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Abstract

During aircraft preliminary design the selection of load conditions can affect the results of the structural sizing
and therefore affect the component weights. After the computation of ground, maneuver and gust cases
based on a 1-dimensional condensed aircraft model the most critical load conditions are selected using
external load distribution. These external loads are computed at discrete load monitoring stations thanks to
the response of the aircraft model. The external loads are then distributed to the loadable grids of a global
finite element model for stress analysis, structural sizing and weight estimation. In order to reduce the
amount of load cases for analysis the most relevant load cases are selected based on external load criteria.
The choice of these criteria is then essential for the design of a safe structure. The present study proposes a
selection of load conditions which is based on reserve factor values which are available at the sizing
process. The iterative sizing process includes an update of the structural properties for the strength analysis
during each loop. In the scope of this study one set of structural parameters together with existing reserve
factor values are taken from one sizing loop. Thus the strength analysis is replaced by a surrogate model
which is constructed using an artificial neural networks approach. The construction and accuracy of the
surrogate model is discussed and a comparison of both load case selection approaches is performed. The
study is performed for the wing covers of a backward swept metallic wing. The results show that a further
reduction of the selected load cases by SMT values is possible when taking the reserve factor values into
account. The constructed surrogate model is a first step for future surrogate based optimization by which the
sizing and weight estimation of the wing covers can be performed with cheap function evaluations.

1. INTRODUCTION

In early design phases the selection of the most critical

[1] and [17]. Here the external loads along the discrete
stations are used to make 1- and 2-dimensional SMT plots
which are then used to build envelopes as a criterion for

load cases is very important for the upcoming sizing
process of the aircraft in terms of structural design and
component weights [18]. A proper load case selection
ensures the structural components not to be oversized
and opens possibilities for the stress engineer to achieve
weight savings [19]. These weight savings lead to less fuel
consumption and are hence a strong argument for aircraft
manufacturers towards their customers.

The list of total load conditions that have to be computed
and analysed are in particular defined by the European
Aviation Safety Agency and the aircraft manufacturer itself
depending on its product family [17]. For the load case
selection process in preliminary design hundreds of
thousands of correlated load cases are computed using a
1-dimensional beam model for which the resulting external
loads are evaluated at the discrete stations. Correlated
loads values are consistent at one moment of time along
the aircraft model. The next step is to filter these hundreds
of thousands of load cases to just a few thousands in
order to deliver this selection to the stress engineer. The
state of the art of the load case selection process is based
on Shear Moment Torque (SMT) curves as described in

the load case selection. This way of load case selection is
solely based on SMT external loads and does not take into
account any information about the stresses and Reserve
Factor (RF) values which are caused by these loads.

The presented approach in this paper proposes a load
case selection which is based on SMT as well as RF
values as shown in Figure 1. For the purpose of
demonstration solely flight maneuver cases and a
backward swept metallic wing are chosen with the focus
on wrinkling and flexural wrinkling failure modes for RF
calculation. A first load case selection based on SMT
values is performed in order to reduce hundreds of
thousands of load cases to just thousands. In a second
step the SMT values of these selected load cases are de-
integrated and applied on a Global Finite Element Model
(GFEM) of the aircraft. A linear static analysis provides the
internal loads which can then be used for the strength
analysis. Note that due to the complex aircraft structure
with all its lightweight elements the internal loads path is
very complex and hence it is even more advisable to have
a look at stress quantities for the purpose of load case
selection. Compared to the loads computation and the
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static analysis the strength analysis is the most time
consuming part. Hence the idea is to replace the strength
analysis by a surrogate model using an Artificial Neural
Network (ANN) approach which is a cheap function
approximation and thus quick to evaluate. In this way the
filtered load cases have already included some insight into
the structural response on GFEM level before passing
them to the stress engineer.

State of the art process Proposed process

Loads computation
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SMIT envelopes
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ST envelopes
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Figure 1. Proposed load case selection process

2. LOAD CASE SELECTION PROCESS

In this chapter both the state of the art and the proposed
load case selection process are described. In the scope of
this paper flight maneuver cases and their effects on the
wing are taken into account only. For the RF values the
failure modes wrinkling and flexural wrinkling are
considered.

21.

