Deutscher Luft- und Raumfahrtkongress 2016
DocumentID: 420128

MODEL-BASED SOFTWARE ENGINEERING FOR AN OPTICAL
NAVIGATION SYSTEM FOR SPACECRAFT

T. Franz, D. Ludtke, O. Maibaum, A. Gerndt,

German Aerospace Center (DLR), Simulation and Software Technology,
Lilienthalplatz 7, 38108 Braunschweig, Germany

Abstract

The project ATON (Autonomous Terrain-based Optical Navigation) at the German Aerospace Center (DLR)
is developing an optical navigation system for future landing missions on celestial bodies such as the Moon
or asteroids. Image data obtained by optical sensors can be used for autonomous determination of the
spacecraft’s position and attitude. Camera-in-the-loop experiments in the TRON (Testbed for Robotic Optical
Navigation) laboratory and flight campaigns with unmanned aerial vehicle (UAV) are performed to gather
flight data for further development and to test the system in a closed-loop scenario. The software modules
are executed in the C++ Tasking Framework that provides the means to concurrently run the modules in
separated tasks, send messages between tasks, and schedule task execution based on events. Since the
project is developed in collaboration with several institutes in different domains at DLR, clearly defined and
well-documented interfaces are necessary. Preventing misconceptions caused by differences between
various development philosophies and standards turned out to be challenging. After the first development
cycles with manual Interface Control Documents (ICD) and manual implementation of the complex
interactions between modules, we switched to a model-based approach. The ATON model covers a
graphical description of the modules, their parameters and communication patterns. Type and consistency
checks on this formal level help to reduce errors in the system. The model enables the generation of
interfaces and unified data types as well as their documentation. Furthermore, the C++ code for the
exchange of data between the modules and the scheduling of the software tasks is created automatically.
With this approach, changing the data flow in the system or adding additional components (e.g. a second
camera) have become trivial.

moved over different surface models, representing the
phases of a landing mission. In addition, flight tests with
unmanned aerial vehicles are performed to demonstrate
the robustness and accuracy of the system in dynamic
missions.

1. INTRODUCTION

Future mission designs for the robotic exploration of
celestial bodies require the landing of scientific
instruments at specific locations with a high accuracy.
While current extraterrestrial, unmanned landing missions
are usually based on predefined, timed command lists, the
project Autonomous Terrain-based Optical Navigation
(ATON) at the German Aerospace Center (DLR) develops
methods to use optical sensors to compute a navigation
solution in real-time. Such dynamic methods provide a
way to handle unexpected situations where a static
command list would fail. This increases the achievable
accuracy to reach the destined landing site. Optical

The optical sensors consist of two cameras, a star tracker
and a laser altimeter. Besides that, the system uses an
inertial measurement unit (IMU). The collected data is
analyzed in several intermediate steps and finally fused in
a Kalman filter to estimate position and attitude of the
spacecraft. The camera data is used to compute a relative
movement by using feature tracking [1] as well as position
estimations by matching shadows [2] and craters [3].

systems for navigation are a promising technology since
their measurements are independent from a ground
station.

The project has been running since January 2010. It has
passed several stages of simulation and flight tests.
Sensor simulations and camera-in-the-loop experiments in
the TRON (Testbed for Robotic Optical Navigation)
laboratory were used to test the system with close to
realistic scenarios. Sensors are installed on a robot and

©2016

Due to the high complexity and specialization of the used
algorithms, the software modules are developed at
different DLR research institutes from different domains
(space systems, robotics, optical systems, aeronautic
flight systems and simulation and software technology).
The integration of all those modules into one software
turned out to be very challenging.

Even with clearly defined software interfaces in an
Interface Control Document (ICD), some

Deutscher Luft- und Raumfahrtkongress 2016

misunderstandings occurred. Since the corresponding
module developers provided the interfaces, data types had
different formats and needed to be converted during
integration. Moreover, different institutes and development
teams used varying coding styles, guidelines and even
different programming languages because not all
algorithms were developed solely for this project.

Additionally, the integration of the software modules into
the execution platform was very time-consuming. To be
executed in the system’s scheduler, each module needs to
be encapsulated into a special container that handles
communication with other modules.

