raumfahrtkongress 2016

3©2017

Fig. 1 Flucs as FSDM-plugin

While Flucs acts as a single component within the
FlowSimulator environment, it has itself a similar modular
structure consisting of a Python control-layer, a common
framework and modules with exchangeable
implementations. The common framework defines and
implements interfaces to handle data structures and the
HPC layer. The exchangeable implementations of the
actual solver modules organize the underlying governing
equations, additional algebraic equations and
combinations of those, and the spatial and temporal
discretizations, cf. (Fig. 1).

Fig. 2 I/O interface of the FSDM-plugin Flucs

The spatial discretization module provides a Finite Volume
and a Discontinuous Galerkin discretization and has to
handle mixed-element unstructured grids according to the
corresponding design drivers. For the Finite Volume
discretization the cell-centered grid metric was chosen,
partly due to the fact that a closer relation with the
Discontinuous Galerkin discretization can be exploited.
Extensions have to be done in FSDM along with the Flucs
development in order to make consequent use of the data
flow of FSDM. In particular, an improved parallel output, a
modified mesh partitioning for the cell-centered grid
metric, the support for high-order curvilinear mesh
elements and for hanging nodes, as well as polynomial
data for visualization is necessary.

In order to enable the high level of abstraction and still
allow the generation of efficient machine code, C++11 [30]
is chosen as underlying programming language.
Templates are heavily used to minimize run-time overhead
of many abstractions.

3.2. Consistency

In the past, several problems within existing codes could

be traced back, sometimes after long investigation, to
some simplification or small scale inconsistency in a code
that did not show an adverse effect at the time of
integration. Further issues were related to the usage of an
algorithm or a data structure optimized for a specific task
but also used for similar tasks and to the usage of
dependent but outdated variables simultaneously. To
avoid such code inconsistencies as effectively as possible
Flucs refrains from pre-mature optimizations and
simplifications. Furthermore, Flucs supports tracking of
potential write access to field vectors holding flow data to
avoid stale copies of remote data. Centrally managed
network communication of the distributed data is done
when required. In addition, primitive variables, which
include redundant information to conservative variables,
are set up from conservatives for a given local state once
and cannot be changed independently. While gradients
are directly available in Discontinuous Galerkin
discretizations, a Finite Volume discretization typically has
to precompute them. In order to avoid outdated gradient
information, Flucs supports tracking of potential write
access to field vectors and updates precomputed
gradients upon the next request.

3.3. HPC support

An important motivation for developing Flucs is the
efficient use of current and upcoming parallel HPC
systems. CFD applications are globally coupled which
requires frequent communication and synchronization.
Hence, it is important but difficult to achieve high efficiency
on massively parallel systems. Modern HPC architectures
feature multiple levels of parallelism: a node-to-node level,
a multi-core level, and a SIMD (Single Instruction Multiple
Data) level, cf. (Fig. 3). For an efficient code all levels of
parallelism need to be exploited. Different techniques are
required to exploit the full potential of the different levels.
Concepts exist for the treatment of all three levels [20],
[21].

Fig. 3 Levels of parallelism

The node-to-node level is based on a domain
decomposition of the grid with halo layers. The
communication between the nodes is usually realized via
a network communication library. Flucs defines a common
abstraction of different network communication libraries to
be able to replace a specific library easily. The focus is on
the usage of the GASPI standard in form of its reference
implementation GPI [35] to exploit asynchronous
communication with overlap of communication and
computation. The standard MPI [18] is a fallback option.
The multi-core level is based on a subdomain
decomposition of a node-level grid domain. The memory is
shared between the cores of a node, so that no data
duplication via halo overlap is needed. Instead one-sided
write operations at subdomain boundaries are
implemented within Flucs to avoid data races. The SIMD
level to exploit vectorization within a single compute core
is currently realized only partially, by using Eigen [41] as a
dense linear algebra package with SIMD support.

Deutscher Luft- und Raumfahrtkongress 2016

4©2017

Fig. 4 Separated HPC layer

A key-element of Flucs’ HPC support is to hide details
from the developers outside the core team and the solver
code itself. Many CFD operations follow simple patterns:
based on local input compute local output and repeat this
over the whole mesh; usually in the form of loops over all
elements or faces. Parallel programming requires
additional synchronization instructions before and/or after
a loop- and possibly reorganization of underlying data.
Consequently, the amount of logic around the actual
operation grows for each level of parallelization. To keep
the logic separated from the solver code and hidden from
developers, an HPC layer is introduced, cf. (Fig. 4). The
HPC layer separates what is done locally (the loop body,
local input to local output) from how it is done globally. The
how-logic is implemented just once in the HPC layer of the
code framework (loop interface) to make it possible that
only the loop interface has to be extended or exchanged
for porting to new architectures.

3.4. Abstract discretization

Flucs provides a first or second order Finite Volume
discretization and a Discontinuous Galerkin discretization
of order one or higher. To exploit as many similarities
between these discretizations and to be as consistent as
possible (Sec. 3.2) an abstract design was introduced, cf.
(Fig. 5).