Assuming a condensed, discrete 1-dimensional beam
model of the aircraft the load case selection is performed
using 1- and 2-dimensional SMT plots as described in [1]
and [17]. For this purpose the 6 degree of freedom
equations of motion are solved in order to calculate the
aircraft response due to the maneuver loads which is then
used to derive the SMT values. The method of summation
of forces is used to get the SMT values as shown in Eq.
(1) and Eq. (2). Here the expressions for the forces F; and
moments M; include all the contributions in x-, y- and z-
direction.

Load case selection by external loads

(1) F = Z?:l Faero,i + Finertia,i

(2) M; = (X1 Facroi + Finertiai) Wi — Yi-1)

The forces for the wing consider the inertia loads
(structure and fuel) Fieriq; and the aerodynamic loads
Fieroi- The index i indicates the summation over the
discrete wing stations and the lever arm expression y; is
used for the moments.

In the next step the forces and moments are plotted along
the discrete stations of the wing (cf. Figure 2) in order to
compare the computed load cases against envelope
values. Figure 2 shows how a 1-dimensional criteria looks
like using a schematic envelope for F, with its positive and
negative edges. For instance those load cases whose Fz
values are outside the envelope are assumed to be critical
and thus sizing relevant. Note that there is a sudden
increase in force and moment values at the position of the
engine due to its heavy weight.

Schematic F, envelope along wing span

Figure 2.

In general the loading of the wing is more complex. For
this reason 2-dimensional SMT envelopes are widely used
as well. For instance using a backward swept wing means
that each bending is coupled with additional torque due to
its sweep angle. Hence the intention of using 2-
dimensional criteria is to reach higher accuracy during the
load case selection process for the complex structures
and their complex load paths [1]. One can combine forces
with their corresponding moments (F; vs My) or moments
which cause bending and torque (My vs My).

2.2,

As described in the previous chapter the state of the art
load case selection process is solely based on SMT
envelopes. However today’s aircraft structures are getting
more and more complex due to their lightweight design in
order to minimize the weight [19]. This leads to a more
complex load path of the internal loads on GFEM level
after performing the static analysis. Hence the idea is to
consider next to the SMT values also stress estimators for
the load case selection. In particular the RF values are
chosen because they provide information about the
allowable stresses o,0wanie @nd the applied stresses
Oappiiea Which is shown in Eq. (3). The aircraft structure
can sustain the applied loads for RF values above 1 and
fails for RF values below 1.

Load case selection using reserve factors

(3) RF = Oallowable

Oapplied
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A similar idea is used in the developments of [17] in which
RF contours are plotted together with the SMT envelopes.
Here the selected load cases are provided to the stress
engineers who compute the RF values and send them
back to the loads engineer. In this way the load case
selection can be reviewed a second time in order to adapt
the load case criteria.

In contrast to the developments of [17] the presented
approach in this paper does not involve the stress
engineer directly but replaces the strength analysis by a
surrogate model. The idea is to provide the loads engineer
with additional tools and data in order to perform the load
case selection. As shown in Figure 1 the loads engineer
would need to expand his knowledge to GFEM stress
analysis in order to compute the internal loads. After this
the surrogate model can be used for cheap function
evaluations in order to quickly assess the RF values.

The idea to link the surrogate model after the static
analysis is partially based on the work of [13] who
proposes a multilevel approach to find the minimum
weight with regard to buckling constraints. Here first a
linear static analysis on a global level (GFEM level) is
proposed in order to use the results as boundaries and
inputs for the local level analysis, which is the buckling
analysis on component level. The studies of [12]
recapitulate ideas of [13] while applying surrogate models
using the Response Surface Methodology for local
optimization margins.

Using this multilevel approach the final load case selection
which is delivered to the stress engineer is filtered using
the SMT approach and in addition using the quick RF
estimation. This double check can lead to a further
reduction of load cases which can finally provide the
stress engineer with more time to concentrate deeper on
the sizing of the structure in order to achieve further
weight savings.

3. ARTIFICIAL NEURAL NETWORKS

In this chapter the chosen input and output dimensions for
the construction of the surrogate model are described. The
chapter starts with a short explanation of the used control
surfaces for load alleviation and the wrinkling failure
modes that are considered for RF estimation. Further the
ANN approach is described which uses a feedforward
multilayer perceptron together with a backpropagation
algorithm and Bayesian regularization for generalization.
The ANN approach is implemented using the Neural
Network Toolbox of MathWorks.

3.1.