Besides the actual integration of a module, changes in an
interface caused much work as well. The modification
needed to be documented in the ICD and the integration
team had to update all related parts of the software.

To overcome the before mentioned integration problems,
we introduced a model-based development approach,
which is presented in this paper. The general idea of
Model-based Systems Engineering (MBSE) is to collect all
required information for information exchange between
engineers in a central model rather than using documents.
Instead of trying to combine interfaces implemented
independently, the coherence of the components and the
software’s internal interfaces should be defined from a
system point-of-view. Defining this kind of information in a
formal model enables analysis and reduces
misunderstandings between all involved parties [4].

Models can be used to support design, analysis and
validation activities even before the software
implementation. For instance, the compatibility of inputs
and outputs of communicating software modules can only
be checked manually in an interface control document. If a
formal model is used to define inputs and outputs, a
software validator can check for compatibility
automatically. Since modeling environments are usually
based on standardized concepts like the Meta-Object
Facility (MOF), models can be analyzed, validated and
transformed with existing tools [5].

A eeintertacess

F e
Module

<<intarfacs:>
At

::liz Module

<<lmerfacss>

; 5
) . | irtegranen Module
f |' Module = /| communication "
<<Interfzcas>

Integration { | _¢*
Communication

=<inerfaces>

— Module

welntorfaces>

cclntatanes ¢

5
=] Module
= Module

FIGURE 1. Interface communication before (left)
and after (right) the introduction of MBSE to the
software development

Figure 1 shows the difference before and after the
introduction of MBSE. During the manual integration, the
module interfaces were defined by the module developers

©2016

and the conversion of data types were located in the
integration and communication code. With MBSE, the
interface code of the modules is generated to provide
common data types to all modules.

This paper describes the application of model-based
techniques for the development of embedded real-time
systems. The methodologies of model-based systems
engineering (MBSE) are applied to the development of the
software for an optical navigation system. The goal is to
specify the system design in a model and to use it to
analyze and unify the software interfaces. Additionally, the
concepts of model-driven software development (MDSD)
are used to reduce the overhead for the integration of new
system components.

The remainder of the paper is organized as follows.
Section 2 gives an overview of related work. In Section 3,
the MBSE concept for ATON is introduced, followed by a
brief overview of the implementation. Section 5 evaluates
our approach. Finally, Section 6 gives some conclusions
and an outlook to future work.

2. RELATED WORK

Space systems have some specific requirements for the
onboard software regarding reliability due to the harsh
space environment. In addition, such systems can usually
not be physically reached for maintenance after launch.
This led to the development of several modeling tools,
environments and languages targeting embedded systems
and space systems in particular.

The European Space Agency (ESA) develops a complete
toolchain for model-driven software development called
TASTE (The ASSERT Set of Tools for Engineering) [6]. It
is a set of open source tools for developing embedded
real-time systems for space missions. It focuses on error-
prone processes such as the integration of
subcomponents. TASTE relies mainly on two
complementary modeling languages, one specifying the
data structures, the other describing the software
architecture. The philosophy of the tool chain is to let the
user concentrate on the functional code and let TASTE
handle the integration. The tool is also able to combine
software components implemented in different
programming languages. TASTE generates software that
can be directly executed without any further integration.
Two concepts of TASTE are of particular interest:

— Describing the system with two complementary
viewpoints, one graphical description for the software
architecture and one for the data structures

— Generating not just software but also documentation,
tests and the build system that makes instant
execution possible and decreases the overhead for
changes

Another MBSE approach from the space domain is the
CubeSat Reference Model developed by the INCOSE
Space Systems Working Group (SSWG) [7]. The CubeSat
project was established to reduce costs for small satellite

Deutscher Luft- und Raumfahrtkongress 201€

missions by using mainly commercial off-the-shelf
components. The lower budget requirements enable more
organizations to develop CubeSats. The reference model
has the goal to serve as a guide and supporting tool
during development. The CubeSat Reference Model is
focused on the demonstration of the model-based
methodology for the space system development. The
SSWG proposes that besides the engineering
methodology, MBSE consists of a modeling language,
modeling tools and interfaces to other models. The
reference model is implemented using the Systems
Modeling Language (SysML). While in this case, SysML is
mainly used to capture costs, requirements and life cycle
aspects, the language can also be used for formal model
checking [8]. Therefore, the semantics are formalized with
Petri Nets. In combination with UML profiles, like the
Modeling and Analysis of Real-Time and Embedded
systems (MARTE), it is possible to do time and
schedulability analysis [9].

