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Abstract 

The development of DLR’s ‘next-generation’ flow solver was initiated as part of the project Digital-X [1] to 
provide a basis for a consolidated flow solver using modern software techniques with high flexibility and high 
degree of innovation for a wide range of multidisciplinary applications. An overview of the design and 
development of the resulting flow solver Flucs (FLexible Unstructured CFD Software) is presented, its current 
status is described, and first results for internal and external flows are shown. 
The development followed a top-down approach identifying significant drivers in terms of application range 
and software design and was evaluated during the project to identify possible drawbacks in early stages and 
is continuously monitored to keep maintainability and expandability. The development is supported by 
modern software tools, such as distributed version control, web-based code reviews, and continuous 
integration. The kernel of the resulting design is a framework whose data structures and methods serve as a 
basis for implementing lean modules, for example equations, discretizations and time-integration methods. 
The framework provides basic functionalities like efficient implementation of loops, parallelization, or the 
provision of required data. Based on the framework, two discretizations are implemented: a second-order 
finite-volume discretization and a discontinuous Galerkin discretization with variable order, both of them 
using the same sets of implemented equations like the Euler-equations, the Navier-Stokes equations, or the 
RANS equations. A focus of the next-generation solver is its efficient use on current and future parallel HPC 
systems. The framework currently provides a two-level parallelization consisting of a domain decomposition 
that features communication/computation overlap, and shared-memory parallel processing of a domain. The 
simulation-setup layer of Flucs is designed as compatible Python API for the simulation environment 
FlowSimulator [2] which provides a flexible interface to a wide range of multidisciplinary simulation-scenarios. 
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1. INTRODUCTION 

The multidisciplinary project Digital-X (04/2012-06/2016) 
[1] represents a basic component for the progressive 
realization of the vision of digital aircraft design and virtual 
flight testing at DLR. The project focused on the 
development and industrialization of advanced simulation 
methods and processes to pioneer their application for 
exploring the whole flight envelope virtually. Part of its 
activities was addressing the first development steps of 
DLR’s next generation CFD (Computational Fluid 
Dynamics) solver Flucs (FLexible Unstructured CFD 
Software) to provide a basis for a consolidated flow solver 
with high flexibility and high degree of innovation for a 
wide range of multidisciplinary applications using modern 
software techniques and utilizing upcoming HPC 
architectures. 

In parts of Digital-X, CFD was taken as given. Compared 
to other disciplines it has been used for a long time and is 
relatively mature but still has room for improvement, in 
particular regarding current and upcoming progress in 
computer hardware, numerical algorithms and software 
development. The unstructured DLR CFD solver TAU [3], 
which is routinely used in industry and research, was 
further improved within Digital-X. However, integrating 
recent developments for HPC (High Performance 
Computing) hardware, implicit solver techniques or higher-
order discretizations into legacy codes with regard to a 
sustainable software development can be a difficult task. 
Also considering expanded requirements of 
multidisciplinary scenarios this motivated an innovative 
strategy for developing a next generation CFD solver. 

Higher-order methods have been investigated world-wide 
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over recent years [4]. In particular, the Discontinuous 
Galerkin method has potential for reliable error estimation 
and adaptivity [5], as well as scale-resolving simulations 
[6]. DLR has its own experience due to collaboration in 
several European projects like ADIGMA [7], IDIHOM [8],  
or TILDA and participation and hosting of international 
workshops on higher-order CFD methods [4], [9], [10], 
[11], [12]. Additionally, DLR has gained experience 
regarding the implementation of higher-order CFD codes 
in several prototype codes [13], [14]. What was missing up 
to now was the close integration into existing technologies 
like process chains for multidisciplinary simulations. 

The potential of implicit schemes is well known and their 
usage within CFD solvers on modern hardware has been 
shown lately [14], [15], [16]. Their ability to converge to a 
solution at all and to reduce the dependency on solver 
settings for convergence as well as on meshes and their 
quality can improve reliability and robustness. The 
modified usage of multigrid schemes as algebraically 
motivated formulation [14], [16], or the inclusion of linear 
multigrid also for non-linear problems have the ability to 
further improve reliability and robustness of the numerical 
methods [14], [17]. Such numerical algorithms touch the 
basic formulation and assumptions of a code and it can be 
difficult to retrofit them in a large-scale legacy code 
afterwards. 

The architectures of modern HPC systems are changing 
towards realizing multiple levels of parallelization. In 
addition to the distributed-memory level which has been 
used for decades since the advent of cluster systems, 
today in particular the shared-memory level at which 
multiple CPU cores of a multi- or many-core CPU make 
use of the same memory has gained attention. Domain 
decomposition using message passing (MPI), which 
originally addressed distributed-memory parallelization, 
has been the standard approach for decades. It has long 
been known, however, that addressing the shared-
memory level differently within a hybrid parallelization 
strategy can be beneficial in terms of parallel performance, 
e.g. [19]. For an improved parallel implementation, 
alternative communication and memory-access patterns 
have been considered for modern high-performance 
simulations. Experiences from the projects HiCFD [20] and 
GASPI [21] and corresponding prototypes show the 
potential of a multi-level parallelization. On the other hand, 
it has also become apparent that it is difficult, if not almost 
impossible, to realize such benefits enabled by modern 
HPC systems within an existing large-scale legacy code 
that is based on an MPI-only parallelization. 