The basis of each discretization is the computational mesh
holding data of integration points in elements and
integration points on faces. Each face connects either two
elements or one element to a boundary. In the integration
points the state variables and their gradients are needed.
State variables are provided for each integration point via
a field vector holding conservative variables. Fluxes over
faces have to be evaluated and integrated so that at each
face left and right variables (and their gradients) in each
integration point are needed. How the variables and
gradients at a given point in the mesh are evaluated from
the field vector depends on an ansatz chosen for an

element plus (potentially) additional reconstruction. For a
Finite Volume discretization this can be a cell average in
combination with a limited linear reconstruction, while a
polynomial ansatz is used for a Discontinuous Galerkin
discretization. Reconstructed variables and gradients are
passed to closures to compute augmented variables like
pressure. The augmented set of variables is used by a
PDE (Partial Differential Equation) object to evaluate
fluxes and source terms. For evaluating convection fluxes,
the directivity of convection is taken into account
depending on the underlying PDE and closures via an
eigen-value decomposition of the corresponding flux. The
actual discretization only combines a mesh, an ansatz
selecting reconstruction, a PDE and corresponding
closures, and an upwinding scheme if the PDE has a
convection term. Depending on the discretization the
reconstruction includes special treatments of variables,
like adding a face gradient correction or a lifting operator,
or applying a slope limiter etc.

Fig. 5 Interaction of equations and discretizations

The treatment of boundaries is also abstracted via a
reconstruction. Just the matching (right) exterior state at a
boundary face has to be provided dependent on the
interior (left) state and the specific type of boundary
condition. The same flux as on interior faces is then
computed to incorporate boundary conditions. This
principle holds also for overset grids. In that case the right
state at a face is obtained from reconstruction in another
mesh (block). This works with any non-negative overlap
(including zero overlap) and is a great simplification for the
meshing procedure. Also local (output) quantities at the
wall as well as integral quantities are evaluated based on
the same flux computation for inner and boundary faces
[38].

3.5. Automatic differentiation

Within a CFD solver, consistent derivative information is

Deutscher Luft- und Raumfahrtkongress 2016

5©2017

required for various reasons. The full derivative is needed
for adjoint problems to support gradient-based
optimization and for reliable error estimation and mesh
adaptation. A compact-stencil derivative-approximation for
the Jacobian is typically utilized by implicit solvers [15].
The assembly of the Jacobian based on derivative
information is a two-step procedure. First, differentiate the
local residual contribution. Second, sort the local
contribution into the global Jacobian. The second step can
be implemented once for a given discretization. Derivative
information needed for the first step can be provided via
differentiation by hand or via AD. Differentiation of the
code by hand is simple in theory, but cumbersome and
error-prone in practice. Flucs realizes the first step by AD
in forward mode via operator overloading. This yields
exact derivatives up to machine precision. Currently
Eigen::AutoDiff [41] is used, but can be replaced by other
implementations.

4. STATUS AND RESULTS

Finally, an overview of Flucs’ status concerning
implemented discretizations, iterative solvers and the HPC
support is given and simulation results for designated test
cases are presented.

The abstract discretization of Flucs (Sec. 3.4) includes a
Roe-upwinding for convection and a central discretization
for diffusion. Several governing equations for
compressible flow in a fixed frame of reference are
implemented: Euler (inviscid flow), Navier-Stokes (laminar
viscous flow), and Reynolds-averaged Navier-Stokes plus
Spalart-Allmaras turbulence model (turbulent viscous
flow). The perfect gas equation of state, the viscosity
computation via Sutherland’s law and the thermal
conductivity computation via Prandtl number are
implemented as algebraic closures. The following
boundary conditions are implemented: fixed state (which is
used to model far-field boundaries), total pressure and
temperature based inflow with pressure based outflow
(Riemann), free slip wall, adiabatic no-slip wall, symmetry
plane including exact discrete equivalence with full model,
periodic boundary pairs (for pure translation) and an
overset-grids artificial boundary.

4.1. Finite Volume discretization

The Finite Volume discretization is specialized from the
abstract discretization (3.4) as second-order discretization
using a gradient-based, piecewise linear reconstruction.
Gradients are computed based on the Green-Gauss
theorem. The typical slope limiters like the limiter of Barth
and Jespersen [42] and Venkatakrishnan [43] for strong
shocks can be applied. The central discretization for
diffusion corrects the averaged face gradient directionally
[44].

In order to show that results based on Flucs’ Finite
Volume discretization are plausible, a cruise-flight test
case with a turbulent flow around the NASA Common
Research Model (CRM) was computed. Results for Flucs’
overset-grids boundary treatment for matching boundaries
and overlapping boundaries are shown for an internal flow
around a linear cascade of T106A turbine blades and for a
wing configuration with deflected flaps.

4.1.1. Cruise flight

A turbulent flow around the NASA CRM, a wing-body
configuration, with Mach number 0.85, an angle of attack

of 2.209°, and Reynolds number 5.0*106, taken from the
Fifth AIAA CFD Drag-Prediction Workshop (DPW5) [45], is
considered. The angle of attack is motivated by results for
the target lift of 0.5 [15]. The grids are from the DPW5 web
site [45].

Fig. 6 L3 grid for the CRM and cut at station 10

Fig. 6 shows a plot of the L3 grid (medium grid level)
including the cut at station 10 on the wing for which
pressure-coefficient distributions of Flucs results are
plotted in Fig. 7 and Fig. 8.