Because SysML was developed to cover a wide range of
scopes related to systems engineering, the language
contains a high number of elements and concepts.
Consequently, the effort to learn the necessary parts of
the language is high. Additionally, the scope as general-
purpose language for systems engineering means a low
specialization of its elements. This way, it is possible to
stay compatible to the different domains. The diagram
representations via boxes and lines are very simple and
the elements only have generic parameters.

Intersection of

Classes UML and SysML

Blocks +
Requirements

Not used
by SysML

Reused
by SysML

FIGURE 2. lllustration of the relation between UML
and SysML: while SysML is an extension of UML,
there are also some language features of UML,
which are not used.

The Jet Propulsion Laboratory investigates, in contract
with the National Aeronautics and Space Administration
(NASA), methodologies to reduce the learning overhead of
SysML and simultaneously add domain specific contents
to the model [10]. They suggest building domain-specific
languages based on SysML. A domain-specific language
(DSL) is a language especially developed for a specific
application. To create a language based on SysML, it
needs to be customized. SysML can be modified by
creating profiles. SysML itself is a profile of the Unified
Modeling Language (UML) [11]. Unlike SysML, UML
focuses mainly on software. However, Figure 2 shows that
both languages are overlapping. UML’s extension
mechanism is implemented using ontological concepts,

©2016

and thereby, the meta-model of UML does not need to be
changed [12]. This allows customizations to be applied to
a language without the need to adopt its tools like editors.

In the context of model-based engineering, a model is
usually based on the Meta-Object Facility (MOF) [5].
Modeling languages are defined in meta-models, which
describe the elements of the domain model. Since the
meta-model is a model itself, a root language is
necessary. The MOF provides such a language by
defining the basic concepts of modeling languages. To
create instances of models based on the MOF, the XMI
(XML Metadata Interchange) has been introduced as a

standard [13].
ﬁ@

Y

Documentation Unit-Tests

Modsl

V4

Source-Code

FIGURE 3. Workflow of model-driven development:
a model is used to generate project artefacts
from it.

Model-based systems engineering (MBSE) is the process
of collecting all system related information in a central
model. Besides information exchange, the model can be
used to run analysis and verification. Another concept is
the generation of source code from the model. Generators
can even create mission-critical code. For instance, the
onboard software of NASA’'s Mars Science Laboratory
consists of about 75 percent of generated source code
[14]. As Figure 3 shows, model-driven development refers
to the process of formally describing a system in a model
and then generating project artefacts from it [15].

Model-driven software development (MDSD) is part of the
model-driven development and uses the model to
generate source code, documentation and unit-tests. The
main motivation of using model-driven development is to
increase productivity [12]. Short-term productivity is
improved by generating new features from the model.
Long-term productivity rises because changes of
requirements can be easily handled by changing the
model. To avoid redundancy, the systems are described
independently, from the platform and language [15].

A framework that is based on model-driven software
development should define a set of requirements [12]. It is
necessary to define which modeling concepts are used
and how the applied model elements are presented as
well as their relation to real-world objects. Furthermore,

Deutscher Luft- und Raumfahrtkongress 2016

concepts for model extension, interchange and mapping to
other project artefacts should be defined.

3. CONCEPT

Following the ideas of Atkinson and Kihne [12], an
environment for model-driven development should define
some basic concepts. This section starts with an analysis
of the software, on which the MDSD is applied to. This is
followed by concepts of the system description.

To be able to navigate the spacecraft by using optical
sensors, the navigation solution has to be computed in
real-time. Therefore, all used software modules have
strong timing constraints. To reduce communication
overhead, the software uses an event driven approach
[16]. If a software module has finished its calculation, all
succeeding modules are activated that work on that output
data.

To compute a navigation solution from the sensor inputs,
the software architecture is data flow oriented. The data is
processed and analyzed in several computation steps.