Advanced CFD software has to cover a wide range of 
multidisciplinary scenarios these days. Modern software 
engineering provides techniques to support a modular 
code development towards highly flexible and 
maintainable software [28]. Large legacy codes developed 
over a long period of time can be difficult to maintain e.g. 
due to possibly unclear interactions of features or code 
parts, chronologically and logically unrelated development 
activities, which could have profited from closer 
collaboration, or the lacking involvement of an integrator 
with substantial overall code knowledge for new 
development activities. Additionally, it can be difficult to 
apply modern forms of quality assurance [40] to a legacy 
code after most of it has already been written. Although it 
is common practice to use a testing environment and a 
code-review process, their subsequent application within 

development of legacy codes can be difficult to realize. 

These aspects of modern CFD-software development 
together with prior experiences in many aspects of CFD 
software development [2], [3], [13], [14], [27], [36], [37], 
[38] motivated a concerted effort in Digital-X into the new 
common environment Flucs with particular focus on 
exploiting current and upcoming HPC architectures, 
attention to interactions of different disciplines, integration 
of code for internal and external flows, and on an 
innovative design to plan for the future and for future 
extensibility. A focus is on quality assurance, testing and 
maintainability to develop Flucs as an investment into a 
sustainable capability for CFD. Among these innovative 
aspects the transfer of established methods and models of 
the TAU code into Flucs is considered. 

The development and current status of Flucs is presented 
in the following order: First an overview of the 
development process realization is given. Then, the main 
design decisions and their results are described. The 
status of the implemented spatial discretizations and 
iterative solvers is presented together with several 
simulation results. Finally, concluding remarks are offered. 

2. PROCESS REALIZATION 

A development process realization consists of individual 
parts from defining and managing requirements to 
specifying the design, selecting tools which support the 
actual code implementation, establishing a testing 
environment, organizing communication among 
developers, defining a documentation environment and 
various evaluation steps like code reviews, performance 
checks and overall software evaluations. In particular, 
Flucs followed a top-down approach consisting of 
identifying design drivers in terms of application range and 
software design, specifying requirements and functionality, 
implementing and evaluating a prototype and reworking 
the prototype based on the evaluation. The development 
process itself is supported by an infrastructure made up of 
various tools to automate the process as much as 
possible. 

2.1. Requirements Management 

Requirements for Flucs were gathered on the basis of the 
experience of different groups. Design drivers were 
identified by the development team and formulated as 
project plan. The development team conducted about 20 
dedicated interviews with experienced, in-house and 
industrial CFD practitioners. Additionally, developers from 
existing codes like TAU were interviewed. The results 
were condensed into a requirement specification with 
more than 150 individual requirements. Long-term goals 
such as complex simulation scenarios for a ‘helicopter in 
maneuver’ were assessed to complete the requirement 
specification. The prioritization of the requirements yielded 
a functional specification from which 104 issues were 
classified as high-priority requirements. These issues were 
entered into the web-based issue-management tool 
Mantis [26] and organized within the tool to roadmaps 
defining the content of different prototypes and releases. 
The resulting long-term plan is well beyond the scope of 
Digital-X, but with detailed planning for the duration of the 
project. During Digital-X the focus was on tackling design 
drivers and not on maximizing functionality. 

Deutscher Luft- und Raumfahrtkongress 2016

2©2017



2.2. Version control and code reviews 

Both version control and code reviews are basic 
components for current software development [28], [29]. 
For Flucs the distributed version control of source code is 
done via the tool git [31] which supports different version-
control work-flows. The central code version is maintained 
with a clean history and coherent steps of moderate size, 
while local backups, branches and merges can be 
exploited to the taste of individual developers. 

The review process follows a four+ eyes principle [29]. 
Each commit into the central Flucs development branch is 
checked by at least one additional developer. The process 
itself can be seen as an iterative development cycle, which 
consists of a code-change proposal, its review and a 
corresponding improvement, typically with more than two 
or three iterations. A review considers both form and 
content and is supported via the Gerrit [33] web-interface. 
The web-interface provides visualizations of differences 
between proposed code and the base version as well as 
differences between subsequent iterations. It allows inline 
comments to discuss individual code parts. Furthermore, 
automated testing is integrated via the continuous 
integration tool Jenkins [25]. Each commit has to pass the 
testing environment before a review begins. One-click 
download of the proposed code version for local testing by 
the reviewer is also provided. Several further features are 
available to facilitate the review process and make it as 
little time-consuming as possible. 

2.3. Testing 

In general, a suite of automated tests is required for 
quality assurance and as a basis for code extensions and 
design changes, in particular in a growing team of 
developers. Following [28], the testing environment of 
Flucs defines different categories of testing: build testing, 
functional testing, and formal testing. 

Build testing uses different compilers to check basically for 
errors and warnings and additionally, compatibility of the 
code against the standard of the programming language. 
Furthermore, the exchange of individual network-
communication libraries like MPI vs. GASPI is provided. 
Functional testing includes unit tests, integration tests and 
system tests. Unit tests use the Google Test library [22] for 
expected behavior or expected failure modes of individual 
methods and classes. Integration tests check the interplay 
of different methods and classes. System tests run the full 
code as intended and check output against independent 
references. Formal testing checks the code for typical 
programming mistakes and the coding standard using 
static code analysis tools Cppcheck [22] and Vera++ [24]. 

The complete testing environment is fully integrated into 
the web-interface for code-review via Jenkins [25] and 
runs for each commit proposed for the central code 
version and designated points in time, e.g. every night. 