Fig. 7 Pressure-coefficient distributions at station 10

Flucs results are presented for the grid levels L1-L3 (tiny
to medium grid level) in Fig. 7. As reference, also wind
tunnel results for two runs close to the target lift of 0.5 are
included, though the conditions of measurement and
computation are actually rather different [45]. The results
are reasonable compared to the wind tunnel data and
show an expected convergence behavior from grid level
L1 to grid level L3 with respect to a steeper resolution of
the shock on the finer grid levels.

Deutscher Luft- und Raumfahrtkongress 2016

6©2017

Fig. 8 Pressure-coefficient distributions of Flucs, TAU

and wind tunnel results

For comparison to an established flow solver, TAU and
Flucs results are plotted for the medium grid level L3 in
Fig. 8. Except for the expected differences at the shock
due to different discretizations of discontinuities, where
Flucs uses a Roe-upwinding versus TAU’s central scheme
with matrix dissipation [15], and at the trailing edge due to
different grid metrics, the results are hardly
distinguishable.

Fig. 9 Grid convergence of drag coefficient

The grid convergence of the drag and lift coefficients
computed with Flucs on grid levels L1 to L3 are shown in
Fig. 9 and Fig. 10 and compared to TAU results computed
on grid levels L1 to L5. Though results on the finest grid
levels are not yet computed with Flucs, both lift and drag
coefficient tend to converge to similar values as TAU
does, with similar levels of error for a given grid.

Fig. 10 Grid convergence of lift coefficient

Altogether, the comparison of Flucs to wind tunnel and
TAU results for the cruise-flight test case shows that Flucs
results are reasonable.

4.1.2. Linear cascade

An internal flow around a linear cascade of T106A turbine
blades, a 2D approximation of a cylindrical cut through a
stator, is considered.

Fig. 11 Structured multi-block grid and Mach number

distribution

The multi-block grid consisting of five blocks with matching
interfaces and 18060 hexahedrons is shown in Fig. 11.
The five blocks are treated as separate meshes and
coupled via Flucs’ overset-grids boundary treatment. The
coupling is flux conservative in this case due to the
matching block interfaces. In order to map the periodic
boundaries for this linear cascade, again the overset-grids
boundary treatment is used, now with a fixed translation
(offset) vector.

Deutscher Luft- und Raumfahrtkongress 2016

7©2017

Fig. 12 Pressure distribution

In- and outflow are treated with Flucs’ Riemann boundary
treatment. At a Mach number of 0.3 (outflow), the
parameters are chosen such that at the outflow the non-
dimensional pressure and temperature are 1. The third
dimension of the 2D case is treated via symmetry planes.
The Reynolds number is set to 100,000.

The pressure distribution of the resulting flow field is
plotted in Fig. 12 and the resulting distribution of the
pressure coefficient over the blade’s surface in Fig. 13,

Fig. 13 Pressure coefficient distribution on the blade

From a qualitative perspective, the simulation shows a
reasonable drop in pressure with corresponding increase
in Mach number which is typical for such a turbine. Even
the characteristic pressure drop at the round trailing edge
is captured as can be seen in Fig. 14. As no results in the
literature using the same turbulence model (negative
Spalart-Allmaras, which does not allow to prescribe a
turbulence intensity of the inflow) were available, however,
a quantitative comparison with results from literature is not
included here.

Fig. 14 Pressure coefficient distribution at the trailing

edge

4.1.3. Overset grids with overlap

The demonstrated handling of multi-block meshes with
zero overlap via the overset-grids technique should be
regarded as a corner case of the corresponding
implementation. In the following, a wing with two flaps is
considered, with gaps between wing and flaps as well as
between the two flaps. The set-up of the three grids with
predefined holes (allowing for different flap-deflection
angles due to the overlapping regions) is plotted in Fig. 15.

Fig. 15 Wing grid set-up with predefined holes and two

component meshes

The pressure distribution on the lower surface and
streamlines through the gap are shown in Fig. 16 with both
flaps at a position of 10°.

Fig. 16 Pressure distribution on lower surface and

streamlines through gap

Fig. 17 shows the corresponding pressure distribution on
the upper surface. In contrast to the coupling of matching
mesh interfaces (Sec. 4.1.2), in this setting Flucs’ overset-
grids technique is not flux preserving.

Deutscher Luft- und Raumfahrtkongress 2016

8©2017

Fig. 17 Pressure distribution on upper surface and

streamlines through gap

4.2. Discontinuous Galerkin discretization

The Discontinuous Galerkin discretization is specialized
from the abstract discretization (3.4) using a modal basis
for the polynomial reconstruction. This basis is defined in
physical space (not on a reference element) and thus
suitable for agglomerated grids. Compile-time fixed
polynomial degree design orders generated from a generic
template are available for design order 1 (for Euler), 2, 3,
and 4. The central discretization with direct differentiation
will be extended to BR1 [46] and BR2 [47]. Currently, only
straight-sided grids can be handled. The metric
computation during the preprocessing requires extensions
for curvilinear meshes whereas the mesh data structure
and discretization are already fully prepared.