3.1. Functional Requirements

We identified a set of features that a MBSE toolchain
needs to provide in the project ATON. A model as well as
the code and documentation generators needs to be able
to specify:

—_

System components (processing units + sensors)

)
2) Data structures passed between the components
3) Inputs and outputs of the software modules
4) Module parameters
5) Scheduling properties (e.g. priority of the tasks)
6) Notification configuration (events and timing)
7) Execution node and thread pool of components

Most of the defined software components have inputs and
outputs as well as parameters. To avoid systems with a
widely spread or hardcoded configuration, the tool should
provide a configuration management system.

The software is a real-time system. A customized
scheduler executes all components. The model needs to
contain information about the priorities of each module.

To take full advantage of the event-driven architecture, the
notifications and events have to be configured.

The framework used for scheduling and concurrent
execution, supports distributed systems. Software
components can be pinned to specific thread pools and it

is planned to also use different hardware nodes.
3.2. Non-functional Requirements

Beside these functional demands, there are also some
non-functional requirements:

a) C++ code for embedded systems
b) Standard model format XMI

©2016

Onboard software for space systems is developed in
different programming languages. The most common ones
are Ada and C as well as C++. The code generator should
be flexible in regards to the target language. The project
ATON is mainly developed in C++ with some restrictions
for embedded systems. These restrictions refer mainly to
the usage of dynamic memory.

In addition to requirements regarding the target language,
there are also some model-related premises. To support
interchangeability with other tools and environments, the
model representation should be based on the XMl
standard. One of the most common modeling
environments based on XMI is the Eclipse Modeling
Framework (EMF) [17]. Since EMF is an open source
project, it is the foundation for a large number of tools for
both textual and graphical languages.

3.3. Modeling Approach

Generating C++ classes from the system model
addresses the goal of achieving consistent interfaces. In
addition, it can reduce the overhead for adding new
modules into the system. Moreover, the source code to
establish communication channels and execution
containers reduce the development overhead significantly.
Especially if new software modules are added or removed,
no manual coding is necessary to adapt the
communication in the system. To generate this kind of
code, the model needs to represent the communication
and its parameters. Usually, diagrams are used to
represent this information for complex systems. Simple
concepts like blocks and lines are easy to understand and
directly depict the data flow.

To model all mentioned aspects of the system, one
graphical representation is not sufficient. While the data
structures and parameters are software implementation
details, the components are system design. Recalling the
concept of using complementary languages to describe a
system (see Section 2); a combination of languages might
be a good choice. While SysML is suitable to describe the
general system structure, datatypes and parameters can
efficiently be defined using SysML'’s base language UML.
Considering that, the Object Management Group (OMG),
which was partly responsible for the definition of UML and
SysML, underlines that UML and SysML are
complementary enough to be used together. In addition,
their shared meta-model, infrastructure and tool support
are good arguments to use a combination of both
languages. In fact, diagrams of both languages can be
added to the same model and thus, no merging is
necessary.

Using a combination of SysML and UML covers all views
to describe the system. However, using both languages
increases the learning effort. However, special system
parameters cannot be defined in the model with just plain
SysML and UML. Following the approach of a domain-
specific language based on SysML, the solution is to
create a UML profile covering the custom parameters.

Deutscher Luft- und Raumfahrtkongress 2016

Thus, to provide an efficient modeling tool for our use
case, we developed a domain-specific modeling language
based on SysML and UML. By using UML profiles for the
domain-specific parts, the resulting language is still valid
UML/SysML.

4. IMPLEMENTATION

In this section, the two main steps of the model-driven
development process are presented. The first step is
comprised of the modeling part, where the model is
created by describing the system, its communication
topology and its parameters. The second step includes the
generation part of the process.

4.1. Modeling

The model is a formal abstraction of the system that is
developed. It is the basis for building the system
architecture and the generation of source code as well as
documentation. XMI orders the model contents
hierarchical and can contain multiple diagrams. Diagrams
provide different views of the system. UML and SysML
editors do the actual graphical representation. This work
uses Papyrus, an Eclipse-based editor [18]. It creates the
models by using a native UML implementation, which is
based on the Eclipse Modeling Framework. EMF uses
XM, thus requirement (b) is fulfilled.