2.4. Core team, communication and 
documentation 

The development of Flucs is handled by a small core team 
of experienced developers with overall code knowledge. 
At least one core-team developer acts as reviewer for 
each commit to avoid problems based on too little 
knowledge of existing code or corresponding concepts. 
Complex extensions have to be done in collaboration 
between the developer and the core team. Extensions in 

foreseen areas, e.g. adding a new turbulence model or 
system of equations, are more easily performed by a 
developer and can directly jump into the review process. 

Meetings in form of a phone conference of the core team 
with currently involved developers are conducted weekly. 
In these meetings the status of each active development is 
discussed and further development steps are arranged. 
Additionally, there are frequent meetings of smaller groups 
of developers involved in a particular development task 
(collaborative development). During Digital-X a breakout-
review-session after mid-term was conducted. The aim 
was to identify weak points in the current design and the 
development process itself, in particular after the start-up 
phase. 

All weekly meetings are documented in a dedicated Wiki. 
Code reviews are documented in Gerrit, requirements and 
roadmaps are documented via Mantis that is also used as 
bug-tracking system. The documentation generator 
Doxygen [34] is used to write the API API (Application 
Programming Interface) documentation of Flucs itself 
directly within the code. 

3. DESIGN 

The design of Flucs includes abstractions and their 
interactions derived from the identified design drivers and 
the definition of the requirement specification. The 
identified main design drivers were multi-disciplinary 
simulations, a modular software design with high level of 
abstraction to facilitate testing, maintenance and 
extensibility, multi-level HPC support, an efficient overset-
grids technique, mixed-element unstructured grids with 
hanging nodes, higher-order discretizations via a 
Discontinuous Galerkin method, and implicit solution 
algorithms based on consistent derivatives via AD 
(Automatic Differentiation). Harmonized with design 
solutions to the diverse requirements these led to 
fundamental decisions for Flucs overall, but in particular 
concerning consistency aspects, HPC support, the 
abstraction of discretizations and derivative information. 

3.1. Fundamental decisions 

Future CFD applications are predominantly found inside a 
multidisciplinary setting. DLR’s integration platform for 
MDA (Multi-Disciplinary Analysis) is the FSDM (Flow 
Simulator Data Manager) [2]. Flucs is designed as FSDM-
plugin to provide best possible compatibility with this type 
of workflow. To avoid inconsistencies from the beginning 
no stand-alone version exits. Instead the simulation set-up 
layer is implemented as control layer (Fig. 1) in Python 
[30]. Accordingly, the data exchange between FSDM and 
Flucs is organized via the FSMesh-object (Fig. 2). 
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Fig. 1 Flucs as FSDM-plugin 

While Flucs acts as a single component within the 
FlowSimulator environment, it has itself a similar modular 
structure consisting of a Python control-layer, a common 
framework and modules with exchangeable 
implementations. The common framework defines and 
implements interfaces to handle data structures and the 
HPC layer. The exchangeable implementations of the 
actual solver modules organize the underlying governing 
equations, additional algebraic equations and 
combinations of those, and the spatial and temporal 
discretizations, cf. (Fig. 1). 

 

Fig. 2 I/O interface of the FSDM-plugin Flucs 

The spatial discretization module provides a Finite Volume 
and a Discontinuous Galerkin discretization and has to 
handle mixed-element unstructured grids according to the 
corresponding design drivers. For the Finite Volume 
discretization the cell-centered grid metric was chosen, 
partly due to the fact that a closer relation with the 
Discontinuous Galerkin discretization can be exploited. 
Extensions have to be done in FSDM along with the Flucs 
development in order to make consequent use of the data 
flow of FSDM. In particular, an improved parallel output, a 
modified mesh partitioning for the cell-centered grid 
metric, the support for high-order curvilinear mesh 
elements and for hanging nodes, as well as polynomial 
data for visualization is necessary. 

In order to enable the high level of abstraction and still 
allow the generation of efficient machine code, C++11 [30] 
is chosen as underlying programming language. 
Templates are heavily used to minimize run-time overhead 
of many abstractions. 

3.2. Consistency 

In the past, several problems within existing codes could 

be traced back, sometimes after long investigation, to 
some simplification or small scale inconsistency in a code 
that did not show an adverse effect at the time of 
integration. Further issues were related to the usage of an 
algorithm or a data structure optimized for a specific task 
but also used for similar tasks and to the usage of 
dependent but outdated variables simultaneously. To 
avoid such code inconsistencies as effectively as possible 
Flucs refrains from pre-mature optimizations and 
simplifications. Furthermore, Flucs supports tracking of 
potential write access to field vectors holding flow data to 
avoid stale copies of remote data. Centrally managed 
network communication of the distributed data is done 
when required. In addition, primitive variables, which 
include redundant information to conservative variables, 
are set up from conservatives for a given local state once 
and cannot be changed independently. While gradients 
are directly available in Discontinuous Galerkin 
discretizations, a Finite Volume discretization typically has 
to precompute them.  In order to avoid outdated gradient 
information, Flucs supports tracking of potential write 
access to field vectors and updates precomputed 
gradients upon the next request. 

3.3. HPC support 

An important motivation for developing Flucs is the 
efficient use of current and upcoming parallel HPC 
systems. CFD applications are globally coupled which 
requires frequent communication and synchronization. 
Hence, it is important but difficult to achieve high efficiency 
on massively parallel systems. Modern HPC architectures 
feature multiple levels of parallelism: a node-to-node level, 
a multi-core level, and a SIMD (Single Instruction Multiple 
Data) level, cf. (Fig. 3). For an efficient code all levels of 
parallelism need to be exploited. Different techniques are 
required to exploit the full potential of the different levels. 
Concepts exist for the treatment of all three levels [20], 
[21]. 