In order to show that results based on Flucs’
Discontinuous Galerkin discretization for different design
orders are plausible a turbulent flow around the L1T2 high-
lift airfoil is computed. The potential of the higher-order
Discontinuous Galerkin discretization for scale-resolving
simulations is shown via the computation of a Taylor-
Green vortex.

4.2.1. L1T2 high-lift airfoil

A 2D turbulent flow around the L1T2 three-element high-
lift airfoil is considered. Results for the Discontinuous
Galerkin discretization in Flucs are compared to results of
the Finite Volume discretization and experimental data to
show that they are reasonable for different orders and to
show a potential gain of accuracy per degrees of freedom
if higher-order discretizations are used.

Fig. 18 Hexahedron grid for the L1T2 (left), zoom zo the

slat (right)

A sequence of three grids is used, a coarse level of 4268
hexahedrons, a medium level of 17072 hexahedrons and
a fine level of 68288 hexahedrons. The grid around the
entire airfoil and around the slat is plotted in Fig. 18.

Fig. 19 Comparison of pressure-coefficient distributions

of DG with design order of 2 and 3, FV, and
experimental results on the fine grid

The flow is computed for Mach number 0.197, an angle of
attack of 20.18° and Reynolds number 3.52*106. The
pressure-coefficient contribution on all wing components is
plotted in Fig. 19 for the second order Finite Volume (FV)
discretization and the second and third order
Discontinuous Galerkin (DG) discretization on the fine
grid. Additionally, data from a wind tunnel experiment is
plotted. The simulation results and experimental data
match reasonably well. Differences between the resulting
pressure-coefficient distributions for the three
discretizations are small. This is somewhat expected,
since the fine grid was originally generated for a Finite
Volume computation of this case.

Fig. 20 Comparison of pressure-coefficient distributions

of DG with design order of 2 and 3, FV, and
experimental results at the leading edge of the
main wing

Fig. 20 illustrates the differences in greater detail. A
certain improvement towards the experimental data can
be seen for increasing resolution with higher-order
Discontinuous Galerkin discretizations.

Deutscher Luft- und Raumfahrtkongress 2016

9©2017

Fig. 21 Grid convergence of lift-coefficient

The grid convergence of the lift coefficient for various
spatial discretization schemes is shown in Fig. 21 against
the number of degrees of freedom per equation. With
increasing number of degrees of freedom all
discretizations tend to converge to a reasonable lift
coefficient. Whereas the second-order results for both the
Discontinuous Galerkin and the Finite Volume
discretization are close together regarding the obtained lift
coefficient on a given grid, the higher-order Discontinuous
Galerkin results show, as expected, a clear gain of
accuracy regarding the ratio of lift coefficient and number
of degrees of freedom on the same grids. This is despite
the fact that only straight-sided grids are used. Further
improvement is expected with curvilinear grids.

4.2.2. Taylor-Green vortex

The Taylor-Green vortex is often used to assess
turbulence scale resolving capabilities of CFD codes [4]. It
models the decay of large coherent vortex structures
(given as an analytical initialization) into smaller structures
and the transition to turbulence. Here, essentially
incompressible conditions at Mach number 0.1 are
assumed with a Reynolds number of 1,600. Flucs is used
in ILES (Implicit Large Eddy Simulation) mode, i.e. no
subgrid-scale model is employed. Results obtained for
various discretizations are then compared to reference
results obtained from a resolution-converged DNS (Direct
Numerical Simulation) of this case by a spectral code.

The 4th order (in space) Discontinuous Galerkin
simulation (via cubic polynomial ansatz functions,
“DG p3 5M” in Fig. 22) is run on a 63^3 Cartesian grid
(treated as an unstructured one, of course). It uses 20
degrees of freedom (DoFs) per element (per equation),
resulting in a total of about 5M DoFs (per equation). To
demonstrate the superior resolution of the Discontinuous
Galerkin method, a 2nd order Finite Volumes simulation is
run on a 171^3 grid (“FV 5M”), which also results in about
5M DoFs. Moreover, the coarser 63^3 grid is used with
this Finite Volume method (“FV 5M/20”, merely about
250K DoFs). All simulations use the classic 4th order
explicit Runge-Kutta time integration. The evolution of the
field’s enstrophy over time is a widely accepted error
measure for this test case [4]. As can be seen from Fig.

22, 5M DoFs are obviously not sufficient to fully resolve all
structures. Yet this is not the point here as both DG and
FV use Roe's scheme for a fair comparison, and not a
more apt low-dissipation scheme. The simulations clearly
confirm the expectation that, in this ILES, the specific
Discontinuous Galerkin method makes considerably “more
use” of DoFs than the specific FV method does.

While it is trivial to create meshes for this simple case at
any required resolution, a single existing unstructured
mesh might be all that is available for a given complex
case in practice. Here, the potential of the Discontinuous
Galerkin scheme to obtain a tremendous improvement of
the effective resolution on the same given mesh is
relevant. In that sense, the specific Discontinuous Galerkin
discretization can make “more use” of a mesh that the
specific Finite Volume method, albeit at substantially
increased cost.

Fig. 22 Enstrophy over convective time units (ctu) during

ILES of Taylor-Green vortex decay

4.3. Iterative solver

Currently two different iterative solvers are available in
Flucs: an explicit multi-stage Runge-Kutta method and an
implicit linearized backward Euler method. For steady
cases local pseudo-time steps are computed based on a
stability estimate and a CFL number. For unsteady cases
a uniform time step is employed.