The main diagram provides an overview over the system
and describes the data flow. It is implemented using an
internal block diagram offered by SysML. The root element
of such a diagram is a block representing the system.
Subcomponents are added to the model as a block while
their diagram representations are parts. Separating
between a block and a part brings an important instance-
of relation. One software module can be added twice to a
diagram, consuming different input values.

#Black, Module, TMTCMadulew
= ATON

El out image: Cameralmage

wparts
1 NavigationSystern: Newigat...

3] = in trigger: Trigger

[in taskEv ert: Trigger

wparts
£ CameradS: Camera

g H in trigger:. Trigger

El out image: Cameralmage

FIGURE 4. A simple example of an internal block
diagram: an external trigger synchronizes two
cameras. The navigation system computes a
navigation solution and provides it to an external
interface.

Figure 4 shows a simple system with two cameras,
sending their images to a navigation system. The
navigation system computes a navigation solution and
provides it as an external interface to the system. The

©2016

small squares appended to the parts are ports. Ports
represent a communication endpoint between two
elements. As mentioned before, all data passed between
elements, executed in the event-driven execution
environment, has to be delivered via special containers.
These containers are represented as ports. Ports can
have a type and other communication related parameters,
which are necessary to generate their source code.

While the internal block diagram provides an overview
over the software and its communication, the actual data
structures have not been specified yet. Data types are
simple classes with attributes, so UML class diagrams are
an appropriate way to define them. Besides the data
structures, the parameters of the software modules are
modeled using class diagrams.

With the definition of ingoing and outgoing data, their
structures and the component parameters, all information
for the internal interfaces has been collected and no
additional explicit definition of interfaces is necessary.

=artifacts
FeatureTracker

«artifacts
Cameral

deployment ! }:{ deployment

«executionEnviron...
MainPool

«executienEnvironments
DriverPool

«artifacts
StarTracker

- =]

deployment /\

i
| deployment ! deployment

L .
«artifacts «artifacts
MU CraterNavigation

FIGURE 5. Example of a deployment diagram: The
IMU, laser altimeter and camera driver are
executed in a thread-pool, the feature tracker and
the crater navigation in another.

The assignment of software modules to thread pools is
modeled in another diagram: the UML deployment
diagram. Figure 5 shows an example. The execution
environments are modeled as devices, the modules as
artefacts. The deployment relation does the assignment of
a module to an execution environment.

Besides the general structure specified by UML and
SysML diagrams, the special notification and execution
parameters have to be added to the model. To create a
profile for language extensions, a UML profile diagram has
to be created. The element to be customized has to be
imported as a meta-class and can then be extended by a
stereotype. Stereotypes are classifiers which can contain
tagged values, constraints and custom icons. Parameters
like the component priority and notification configuration
are added as tagged values. Figure 5 shows the extension
of a port. The Object Constraint Language (OCL) can be
used to define constraints and thus enables model
validation.

Deutscher Luft- und Raumfahrtkongress 2016

«metaclass»
Paort

1

wStereotypes
TaskvessagePort
= + activationThreshaold: Elnt [1]
= + final: EBoolean [1]
= + direction: Direction [1]

«Enumerations
Direction

Maturalvalue
{{OCL} invalid self activationThreshold = 0}

FIGURE 6. Definition of a customized port: The
TaskMessagePort extends a port by adding
notification parameters. The constraint checks
that all instances have an activationThreshold
greater than zero.

4.2. Generation

After the creation of a system model, it can be used to
derive project artifacts from it. The generation is done with
Xtend, a language compiled to Java and providing a
template function [19]. The syntax is intuitive and it is
possible to debug the templates comprehensively. The
creation of custom templates enables the generation of
source code for any language and thus satisfies
requirement (a). Besides source code, it is possible to
generate other text files, for example documentation.

The source code generator is implemented using a
combination of the decorator [20] and the generation gap
pattern [21]. The motivation to unify the interfaces and to
reduce the overhead for new modules, gives a clear
imperative to generate the interfaces. However, as the
nature of interfaces, the application source code needs to
be added.