  
Fig. 3 Levels of parallelism 

The node-to-node level is based on a domain 
decomposition of the grid with halo layers. The 
communication between the nodes is usually realized via 
a network communication library. Flucs defines a common 
abstraction of different network communication libraries to 
be able to replace a specific library easily. The focus is on 
the usage of the GASPI standard in form of its reference 
implementation GPI [35] to exploit asynchronous 
communication with overlap of communication and 
computation. The standard MPI [18] is a fallback option. 
The multi-core level is based on a subdomain 
decomposition of a node-level grid domain. The memory is 
shared between the cores of a node, so that no data 
duplication via halo overlap is needed. Instead one-sided 
write operations at subdomain boundaries are 
implemented within Flucs to avoid data races. The SIMD 
level to exploit vectorization within a single compute core 
is currently realized only partially, by using Eigen [41] as a 
dense linear algebra package with SIMD support. 
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Fig. 4 Separated HPC layer 

A key-element of Flucs’ HPC support is to hide details 
from the developers outside the core team and the solver 
code itself. Many CFD operations follow simple patterns: 
based on local input compute local output and repeat this 
over the whole mesh; usually in the form of loops over all 
elements or faces. Parallel programming requires 
additional synchronization instructions before and/or after 
a loop- and possibly reorganization of underlying data. 
Consequently, the amount of logic around the actual 
operation grows for each level of parallelization. To keep 
the logic separated from the solver code and hidden from 
developers, an HPC layer is introduced, cf. (Fig. 4). The 
HPC layer separates what is done locally (the loop body, 
local input to local output) from how it is done globally. The 
how-logic is implemented just once in the HPC layer of the 
code framework (loop interface) to make it possible that 
only the loop interface has to be extended or exchanged 
for porting to new architectures. 

3.4. Abstract discretization 

Flucs provides a first or second order Finite Volume 
discretization and a Discontinuous Galerkin discretization 
of order one or higher. To exploit as many similarities 
between these discretizations and to be as consistent as 
possible (Sec. 3.2) an abstract design was introduced, cf. 
(Fig. 5). 

The basis of each discretization is the computational mesh 
holding data of integration points in elements and 
integration points on faces. Each face connects either two 
elements or one element to a boundary. In the integration 
points the state variables and their gradients are needed. 
State variables are provided for each integration point via 
a field vector holding conservative variables. Fluxes over 
faces have to be evaluated and integrated so that at each 
face left and right variables (and their gradients) in each 
integration point are needed. How the variables and 
gradients at a given point in the mesh are evaluated from 
the field vector depends on an ansatz chosen for an 

element plus (potentially) additional reconstruction. For a 
Finite Volume discretization this can be a cell average in 
combination with a limited linear reconstruction, while a 
polynomial ansatz is used for a Discontinuous Galerkin 
discretization. Reconstructed variables and gradients are 
passed to closures to compute augmented variables like 
pressure. The augmented set of variables is used by a 
PDE (Partial Differential Equation) object to evaluate 
fluxes and source terms. For evaluating convection fluxes, 
the directivity of convection is taken into account 
depending on the underlying PDE and closures via an 
eigen-value decomposition of the corresponding flux. The 
actual discretization only combines a mesh, an ansatz 
selecting reconstruction, a PDE and corresponding 
closures, and an upwinding scheme if the PDE has a 
convection term. Depending on the discretization the 
reconstruction includes special treatments of variables, 
like adding a face gradient correction or a lifting operator, 
or applying a slope limiter etc. 

  

 
Fig. 5 Interaction of equations and discretizations 

The treatment of boundaries is also abstracted via a 
reconstruction. Just the matching (right) exterior state at a 
boundary face has to be provided dependent on the 
interior (left) state and the specific type of boundary 
condition. The same flux as on interior faces is then 
computed to incorporate boundary conditions. This 
principle holds also for overset grids. In that case the right 
state at a face is obtained from reconstruction in another 
mesh (block). This works with any non-negative overlap 
(including zero overlap) and is a great simplification for the 
meshing procedure. Also local (output) quantities at the 
wall as well as integral quantities are evaluated based on 
the same flux computation for inner and boundary faces 
[38]. 

3.5. Automatic differentiation 

Within a CFD solver, consistent derivative information is 
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required for various reasons. The full derivative is needed 
for adjoint problems to support gradient-based 
optimization and for reliable error estimation and mesh 
adaptation. A compact-stencil derivative-approximation for 
the Jacobian is typically utilized by implicit solvers [15]. 
The assembly of the Jacobian based on derivative 
information is a two-step procedure. First, differentiate the 
local residual contribution. Second, sort the local 
contribution into the global Jacobian. The second step can 
be implemented once for a given discretization. Derivative 
information needed for the first step can be provided via 
differentiation by hand or via AD. Differentiation of the 
code by hand is simple in theory, but cumbersome and 
error-prone in practice. Flucs realizes the first step by AD 
in forward mode via operator overloading. This yields 
exact derivatives up to machine precision. Currently 
Eigen::AutoDiff [41] is used, but can be replaced by other 
implementations. 

4. STATUS AND RESULTS 

Finally, an overview of Flucs’ status concerning 
implemented discretizations, iterative solvers and the HPC 
support is given and simulation results for designated test 
cases are presented.  