The explicit multi-stage Runge-Kutta method is
implemented in a generic way, i.e. based on different
number of stages and Runge-Kutta coefficients various
different explicit iterative solvers are available. The implicit
linearized backward Euler method is based on an
approximate Jacobian corresponding to a compact stencil
obtained via AD. The CFL number is computed adaptively
based on the residual reduction using SER (Switched
Evolution Relaxation) [48]. The linear system is solved
with a simple damped element-block-Jacobi iterative
solver. Further development of the implicit iterative solver
is planned in the follow-on project VicToria.

Two test cases are chosen to verify that the implemented
methods show expected behavior.

Deutscher Luft- und Raumfahrtkongress 2016

10©2017

Fig. 23 Convergence history of the density residual

against iteration number (Finite Volume
discretization), inviscid flow around wing

The 3D inviscid flow around a wing resolved by an
unstructured grid is considered. Two computations with
Flucs’ Finite Volume discretization are compared. The first
uses an explicit 2-stage Runge-Kutta method with CFL
number 1. The second uses the implicit method with a
CFL number up to 50000. The comparison of the density
residual reduction against the number of iterations cf. (Fig.
23) and against the computation time cf. (Fig. 24) shows
expected behavior. The implicit method yields a
tremendous reduction in the number of iterations required
to converge the residual. This gain in iteration steps
translates into reduced but still significant savings in
computation time compared to the explicit method.

Fig. 24 Convergence history of the density residual

against computation time (Finite Volume
discretization)

A 2D turbulent flow around the L1T2 three-element high-
lift airfoil resolved by a block-structured grid is considered.
Flucs’ Discontinuous Galerkin discretization is used with
design order 3 on the finest grid. Due to the compact
stencil of the Discontinuous Galerkin method, the exact
derivative of the residual is used as Jacobian within the

implicit method with a CFL number increasing to 1000.
The residual norms against the number of iterations of the
five conservative variables are shown in Fig. 25. The
convergence behavior is as expected but the limitations of
the current implementation, mainly the linear solver, are
visible. Previous experience shows that this case can be
converged in the order of 100 iterations with an extended
implicit method including multigrid techniques [8].

Fig. 25 Convergence history of residual norms against

number of iterations (Discontinuous Galerkin
discretization), turbulent flow around L1T2 airfoil

Both test cases show that the basic methodology works as
expected, in particular with respect to AD. Extensions of
the implicit method are planned within the follow-on project
VicToria.

4.4. Parallel scalability

Parallel performance has been one of the major design
drivers of Flucs. In addition to the known concept of
domain decomposition to make use of distributed-memory
machines like HPC clusters, Flucs features a second level
of domain sub-decomposition which splits each domain
into subdomains. All subdomains of a single domain must
reside in the same memory, however, since Flucs makes
use of so called “threads” to compute a domain in parallel.
All threads dealing with the subdomains of a domain are
run on the same multicore CPU, usually such that there is
a one-to-one mapping of software thread to “processing
element” of this CPU. The benefit of this second level is
that there are fewer domains, namely just one per
multicore CPU, which results in less communication over
the network and reduced process-synchronization
overhead. To opt out performance, load imbalances on
this second level (subdomains) as well as thread-
synchronization overhead must be as small as possible, of
course – just as for the domain-decomposition level.

The efficiency of the new second-level shared-memory
parallelization is shown in Fig. 26. Flucs’ 2nd order Finite
Volume discretization (of the Reynolds-averaged Navier-
Stokes plus Spalart-Allmaras equations) is run using
explicit time integration for the L1 CRM mesh, cf. Sec.
4.1.1. A single domain is used (i.e. no domain
decomposition) to utilize a single IBM “Power A2” chip
(found in IBM’s massively parallel BG/Q architecture). This
CPU has 16 compute cores, each of which can

Deutscher Luft- und Raumfahrtkongress 2016

11©2017

simultaneously run four threads, resulting in a total of 64
threads. Thus, here we consider a “strong scaling”
scenario as we (try to) use more and more computational
resources to solve a fixed-size problem. As the four
threads running on the same CPU-core share some of the
core’s hardware resources, one may not expect a perfect
speed-up of 4. The obtained 70% intra-core parallel
efficiency (speed-up 2.82) when running a single domain
split into four subdomains on a single CPU-core can in fact
be considered a good performance. More interesting is the
speed-up obtained when using multiple CPU-cores (each
running 4 threads). With an obtained inter-core parallel
efficiency of 89% (speed-up 14.24) when using all 16
cores, Flucs shared-memory parallel processing of a
domain is able to make almost perfect use of this CPU.

Fig. 26 Runtime over number of threads used; single IBM

BG/Q chip: 16 cores, each running 4 threads

The effect of running Flucs in various parallel modes is
shown in Fig. 27. Flucs can use two different libraries to
exchange data at domain boundaries, namely “MPI” and
“GASPI”. Moreover, Flucs allows overlapping the domain-
decomposition communication (via one of the two) with
computation, which is in fact Flucs’ standard mode. To
demonstrate the effect of this innovative feature,
simulations were run with no overlap (“NO”) by disabling
this overlap. Finally, the simulations were run single-
threaded (“ST”), i.e. the second level, namely the shared-
memory level, was switched off, resulting in running one
domain per CPU-core. Thus, “MPI ST NO” resembles the
classical parallelization concept of most legacy codes like,
e.g., DLR’s production code TAU.