Adding the functional source code of the algorithms
directly into the generated code has its disadvantages. If
the model is changed, the source file is regenerated and
the functional code has to be manually added again. This
would reduce the benefits from MDSD dramatically.

The generation gap pattern solves this problem by
providing a solution to combine manually implemented
and generated code. The idea is to generate the source
code in one class and perform customizations in another.
The class for the manual adjustments inherits from the
generated one to benefit from the generation. The
automatically created classes are stored in a special
folder, which should not be edited manually. However, an
interface class for the module developer is generated
during the first run and later ignored by the generator. This
approach enables the addition of module code to the

©2016

interface class without needing to create a new file.

To reduce the overhead for adding new modules, the
communication code for the execution platform is
generated as well. If a module is executed, its parameters
and inputs have to be loaded.

Figure 6 shows how the generation gap pattern is
combined with the decorator pattern to load and send data
between system modules. If a module is triggered, the
scheduler calls the execute method of the execution
container. Its generated code receives the input data,
unpacks and provides it to the class containing the custom
module code. After the delegated method in the custom
class has finished its execution, the generated method
packs the outgoing data and sends it to the succeeding
modules.

AbstractNavigation CustomNavigation

nit()
Parameters

execute()

Inpuis Outputs

|
pack + send outputs +
notify followers

FIGURE 7. Combination of the decorator and the
generation gap pattern: the generated class (left)
calls methods in the customized class (right)

This implementation differs from the usual decorator
pattern. Usually, when using a decorator for extending a
class, the extension class inherits from the base class. In
this case, the base class is generated and the extensions
are located in this base class. The delegation uses pure
virtual methods to call the subclass.

Besides communication code, the configuration
management also is generated. If a module is going to be
initialized, the generated code calls a configuration
manager, which parses a configuration file. The
parameters are defined in the model. This has the benefit
that a module developer does not need to take care of
parameter definition or loading. The MDSD framework
handles this.

Because changes in the system design do not only affect
the source code but may also change the documentation
and infrastructure, it makes sense to also generate as
many of these artefacts as possible.

To create documentation for the generated interfaces, this

Deutscher Luft- und Raumfahrtkongress 201€

work proposes to generate Latex files, which can then be
used to create a PDF file. The generated documentation
contains the description of all model elements as well as
tables for in- and outgoing data, their types and the
parameters of the module.

Because the generation gap pattern introduces a set of
new classes, the build configuration gets more complex.
To solve this problem, the generator creates a build-
system file for each module, which provides variables with
the necessary include and source files.

Besides documentation and build-system files, the
generator also creates unit tests. The integration of tests
into the generator brings the benefit that errors caused by
unsupported elements from UML or SysML are identified.
For example, the unit test for the configuration loader
would fail if a parameter type were either not supported by
the code generator or by the underlying library. Unit tests
validate that the generated communication infrastructure
for the execution framework is working on the target
computer system. This helps to identify compatibility
issues caused by wrong compiler or library versions. In
addition to that, the generated unit tests are examples on
how the complete framework is used to support software
module developers.

5. EVALUATION

The application of model-based approaches had a positive
impact on the ATON project. With the generation of the
interfaces and its data structures from templates the
aimed goal of unification was reached. One template for
all interfaces results in classes with the same structure,
coding style and naming conventions. Furthermore, the
central definition of data structures for all modules reduces
misunderstandings and the need to convert the data within
the interfaces.

Furthermore, the effort for the software development is
reduced significantly. While changing the interfaces or
data types was associated with several changes in the
source code and documentation, it is now a simple task.
After the change is applied to the model, the generator
updates all related files. In particular, the complex
communication and execution code needs to be
implemented only once, and then, the template can be
applied to all software modules and communication
channels. This way, the development benefits twice: it has
become less work to integrate new modules and in the
end, changes either in the model or in one of the used
libraries can be solved by doing the adjustments in only
one place. For example, if the method to send messages
between modules changes, it is sufficient to change the
execution container’s template. No manually written code
needs to be updated.