The abstract discretization of Flucs (Sec. 3.4) includes a 
Roe-upwinding for convection and a central discretization 
for diffusion. Several governing equations for 
compressible flow in a fixed frame of reference are 
implemented: Euler (inviscid flow), Navier-Stokes (laminar 
viscous flow), and Reynolds-averaged Navier-Stokes plus 
Spalart-Allmaras turbulence model (turbulent viscous 
flow). The perfect gas equation of state, the viscosity 
computation via Sutherland’s law and the thermal 
conductivity computation via Prandtl number are 
implemented as algebraic closures. The following 
boundary conditions are implemented: fixed state (which is 
used to model far-field boundaries), total pressure and 
temperature based inflow with pressure based outflow 
(Riemann), free slip wall, adiabatic no-slip wall, symmetry 
plane including exact discrete equivalence with full model, 
periodic boundary pairs (for pure translation) and an 
overset-grids artificial boundary. 

4.1. Finite Volume discretization 

The Finite Volume discretization is specialized from the 
abstract discretization (3.4) as second-order discretization 
using a gradient-based, piecewise linear reconstruction. 
Gradients are computed based on the Green-Gauss 
theorem. The typical slope limiters like the limiter of Barth 
and Jespersen [42] and Venkatakrishnan [43] for strong 
shocks can be applied. The central discretization for 
diffusion corrects the averaged face gradient directionally 
[44]. 

In order to show that results based on Flucs’ Finite 
Volume discretization are plausible, a cruise-flight test 
case with a turbulent flow around the NASA Common 
Research Model (CRM) was computed. Results for Flucs’ 
overset-grids boundary treatment for matching boundaries 
and overlapping boundaries are shown for an internal flow 
around a linear cascade of T106A turbine blades and for a 
wing configuration with deflected flaps. 

4.1.1. Cruise flight 

A turbulent flow around the NASA CRM, a wing-body 
configuration, with Mach number 0.85, an angle of attack 

of 2.209°, and Reynolds number 5.0*106, taken from the 
Fifth AIAA CFD Drag-Prediction Workshop (DPW5) [45], is 
considered. The angle of attack is motivated by results for 
the target lift of 0.5 [15]. The grids are from the DPW5 web 
site [45]. 

 
Fig. 6 L3 grid for the CRM and cut at station 10 

Fig. 6 shows a plot of the L3 grid (medium grid level) 
including the cut at station 10 on the wing for which 
pressure-coefficient distributions of Flucs results are 
plotted in Fig. 7 and Fig. 8. 

 

 
Fig. 7 Pressure-coefficient distributions at station 10 

Flucs results are presented for the grid levels L1-L3 (tiny 
to medium grid level) in Fig. 7. As reference, also wind 
tunnel results for two runs close to the target lift of 0.5 are 
included, though the conditions of measurement and 
computation are actually rather different [45]. The results 
are reasonable compared to the wind tunnel data and 
show an expected convergence behavior from grid level 
L1 to grid level L3 with respect to a steeper resolution of 
the shock on the finer grid levels. 
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Fig. 8 Pressure-coefficient distributions of Flucs, TAU 

and wind tunnel results 

For comparison to an established flow solver, TAU and 
Flucs results are plotted for the medium grid level L3 in 
Fig. 8. Except for the expected differences at the shock 
due to different discretizations of discontinuities, where 
Flucs uses a Roe-upwinding versus TAU’s central scheme 
with matrix dissipation [15], and at the trailing edge due to 
different grid metrics, the results are hardly 
distinguishable. 

 

Fig. 9 Grid convergence of drag coefficient 

The grid convergence of the drag and lift coefficients 
computed with Flucs on grid levels L1 to L3 are shown in 
Fig. 9 and Fig. 10 and compared to TAU results computed 
on grid levels L1 to L5. Though results on the finest grid 
levels are not yet computed with Flucs, both lift and drag 
coefficient tend to converge to similar values as TAU 
does, with similar levels of error for a given grid. 

 
Fig. 10 Grid convergence of lift coefficient  

Altogether, the comparison of Flucs to wind tunnel and 
TAU results for the cruise-flight test case shows that Flucs 
results are reasonable. 

4.1.2. Linear cascade 

An internal flow around a linear cascade of T106A turbine 
blades, a 2D approximation of a cylindrical cut through a 
stator, is considered. 

 
Fig. 11 Structured multi-block grid and Mach number 

distribution  

The multi-block grid consisting of five blocks with matching 
interfaces and 18060 hexahedrons is shown in Fig. 11. 
The five blocks are treated as separate meshes and 
coupled via Flucs’ overset-grids boundary treatment. The 
coupling is flux conservative in this case due to the 
matching block interfaces. In order to map the periodic 
boundaries for this linear cascade, again the overset-grids 
boundary treatment is used, now with a fixed translation 
(offset) vector. 
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Fig. 12 Pressure distribution 

In- and outflow are treated with Flucs’ Riemann boundary 
treatment. At a Mach number of 0.3 (outflow), the 
parameters are chosen such that at the outflow the non-
dimensional pressure and temperature are 1. The third 
dimension of the 2D case is treated via symmetry planes. 
The Reynolds number is set to 100,000. 

The pressure distribution of the resulting flow field is 
plotted in Fig. 12 and the resulting distribution of the 
pressure coefficient over the blade’s surface in Fig. 13,  

 
Fig. 13 Pressure coefficient distribution on the blade 

From a qualitative perspective, the simulation shows a 
reasonable drop in pressure with corresponding increase 
in Mach number which is typical for such a turbine. Even 
the characteristic pressure drop at the round trailing edge 
is captured as can be seen in Fig. 14. As no results in the 
literature using the same turbulence model (negative 
Spalart-Allmaras, which does not allow to prescribe a 
turbulence intensity of the inflow) were available, however, 
a quantitative comparison with results from literature is not 
included here. 