The core input parameters for the ANN are those which
are mandatory in order to perform the strength analysis.
Here the material properties and the fluxes are needed as
listed below. The fluxes are the internal loads on GFEM

s N
level per length unit in —

Network input and output parameters

1) Material properties:
a) Left panel thickness: d;
b) Right panel thickness: dg

c) Stringer cross section area: Ag;,

2) Fluxes:
a) Axial load in panel: Nyy
) Transverse load in panel: Nyy
c) Shear load in panel: Nyy
)

Axial load in stringer: Ny

For the construction of their surrogate model [9], [10] and
[11] also use material properties and fluxes resulting from
the static analysis. While these studies also take the width,
and height of the stringer subsections into account the
approach in this paper considers the cross section area
only. Here the stringers that are part of the data basis are
limited to a finite number of configurations. Hence each
configuration yields a set of values for the stringer
subsections and can be associated to a unique cross
section area.

Performing the static analysis on a global level it is
possible to output the fluxes for the FEs and use them as
an input for the ANN on local level. The local level analysis
considers a stiffened panel as shown in Figure 3 as its
smallest analysis unit. The stiffened panel consists of a
double T-stringer and two panels which are simply
supported on their edges. On this local level the RF values
for wrinkling and flexural wrinkling failure modes are
computed which are used as the network output.

R — ﬁﬁ Ea—
! i :
. ‘ :
i i l
i i !
[’:j,i ] 3 JZ:Z]
oy i t yAN
Figure 3. Schematic stiffened panel

Using the stiffened panel idealization structural wrinkling is
a local buckling mode that appears on the skin under
compression loads [15]. It is a local instability of flat skin
panels for sandwich structures for which a series of short
buckling waves occur [16]. Wrinkling buckling is not the
same as the initial buckling failure of thin skin panels. The
work of [14] presents an analytical method to estimate the
amplitude and wavelength of wrinkles in thin membranes
in pure shear. Further the work of [15] provides an
overview of the achievements in the analysis of wrinkling
failure. While wrinkling is considered to be a failure mode
for short panels flexural wrinkling occurs for long panels.
Here the flexural instability due to the bending of the panel
increases the applied stresses.

In this way the ANN has two output parameters and for
each of them the computation is run separately.

3) Failure modes for RF values per each stiffened panel:
a) Wrinkling

b) Flexural wrinkling
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The input and output parameters which are listed in 1), 2)
and 3) are the main ones that always appear during the
construction of the surrogate model. Next to these ones
further input parameters are introduced which shall
establish a connection between load and stress
parameters. Each flight maneuver load case that result in
different RF values for the stiffened panels is
characterized by a set of values for its control surfaces.
The idea is to provide the ANN with information about the
load case characterization since the proposed load case
selection process here is multidisciplinary. A similar
approach is used in [20] for surrogate model based
sensitivity analysis using flight parameters and load
alleviation parameters against buckling RF values. Here
only the control surface deflection angles are chosen
without including flight parameters like the load factor or
calibrated airspeed as input parameters. Indeed the flight
envelope cannot be changed due to aircraft specification
and certification requirements but the control law can differ
as long as it stays in the flight envelope depending on the
aircraft manufacturer.

In this scope the wing control surface deflection angles are
chosen as optional input parameters and are listed as
follows:

4) Wing control surface deflection angles:
a) Inner and outer ailerons: 9;,,, 9pu¢
b) Spoilers: v,
c) Airbrakes: y,5

d) Slat and flap: psia¢, Priap

Depending on the flight condition the deflection angle can
take different values as shown in Tab 1. Note that Tab 1
shows just a schematic overview of a possible set of
configurations. Depending on the flight control law the
combination of values might differ.

Load condition I, Ysp YaB Psiats

Yout Priap

Starting 9=0 | y=0 | y=0 p>0

Landing 9<0 y<0 y<0 p>0

Steady flight 9=0 | y=0 | y=0 p=0

In-Flight 9<0 y<0 y=0 p=0
9>0 | y>0

Tab 1. Overview of possible control surface settings

The appropriate locations of control surfaces on the wing
are shown in Figure 4. The control surfaces are used for
different purposes depending on the applied control law.
Some examples are listed as follows:

- If it comes to alleviate the loads which are applied on
the wings during a flight maneuver then the ailerons
and some outer spoilers are moved upwards.

- During starting and landing the slat and flaps are used
in order to increase the lifting surface.

- The spoilers are used as airbrakes during landing in
order to increase the drag.

An overview of the input and output parameters for the
construction of the surrogate model using the ANN
approach is shown in Figure 5.