Additionally, it is possible to create several configurations
for different requirements. The system for a flight test on
earth with an unmanned aerial vehicle needs different
modules than a scenario simulating a landing on the

©2016

Moon. To solve this challenge, it is possible to create
different models, one with the hardware drivers for the
flight test and one with the sensor simulation for a moon
mission. This way, it is possible to use the same modules
for different scenarios by only generating code from
different models and using different configuration files.

Nevertheless, the development team did not only benefit
from code and document generation, the communication
between the engineers of the different domains also
improved. Before, interfaces and its documentation could
be changed without realizing the potential impact to the
rest of the system. With the model, changes are directly
evaluated which, for example, immediately reveals
incompatible types of communication channels. Thus, if
types need to be changed, the affected interfaces are
updated and the developers are immediately aware of the
changes.

While the general efficiency increased by applying the
model-based approaches, there were also some
drawbacks. Even with the definition of a profile to
customize the modeling language, the learning effort for
UML and SysML was high. In addition to that, it is still
possible to add elements to the model, which are not
supported by the generator. With the high number of
elements provided by UML and SysML, it is difficult to
decide which one can be used in the given context.
Moreover, even with the creation of collections of
supported and customized elements in the editor, it is still
possible to add elements of the base languages. The
extension mechanism of UML is well equipped in adding
parameters and constraints to the language, but the actual
meta-model and thereby its native elements, cannot be
changed.

This restriction allows using available diagram editors for
customized languages without adjustments, but the
development of the code generator becomes more
complex. One has to make sure that the code generator
does not run into undefined conditions; all possible model
constellations need to be covered. This validation code
may easily exceed the generator code when using
complex languages such as UML and SysML.

In addition to that, the generator needs a lot of logic to
transform the generic language elements to the system’s
domain. Because the customized elements are
represented by UML/SysML base elements, it is
necessary to check if the elements have an extension and
how to access them. Since it is not possible to modify the
diagrams to set some domain relations automatically, the
generator needs reference and identity checks. While two
ports, linked by a connector element, represent a
communication, it is not possible to access the opposite
port by traversing the link. The additional logic required to
resolve diagram relations reduces the maintainability of
the generator code. It is relatively easy to change the
actual templates, whereas the integration of new element
types is more complex. E.g., the integration of a new

Deutscher Luft- und Raumfahrtkongress 2016

diagram type for a special kind of event is challenging
because it has to be integrated into the generator logic.

6. CONCLUSION AND OUTLOOK

In this paper, we presented the introduction of model-
based techniques into the development of a complex
software system for real-time optical navigation for
spacecraft. The project benefits from the application of
model-based approaches. The efficiency has improved
significantly through the introduction of modeling and code
generation. While earlier, the integration of new modules
has taken several days, it can now be achieved in a few
hours. Because of this, the general project flexibility has
increased. The reduced overhead for the integration of
new modules lowered the inhibition threshold for system
design changes. It is more likely to test the outcome of a
new module, if the integration only takes a few hours
instead of weeks. In addition, the number of errors
decreased because of the unified interfaces and data

types.

While the code generation and modeling in general turned
out to be very efficient, the modeling language could be
improved. The combination of UML and SysML covers all
aspects of the system that are needed, but it requires a
high learning effort for the system modelers. Furthermore,
the languages are too powerful, to be completely covered
by the code generator. A solution is the development of a
graphical domain-specific language from scratch [22].
Such a DSL is easy to learn and contains only elements
that are supported by the code generator. Furthermore,
the generator needs less logic, because it is not necessary
to transform the model contents into the domain of the
execution platform. The future work will be to apply such a
domain-specific language to similar complex systems.

7. REFERENCES

[1] F. Andert, N. Ammann, and B. Maass, “Lidar-Aided
Camera Feature Tracking and Visual SLAM for
Spacecraft Low-Orbit Navigation and Planetary
Landing,” in Advances in Aerospace Guidance,
Navigation and Control, Springer International
Publishing, 2015, pp. 605-623.

[2] H. Kaufmann, M. Lingenauber, T. Bodenmdiller, and
M. Suppa, “Shadow-Based Matching for Precise and
Robust Absolute Self-Localization during Lunar
Landings,” IEEE Aerospace, 2015.