 
Fig. 14 Pressure coefficient distribution at the trailing 

edge 

4.1.3. Overset grids with overlap 

The demonstrated handling of multi-block meshes with 
zero overlap via the overset-grids technique should be 
regarded as a corner case of the corresponding 
implementation. In the following, a wing with two flaps is 
considered, with gaps between wing and flaps as well as 
between the two flaps. The set-up of the three grids with 
predefined holes (allowing for different flap-deflection 
angles due to the overlapping regions) is plotted in Fig. 15. 

 
Fig. 15 Wing grid set-up with predefined holes and two 

component meshes 

The pressure distribution on the lower surface and 
streamlines through the gap are shown in Fig. 16 with both 
flaps at a position of 10°.  

 

 
Fig. 16 Pressure distribution on lower surface and 

streamlines through gap 

Fig. 17 shows the corresponding pressure distribution on 
the upper surface. In contrast to the coupling of matching 
mesh interfaces (Sec. 4.1.2), in this setting Flucs’ overset-
grids technique is not flux preserving. 
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Fig. 17 Pressure distribution on upper surface and 

streamlines through gap 

4.2. Discontinuous Galerkin discretization 

The Discontinuous Galerkin discretization is specialized 
from the abstract discretization (3.4) using a modal basis 
for the polynomial reconstruction. This basis is defined in 
physical space (not on a reference element) and thus 
suitable for agglomerated grids. Compile-time fixed 
polynomial degree design orders generated from a generic 
template are available for design order 1 (for Euler), 2, 3, 
and 4. The central discretization with direct differentiation 
will be extended to BR1 [46] and BR2 [47]. Currently, only 
straight-sided grids can be handled. The metric 
computation during the preprocessing requires extensions 
for curvilinear meshes whereas the mesh data structure 
and discretization are already fully prepared. 

In order to show that results based on Flucs’ 
Discontinuous Galerkin discretization for different design 
orders are plausible a turbulent flow around the L1T2 high-
lift airfoil is computed. The potential of the higher-order 
Discontinuous Galerkin discretization for scale-resolving 
simulations is shown via the computation of a Taylor-
Green vortex. 

4.2.1. L1T2 high-lift airfoil 

A 2D turbulent flow around the L1T2 three-element high-
lift airfoil is considered. Results for the Discontinuous 
Galerkin discretization in Flucs are compared to results of 
the Finite Volume discretization and experimental data to 
show that they are reasonable for different orders and to 
show a potential gain of accuracy per degrees of freedom 
if higher-order discretizations are used. 

  
Fig. 18 Hexahedron grid for the L1T2 (left), zoom zo the 

slat (right) 

A sequence of three grids is used, a coarse level of 4268 
hexahedrons, a medium level of 17072 hexahedrons and 
a fine level of 68288 hexahedrons. The grid around the 
entire airfoil and around the slat is plotted in Fig. 18.  

 

 
Fig. 19 Comparison of pressure-coefficient distributions 

of DG with design order of 2 and 3, FV, and 
experimental results on the fine grid 

The flow is computed for Mach number 0.197, an angle of 
attack of 20.18° and Reynolds number 3.52*106. The 
pressure-coefficient contribution on all wing components is 
plotted in Fig. 19 for the second order Finite Volume (FV) 
discretization and the second and third order 
Discontinuous Galerkin (DG) discretization on the fine 
grid. Additionally, data from a wind tunnel experiment is 
plotted. The simulation results and experimental data 
match reasonably well. Differences between the resulting 
pressure-coefficient distributions for the three 
discretizations are small. This is somewhat expected, 
since the fine grid was originally generated for a Finite 
Volume computation of this case. 

 
Fig. 20 Comparison of pressure-coefficient distributions 

of DG with design order of 2 and 3, FV, and 
experimental results at the leading edge of the 
main wing 

Fig. 20 illustrates the differences in greater detail. A 
certain improvement towards the experimental data can 
be seen for increasing resolution with higher-order 
Discontinuous Galerkin discretizations. 
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Fig. 21 Grid convergence of lift-coefficient 

The grid convergence of the lift coefficient for various 
spatial discretization schemes is shown in Fig. 21 against 
the number of degrees of freedom per equation. With 
increasing number of degrees of freedom all 
discretizations tend to converge to a reasonable lift 
coefficient. Whereas the second-order results for both the 
Discontinuous Galerkin and the Finite Volume 
discretization are close together regarding the obtained lift 
coefficient on a given grid, the higher-order Discontinuous 
Galerkin results show, as expected, a clear gain of 
accuracy regarding the ratio of lift coefficient and number 
of degrees of freedom on the same grids. This is despite 
the fact that only straight-sided grids are used. Further 
improvement is expected with curvilinear grids. 

4.2.2. Taylor-Green vortex 

The Taylor-Green vortex is often used to assess 
turbulence scale resolving capabilities of CFD codes [4]. It 
models the decay of large coherent vortex structures 
(given as an analytical initialization) into smaller structures 
and the transition to turbulence. Here, essentially 
incompressible conditions at Mach number 0.1 are 
assumed with a Reynolds number of 1,600. Flucs is used 
in ILES (Implicit Large Eddy Simulation) mode, i.e. no 
subgrid-scale model is employed. Results obtained for 
various discretizations are then compared to reference 
results obtained from a resolution-converged DNS (Direct 
Numerical Simulation) of this case by a spectral code. 