Fig. 27 Parallel scalability of Flucs: parallel efficiency over

number of HPC cluster nodes used

Note that one cluster node consists of two 12-core Intel Ivy
Bridge EP CPUs, which means that one node has 24
CPU-cores, which run 48 threads due to Intel’s “hyper-

threading”. The effect of overlapping communication with
computation is always present (solid vs. dashed lines). For
the ST runs (red, shared-memory parallelization disabled),
it is present for low core counts, whereas for the two-level
parallel runs, the effect is seen for high core counts, which
is the design goal. Moreover, the effect of the added
second parallelization level (black/blue vs. red) is
significant. Finally, the effect of using GASPI instead of
MPI for domain decomposition is also significant. All in all,
running Flucs on a coarse mesh consisting of less than 2
million elements with fully enabled parallelization (black
circles) allows using 200 cluster nodes (4800 cores
running 9600 threads, i.e. merely 200 elements per
thread) with 80% parallel efficiency. With MPI (blue), only
80 nodes can be used at the same efficiency. Without the
second level (sub-decomposition), merely 40 cluster
nodes can be used at 80% efficiency. These results, which
were obtained on the C²A²S²E cluster system [49] located
at DLR’s Braunschweig site, demonstrate clearly that the
efforts on Flucs’ advanced parallelization concept pay off
in terms of a significantly improved parallel efficiency.

5. SUMMARY AND NEXT STEPS

An overview of the design and development of DLR’s next
generation flow solver Flucs was presented, details on its
current status were given and results for internal and
external flows were shown. The reasons for starting the
new software Flucs were mentioned. The process
realization to support the Flucs development as well as the
basic design was presented. The process may seem
rather complex involving a multitude of software tools, but
process and tool selection were carefully designed to
provide a real benefit for the overall development effort.
Additionally, the process is not regarded as rigid and can
be adapted to better suit the needs, if required. This has
already happened in the project duration. Flucs is
designed and implemented as a pure FSDM plugin. The
plugin is built from a common framework and light-weight
solver components to separate details from the ordinary
developer and keep the kernel components replaceable if
needed. Additionally, a high level of abstraction is used to
allow a high level of code reuse. Since the start of Flucs’
development a sustainable design is considered more
important than early features. Hence, code consistency
has a very high priority and premature simplifications,
assumptions and optimizations were not the focus during
Digital-X. Finally, the provided examples showed expected
results in the new environment.

Having worked out the underlying design aspects, the
main focus of further development of Flucs in the follow-on
project VicToria will shift towards the extension of
functionality. The planned implementations of implicit
solver techniques follow the ideas in [15], [16]. The
physical models will be extended by a differential
Reynolds stress turbulence model [50], [51] and an
enhanced transition-modeling transport-equation approach
[52], [53]. A focus is on the generalization to a rotating
frame of reference and grids under general movement and
deformation. Further developments are the fan integration
and the calculation of unsteady flows. An important
extension will be the support for curved grids for
Discontinuous Galerkin discretizations and the
implementation of mesh adaptation with hanging nodes for
all discretizations. All extensions of functionality are
prerequisites to reaching the milestone defined within
VicToria of simulating a helicopter in forward flight.

Deutscher Luft- und Raumfahrtkongress 2016

12©2017

Additionally, during VicToria a dedicated HPC-focused
linear algebra package as common building block for
various applications will be developed and subsequently
used by Flucs.

6. REFERENCES

[1] Kroll, N., Abu-Zurayk, M., Dimitrov, D., Franz, T.,
Führer, T.,Gerhold, T., Görtz, S., Heinrich, R., Ilic, C.,
Jepsen, J., Jägersküpper, J., Kruse, M., Krumbein, A.,
Langer, S., Liu, D., Liepelt, R., Reimer, L., Ritter, M.,
Schwöppe, A., Scherer, J., Spiering, F., Thormann,
R., Togiti, V., Vollmer, D., Wendisch, J.-H.: DLR
project Digital-X: towards virtual aircraft design and
flight testing based on high-fidelity methods. CEAS
Aeronautical Journal, 7, 3-27, 2015

[2] Meinel, M., Einarsson, G.O.: The FlowSimulator
framework for massively parallel CFD applications. In:
PARA 2010. PARA2010, 6.-9. Juni 2010, Reykjavik,
Island, 2010

[3] Schwamborn, D., Gerhold, T., Heinrich, R.: The DLR
TAU Code: Recent Applications in Research and
Industry. In proceedings of European Conference on
Computational Fluid Dynamics, ECCOMAS CDF
2006, Delft, The Netherland, 2006

[4] Wang, Z.J., Fidkowski, K., Abgrall, R., Bassi, F.,
Caraeni, D., Carey, A., Deconinck, H., Hartmann, R.,
Hillewaert, K., Huynh, H.T., Kroll, N., May, G.,
Persson, P.-O., van Leer, B., Visbal, M.: High-order
CFD methods: current status and perspective,
International Journal for Numerical Methods in Fluids
72(8), 811-845, 2013