[3] B. Maass, H. Kruger, and S. Theil, “An Edge-Free,
Scale-, Pose- and lllumination-Invariant Approach to
Crater Detection for Spacecraft Navigation,” ISPA,
2011.

[4] K. Vipavetz, T. A. Shull, and J. Price, Interface
Management for a NASA Flight Project using Model-
Based Systems Engineering (MBSE), no. Is.
INCOSE International Symposium, 2016.

[5] J. Bézivin, “In Search of a Basic Principle for Model
Driven Engineering,” Upgrade., vol. 5, no. 2, pp. 21—
24,2004.

[6] M. Perrotin, E. Conquet, J. Delange, and A. Schiele,
“TASTE : A real-time software engineering tool-chain

©2016

(7]

(8]

9]

[10]

(1]

[12]

[13]

[14]

(18]

[16]

(171

(18]

[19]

[20]

[21]

[22]

Overview , status , and future,” in SDL 2011:
Integrating System and Software Modeling, Springer
Verlag, 2011, pp. 26-37.

D. Kaslow, L. Anderson, S. Asundi, B. Ayres, C.
Iwata, B. Shiotani, and R. Thompson, “Developing a
CubeSat Model-Based System Engineering (MBSE)
Reference Model - Interim status,” IEEE Aerospace,
2015.

T. Bouabana-Tebibel, S. H. Rubin, and M. Bennama,
“Formal modeling with SysML,” IEEE IRI, 2012

M. Mura, L. G. Murillo, and M. Prevostini, “Model-
based Design Space Exploration for RTES with
SysML and MARTE,” IEEE FDL, 2008.

B. Cole, G. Dubos, P. Banazadeh, J. Reh, K. Case,
Y. F. Wang, S. Jones, and F. Picha, “Domain-
Specific Languages and Diagram Customization for a
Concurrent Engineering Environment,” IEEE
Aerospace, 2013.

C. Rupp and S. Queins, UML2 Glasklar, 3. Auflage.
Carl Hanser Verlag GmbH & Co. KG, 2012.

C. Atkinson and T. Kiihne, “Model-Driven
Development: A Metamodeling Foundation,” IEEE
Computer Society., 2003.

ISO/IEC, “Information technology - Object
Management Group XML Metadata Interchange
(XMI),” 2014.

G. J. Holzmann, “Landing a Spacecraft on Mars,”
IEEE Software., vol. 30, no. 2, pp. 83-86, 2013.

A. W. Brown, “Model-Driven Architecture,” in
Software and Systems Modeling, Springer Verlag,
2004, pp. 314-327.

O. Maibaum, D. Ludtke, and A. Gerndt, Tasking
Framework: Parallelization of Computations in
Onboard Control Systems. ITG/GI 2013.

D. Steinberg, F. Budinsky, M. Paternostro, and E.
Merks, EMF: Eclipse Modeling Framework, 2nd ed.
Addison-Wesley Professional, 2008.

S. Gerard, C. Dumoulin, P. Tessier, and B. Selic,
“Papyrus: A UML2 Tool for Domain-Specific
Language Modeling,” in Model-Based Engineering of
Embedded Real-Time Systems, Springer Verlag,
2010, pp. 361-368.

S. Efftinge and S. Zarnekow, “Extending Java - Xtend
a New Language for Java Developers,” 2011.
[Online]. Available:
https://pragprog.com/magazines/2011-12/extending-
java. [Accessed: 08-Sep-2016].

E. Gamma, R. Helm, J. Ralph, and J. Vlissides,
“Structural Patterns,” in Design Patterns — Elements
of Reusable Object-Oriented Software, Edition 1.,
Addison-Wesley Professional, 1994, pp. 196-208.

M. Fowler, “Generation Gap,” in Domain-Specific
Languages, Addison-Wesley Professional, 2010, pp.
571-573.

T. Franz, “Entwicklung einer grafischen
Modellierungssprache fir ein ereignisgesteuertes
Echtzeit-Laufzeitsystem,” Bachelor Thesis, Baden-
Wirttemberg Cooperative State University -
Information Technology, 2015.

	1. Introduction
	2. Related Work
	3. Concept
	4. Implementation
	5. Evaluation
	6. Conclusion and Outlook
	7. References