The 4th order (in space) Discontinuous Galerkin 
simulation (via cubic polynomial ansatz functions, 
“DG p3 5M” in Fig. 22) is run on a 63^3 Cartesian grid 
(treated as an unstructured one, of course). It uses 20 
degrees of freedom (DoFs) per element (per equation), 
resulting in a total of about 5M DoFs (per equation). To 
demonstrate the superior resolution of the Discontinuous 
Galerkin method, a 2nd order Finite Volumes simulation is 
run on a 171^3 grid (“FV 5M”), which also results in about 
5M DoFs. Moreover, the coarser 63^3 grid is used with 
this Finite Volume method (“FV 5M/20”, merely about 
250K DoFs). All simulations use the classic 4th order 
explicit Runge-Kutta time integration. The evolution of the 
field’s enstrophy over time is a widely accepted error 
measure for this test case [4]. As can be seen from Fig. 

22, 5M DoFs are obviously not sufficient to fully resolve all 
structures. Yet this is not the point here as both DG and 
FV use Roe's scheme for a fair comparison, and not a 
more apt low-dissipation scheme. The simulations clearly 
confirm the expectation that, in this ILES, the specific 
Discontinuous Galerkin method makes considerably “more 
use” of DoFs than the specific FV method does. 

While it is trivial to create meshes for this simple case at 
any required resolution, a single existing unstructured 
mesh might be all that is available for a given complex 
case in practice. Here, the potential of the Discontinuous 
Galerkin scheme to obtain a tremendous improvement of 
the effective resolution on the same given mesh is 
relevant. In that sense, the specific Discontinuous Galerkin 
discretization can make “more use” of a mesh that the 
specific Finite Volume method, albeit at substantially 
increased cost. 

 
Fig. 22 Enstrophy over convective time units (ctu) during 

ILES of Taylor-Green vortex decay 

4.3. Iterative solver 

Currently two different iterative solvers are available in 
Flucs: an explicit multi-stage Runge-Kutta method and an 
implicit linearized backward Euler method. For steady 
cases local pseudo-time steps are computed based on a 
stability estimate and a CFL number. For unsteady cases 
a uniform time step is employed. 

The explicit multi-stage Runge-Kutta method is 
implemented in a generic way, i.e. based on different 
number of stages and Runge-Kutta coefficients various 
different explicit iterative solvers are available. The implicit 
linearized backward Euler method is based on an 
approximate Jacobian corresponding to a compact stencil 
obtained via AD. The CFL number is computed adaptively 
based on the residual reduction using SER (Switched 
Evolution Relaxation) [48]. The linear system is solved 
with a simple damped element-block-Jacobi iterative 
solver. Further development of the implicit iterative solver 
is planned in the follow-on project VicToria. 

Two test cases are chosen to verify that the implemented 
methods show expected behavior. 
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Fig. 23 Convergence history of the density residual 

against iteration number (Finite Volume 
discretization), inviscid flow around wing 

The 3D inviscid flow around a wing resolved by an 
unstructured grid is considered. Two computations with 
Flucs’ Finite Volume discretization are compared. The first 
uses an explicit 2-stage Runge-Kutta method with CFL 
number 1. The second uses the implicit method with a 
CFL number up to 50000. The comparison of the density 
residual reduction against the number of iterations cf. (Fig. 
23) and against the computation time cf. (Fig. 24) shows 
expected behavior. The implicit method yields a 
tremendous reduction in the number of iterations required 
to converge the residual. This gain in iteration steps 
translates into reduced but still significant savings in 
computation time compared to the explicit method. 

 
Fig. 24 Convergence history of the density residual 

against computation time (Finite Volume 
discretization) 

A 2D turbulent flow around the L1T2 three-element high-
lift airfoil resolved by a block-structured grid is considered. 
Flucs’ Discontinuous Galerkin discretization is used with 
design order 3 on the finest grid. Due to the compact 
stencil of the Discontinuous Galerkin method, the exact 
derivative of the residual is used as Jacobian within the 

implicit method with a CFL number increasing to 1000. 
The residual norms against the number of iterations of the 
five conservative variables are shown in Fig. 25. The 
convergence behavior is as expected but the limitations of 
the current implementation, mainly the linear solver, are 
visible. Previous experience shows that this case can be 
converged in the order of 100 iterations with an extended 
implicit method including multigrid techniques [8]. 

 
Fig. 25 Convergence history of residual norms against 

number of iterations (Discontinuous Galerkin 
discretization), turbulent flow around L1T2 airfoil 

Both test cases show that the basic methodology works as 
expected, in particular with respect to AD. Extensions of 
the implicit method are planned within the follow-on project 
VicToria. 

4.4. Parallel scalability 

Parallel performance has been one of the major design 
drivers of Flucs. In addition to the known concept of 
domain decomposition to make use of distributed-memory 
machines like HPC clusters, Flucs features a second level 
of domain sub-decomposition which splits each domain 
into subdomains. All subdomains of a single domain must 
reside in the same memory, however, since Flucs makes 
use of so called “threads” to compute a domain in parallel. 
All threads dealing with the subdomains of a domain are 
run on the same multicore CPU, usually such that there is 
a one-to-one mapping of software thread to “processing 
element” of this CPU. The benefit of this second level is 
that there are fewer domains, namely just one per 
multicore CPU, which results in less communication over 
the network and reduced process-synchronization 
overhead. To opt out performance, load imbalances on 
this second level (subdomains) as well as thread-
synchronization overhead must be as small as possible, of 
course – just as for the domain-decomposition level. 