[5] Fidkowski, K., Darmofal, D.: Review of output-based
error estimation and mesh adaptation in
Computational Fluid Dynamics, AIAA Journal 49(4),
673-694, 2011

[6] Carton de Wiart, C., Hillewaert, K., Bricteux, L.,
Winckelmans G., Implicit LES of free and
wall‐bounded turbulent flows based on the
discontinuous Galerkin/symmetric interior penalty
method, International Journal for Numerical Methods
in Fluids 78(6), 335-354, 2015

[7] Kroll, N.: ADIGMA - A European project on the
development of adaptive higher-order variational
methods for aerospace applications, 47th AIAA
Aerospace Sciences Meeting, AIAA 2009-176, 2009

[8] Kroll, N., Leicht, T., Hirsch, C., Bassi, F., Johnston,
C., Sørensen, K., Hillewaert, K.: Results and
conclusions of the European project IDIHOM on high-
order methods for industrial aerodynamic
applications, 53rd AIAA Aerospace Sciences Meeting,
AIAA 2015-293, 2015

[9] 1st International Workshop on High-Order CFD
methods, Nashville, Tennesse, Jan. 7–8, 2012,
http://zjwang.com/hiocfd.html, Accessed 08
September 2016

[10] 2nd International Workshop on High-Order CFD
methods, Cologne, Germany, May 27–28, 2013,
http://www.dlr.de/as/hiocfd/, Accessed 08 September
2016

[11] 3rd International Workshop on High-Order CFD
methods, Orlando, Florida, Jan. 3–4, 2015,
https://www.grc.nasa.gov/hiocfd/, Accessed 08
September 2016

[12] 4th International Workshop on High-Order CFD
methods, Heraklion (Crete), Greece, June 4-5, 2016,

https://how4.cenaero.be/, Accessed 08 September
2016

[13] Hartmann, R., Held, J., Leicht, T., Prill, F.:
Discontinuous Galerkin methods for computational
aerodynamics — 3D adaptive flow simulation with the
DLR PADGE code, Aerospace Science and
Technology 14 (7), 512-519, 2010

[14] Wallraff, M., Leicht, T.: Higher-order multigrid
algorithms for a discontinuous Galerkin RANS solver,
52nd AIAA Aerospace Sciences Meeting. AIAA 2014-
936, 2014

[15] Langer, S., Schwöppe, A. Kroll, N.: Investigation and
comparison of implicit smoothers applied in
agglomeration multigrid in the framework of the DLR
TAU-Code, AIAA 2014-0080, 52nd AIAA SciTech,
National Harbor, Maryland, January 13-17, 2014

[16] Langer S.: Agglomeration multigrid methods with
implicit Runge-Kutta smoothers applied to
aerodynamic simulations on unstructured grids, J.
Comput. Phys. 277, 72-100, 2014.

[17] Mavriplis, D., Mani K.: Unstructured Mesh Solution
Techniques using the NSU3D Solver, AIAA 2014-
0081, 52nd AIAA SciTech, National Harbor, Maryland,
January 13-17, 2014

[18] Message Passing Interface Forum, http://www.mpi-
forum.org/, Accessed 08 September 2016

[19] Jin, H. et al.: High performance computing using MPI
and OpenMP on multi-core parallel systems, Journal
on Parallel Computing, Vol.37(9), 562–575, Elsevier,
2011

[20] Basermann, A. et al.: HICFD: Highly Efficient
Implementation of CFD Codes for HPC Many-Core
Architectures. In: Competence in High Performance
Computing 2010: Proceedings of an International
Conference on Competence in High Performance
Computing, 1–13, Springer, 2012

[21] Alrutz, T. et al: GASPI: A Partitioned Global Address
Space Programming Interface. In: Facing the
Multicore-Challenge III, Lecture Notes in Computer
Science, Vol.7686, 135–136, Springer, 2013

[22] Google C++ Testing Framework.
https://github.com/google/googletest/, Accessed 08
September 2016

[23] Cppcheck - A tool for static C/C++ code analysis.
http://cppcheck.sourceforge.net/, Accessed 08
September 2016

[24] Vera++ - A programmable tool for verification,
analysis and transformation of C++ source code.
https://bitbucket.org/verateam/vera/wiki/Home/,
Accessed 08 September 2016 2016

[25] Jenkins - An automation engine with a plugin
ecosystem. https://jenkins.io/, Accessed 08
September 2016

[26] Mantis Bug Tracker. https://www.mantisbt.org/,
Accessed 08 September 2016

[27] Jägersküpper, J., Simmendinger, Ch.: A Novel
Shared-Memory Thread-Pool Implementation for
Hybrid Parallel CFD Solvers, Proceedings Euro-Par
2011, Lecture Notes in Computer Science, Band
6853, Springer, 182-193, 2011

[28] Rajlich V.: Software Engineering: The Current
Practice, Chapman & Hall, CRC Innovations in
Software Engineering and Software Development
Series, ISBN 9781439841228, 2011

[29] Rigby, P.C., Bird, C.: Convergent contemporary
software peer review practices, Proceedings of the

Deutscher Luft- und Raumfahrtkongress 2016

13©2017

2013 9th Joint Meeting on Foundations of Software
Engineering, 202-212, New York, 2013

[30] The Python Programming Language,
https://www.python.org/, Accessed 08 September
2016

[31] ISO/IEC JTC1/SC22/WG21: ISO/IEC 14882:2011 -
The C++ Programming Language, 2011

[32] Git - A distributed version control system, https://git-
scm.com/, Accessed 08 September 2016

[33] Gerrit Code Review - Code Reviews for Git,
https://www.gerritcodereview.com/, Accessed 08
September 2016

[34] Van Heesch D., Generate documentation from source
code, http://www.stack.nl/~dimitri/doxygen/index.html,
Accessed 08 September 2016

[35] GPI–2 - Global Address Space Programming
Interface, http://www.gpi-site.com accessed 08
September 2016

[36] Spiering, F.: Coupling of TAU and TRACE for parallel
accurate flow simulations, International Symposium
on Simulation of Wing and Nacelle Stall,
Braunschweig, Germany, 2012.

[37] Spiering, F., Kelleners, P.: Coupling of Flow Solvers
with Variable Accuracy of Spatial Discretization, New
Results in Numerical and Experimental Fluid
Mechanics IX. Contributions to the 18th STAB/DGLR
Symposium, Stuttgart, Germany, 415-423, Springer
Verlag, ISBN 978-3-319-03157-6, 2012.

[38] Hartmann, R., Leicht, T.: Generalized adjoint
consistent treatment of wall boundary conditions for
compressible flows, J. Comput. Phys., Vol. 300, 754-
778, DOI: 10.1016/j.jcp.2015.07.042, 2015

[39] Hartmann, R., Leicht, T.: Generation of unstructured
curvilinear grids and high-order Discontinuous
Galerkin discretization applied to a 3D high-lift
configuration, Int. J. Num. Meth. Fluids, Published
online. DOI: 10.1002/fld.4219, 2016

[40] DIN EN ISO 9001:2015: Quality management
systems – Requirements

[41] Eigen - A C++ template library for linear algebra,
http://eigen.tuxfamily.org/, Accessed 08 September
2016

[42] Barth, D.J., Jespersen, D.C.: The Design and
Application of Upwind Schemes on Unstructured
Meshes. AIAA Paper 89-0366, 1989

[43] Venkatakrishnan, V.: On the Accuracy of Limiters and
Convergence to Steady State Solutions. AIAA Paper
93-0880, 1993

[44] Schwöppe, A., Diskin, B.: Accuracy of the Cell-
Centered Grid Metric in the DLR TAU-Code. In: New
Results in Numerical and Experimental Fluid
Mechanics VIII Notes on Numerical Fluid Mechanics
and Multidisciplinary Design, 121. Springer Verlag.
pp. 429-437. ISBN 978-3-642-35679-7. ISSN 1612-
2909, 2013

[45] 5th AIAA CFD Drag Prediction Workshop, New
Orleans, LA, 23-24 June 2012, https://aiaa-
dpw.larc.nasa.gov/Workshop5/workshop5.html,
Accessed 08 September 2016

[46] Bassi, F., Rebay, S.; A high-order accurate
discontinuous finite element method for the numerical
solution of the compressible Navier-Stokes equations,
Journal of Computational Physics 131, 267-279, 1997

[47] Bassi, F., Rebay, S., Mariotti, G., Pedinotti, Savini, S.:
A high-order accurate discontinuous finite element

method for inviscid and viscous turbomachinery flows,
in M. Decuypere, R. & Dibelius, G. (eds.): 2nd
European Conference on Turbomachinery Fluid
Dynamics and Thermodynamics, Antwerpen,
Belgium, March 5-7, 99-108, 1997

[48] Mulder, W.A., an Leer, B.: Experiments with implicit
upwind methods for the Euler equations, Journal of
Computational Physics 59, 232–246, 1985

[49] CASE-2 - SGI ICE X, Intel Xeon E5-2695v2 12C
2.400GHz, Infiniband FDR,
https://www.top500.org/system/178196, Accessed 08
September 2016

[50] Eisfeld, B., Rumsey, C., Togiti, V.: Verification and
Validation of a Second-Moment-Closure Model, AIAA
Journal, Vol. 54, No. 5, 1524-1541, DOI:
10.2514/1.J054718, 2016

[51] Togiti, V., Eisfeld, B.: Assessment of g-Equation
Formulation for a Second-Moment Reynolds Stress
Turbulence Model, AIAA 2015-2925, AIAA Aviation,
45th AIAA Fluid Dynamics Conference, 22. - 26.
June, Dallas, Texas, USA, 2015

[52] Menter, F.R., Langtry, R.B.: Correlation-Based
Transition Modeling for Unstructured Parallelized
Computational Fluid Dynamics Codes, AIAA Journal,
Vol. 47, No. 12, 2894-2906, DOI: 10.2514/1.42362,
2009

[53] Grabe, C., Nie, S., Krumbein, A.: Transition Transport
Modeling for the Prediction of Crossflow Transition,
AIAA 2016-3572, AIAA Aviation and Aeronautics
Forum and Exposition, 13.-17. June, Washington, DC,
USA, 2016

Deutscher Luft- und Raumfahrtkongress 2016

14©2017