The efficiency of the new second-level shared-memory 
parallelization is shown in Fig. 26. Flucs’ 2nd order Finite 
Volume discretization (of the Reynolds-averaged Navier-
Stokes plus Spalart-Allmaras equations) is run using 
explicit time integration for the L1 CRM mesh, cf. Sec. 
4.1.1. A single domain is used (i.e. no domain 
decomposition) to utilize a single IBM “Power A2” chip 
(found in IBM’s massively parallel BG/Q architecture). This 
CPU has 16 compute cores, each of which can 
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simultaneously run four threads, resulting in a total of 64 
threads. Thus, here we consider a “strong scaling” 
scenario as we (try to) use more and more computational 
resources to solve a fixed-size problem. As the four 
threads running on the same CPU-core share some of the 
core’s hardware resources, one may not expect a perfect 
speed-up of 4. The obtained 70% intra-core parallel 
efficiency (speed-up 2.82) when running a single domain 
split into four subdomains on a single CPU-core can in fact 
be considered a good performance. More interesting is the 
speed-up obtained when using multiple CPU-cores (each 
running 4 threads). With an obtained inter-core parallel 
efficiency of 89% (speed-up 14.24) when using all 16 
cores, Flucs shared-memory parallel processing of a 
domain is able to make almost perfect use of this CPU. 

 
Fig. 26 Runtime over number of threads used; single IBM 

BG/Q chip: 16 cores, each running 4 threads 

The effect of running Flucs in various parallel modes is 
shown in Fig. 27. Flucs can use two different libraries to 
exchange data at domain boundaries, namely “MPI” and 
“GASPI”. Moreover, Flucs allows overlapping the domain-
decomposition communication (via one of the two) with 
computation, which is in fact Flucs’ standard mode. To 
demonstrate the effect of this innovative feature, 
simulations were run with no overlap (“NO”) by disabling 
this overlap. Finally, the simulations were run single-
threaded (“ST”), i.e. the second level, namely the shared-
memory level, was switched off, resulting in running one 
domain per CPU-core. Thus, “MPI ST NO” resembles the 
classical parallelization concept of most legacy codes like, 
e.g., DLR’s production code TAU. 

 
Fig. 27 Parallel scalability of Flucs: parallel efficiency over 

number of HPC cluster nodes used 

Note that one cluster node consists of two 12-core Intel Ivy 
Bridge EP CPUs, which means that one node has 24 
CPU-cores, which run 48 threads due to Intel’s “hyper-

threading”. The effect of overlapping communication with 
computation is always present (solid vs. dashed lines). For 
the ST runs (red, shared-memory parallelization disabled), 
it is present for low core counts, whereas for the two-level 
parallel runs, the effect is seen for high core counts, which 
is the design goal. Moreover, the effect of the added 
second parallelization level (black/blue vs. red) is 
significant. Finally, the effect of using GASPI instead of 
MPI for domain decomposition is also significant. All in all, 
running Flucs on a coarse mesh consisting of less than 2 
million elements with fully enabled parallelization (black 
circles) allows using 200 cluster nodes (4800 cores 
running 9600 threads, i.e. merely 200 elements per 
thread) with 80% parallel efficiency. With MPI (blue), only 
80 nodes can be used at the same efficiency. Without the 
second level (sub-decomposition), merely 40 cluster 
nodes can be used at 80% efficiency. These results, which 
were obtained on the C²A²S²E cluster system [49] located 
at DLR’s Braunschweig site, demonstrate clearly that the 
efforts on Flucs’ advanced parallelization concept pay off 
in terms of a significantly improved parallel efficiency. 

5. SUMMARY AND NEXT STEPS 

An overview of the design and development of DLR’s next 
generation flow solver Flucs was presented, details on its 
current status were given and results for internal and 
external flows were shown. The reasons for starting the 
new software Flucs were mentioned. The process 
realization to support the Flucs development as well as the 
basic design was presented. The process may seem 
rather complex involving a multitude of software tools, but 
process and tool selection were carefully designed to 
provide a real benefit for the overall development effort. 
Additionally, the process is not regarded as rigid and can 
be adapted to better suit the needs, if required. This has 
already happened in the project duration. Flucs is 
designed and implemented as a pure FSDM plugin. The 
plugin is built from a common framework and light-weight 
solver components to separate details from the ordinary 
developer and keep the kernel components replaceable if 
needed. Additionally, a high level of abstraction is used to 
allow a high level of code reuse. Since the start of Flucs’ 
development a sustainable design is considered more 
important than early features. Hence, code consistency 
has a very high priority and premature simplifications, 
assumptions and optimizations were not the focus during 
Digital-X. Finally, the provided examples showed expected 
results in the new environment. 

Having worked out the underlying design aspects, the 
main focus of further development of Flucs in the follow-on 
project VicToria will shift towards the extension of 
functionality. The planned implementations of implicit 
solver techniques follow the ideas in [15], [16]. The 
physical models will be extended by a differential 
Reynolds stress turbulence model [50], [51] and an 
enhanced transition-modeling transport-equation approach 
[52], [53]. A focus is on the generalization to a rotating 
frame of reference and grids under general movement and 
deformation. Further developments are the fan integration 
and the calculation of unsteady flows. An important 
extension will be the support for curved grids for 
Discontinuous Galerkin discretizations and the 
implementation of mesh adaptation with hanging nodes for 
all discretizations. All extensions of functionality are 
prerequisites to reaching the milestone defined within 
VicToria of simulating a helicopter in forward flight. 
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Additionally, during VicToria a dedicated HPC-focused 
linear algebra package as common building block for 
various applications will be developed and subsequently 
used by Flucs. 
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