Figure 4. Wing control surfaces

Fluses:
Moot Nyy, My
M

RF values:
Wrinkling
Flexural wrinkling

SEM properties:
Left / right panel thickness - AMN
Stringer cross section area

Control surfaces:
Inner [ outer Aileron deflections
Spoiler deflections
Airbrakes in / out
Slat / flap angle

A 4

Figure 5. Overview of network inputs and outputs

3.2.

ANNs are widely used for the purpose of pattern
recognition, clustering, function approximation, non-linear
regression and classification [3]. In the scope of this paper
the function approximation capability is used in order to
replace the strength analysis with a cheap to evaluate
neural network. The mathematical formulation for a simple
neuron model (cf. Figure 6) with just a single input and
output parameter is as follows [3]:

Multilayer perceptron approach
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(4) a=fw=p+b)

Here the scalar input value p is multiplied with a weighting
factor w in order to add a bias value b to this product. The
resulting scalar value n is then the input for the transfer
function f which provides the output a of the neural
network. The quality of the function approximation is
based on appropriate values for the weighting factor and
the bias in combination with a suitable transfer function [2].
Commonly used transfer functions are listed below. More
about the state of the art transfer functions can be read in
[2], [3] and [5].

- Hard limit
- Linear
- Log-sigmoid

- Tan-sigmoid

The weighting factor and the bias are adjusted according
to supervised learning rules which change the weight and
bias values according to the error value err between the
network output a and the target output t [2]. The error is
measured according to the following equation:

err=t—a

®)

The principle of supervised learning requires a data set
that feeds the network with input values p and their
corresponding target values t. Here the data set is
prepared together with the Airbus Operations GmbH which
is explained more in detail in the following chapter.

Z >
b
1

Simple neuron model

Figure 6.

These basic principles are used for the neural network
architecture that is chosen for the function approximation
of the strength analysis. In this scope a multilayer
feedforward perceptron architecture is used for which an
error backpropagation learning algorithm is applied that
uses the Levenberg-Marquardt optimization algorithm. In
addition Bayesian regularization is used for the purpose of
generalization in order to avoid overfitting. Tan-sigmoidal
transfer functions are used for the hidden layer and linear
ones for the output layer. The input data set consists in
total of 17 parameters when all the material properties,
fluxes and control surface deflection angles are
considered. For the hidden layer (only 1 hidden layer is

used) 10 neurons are applied whereas the output layer
consists of 1 neuron only. In this way the ANN is feed with
17 load and stress parameters and provides 1 RF value.
This is done for each stiffened panel.

The two-layer feedforward perceptron architecture (cf.
Figure 7) is chosen for the studies. The combination of
non-linear and differentiable tan-sigmoid transfer functions
in the hidden layer together with a linear transfer function
in the output layer is considered to be a universal
approximator and able to approximate any continuous
function [2]. In his journal paper [6] provides the
mathematical proof and in addition lists the learning
process, number of neurons in the hidden layer and the
deterministic relationship between input and output of the
data set as possible origins of a wrong approximation.

I w I IW

|
[
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Figure 7. Two-layer perceptron architecture

Following the proposal of [5] the hidden layer consists of
10 neurons for the maximum number of 17 input
dimensions. The hidden layer weighting and adding the
bias is shown in matrix notation in Eq. (6).

5 ] [nl ]
W10,17 Nio

Each of the weighted values n; is an input to the 10 tan-
sigmoid transfer functions that provides values between -1
and +1 and which is defined as follows:

W11 P1 by

+

(6) [ 4|
W10,1 P17 byo

emi—e™™i

() f(n) =

emi+e ™™

The output values of the hidden layer are used as the
input quantities for the output layer. Here after weighting
and adding the bias value the linear transfer function is
applied which is defined in Eq. (8). The output of the linear
transfer function is equal to its input.

®  fo)=a=n

Note that the data set for supervised learning is divided
into training, validation and test set according to the
principles of cross validation [3]. With respect to [5] the
latter are divided by 75%, 15% and 15%. Further the data
set is normalized to values between -1 and +1 before it
enters the hidden layer and is modified back to its original
scale after the output layer. The normalization using
minimum and maximum values from the data set speeds
up the learning process [5]. Finally the RF values are

-7

(iLI_i
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inverted in order to have a linear relationship for the RF
statement (cf. Eq. (3)). Here o40wanie 1S COnstant for one
material type whereas ouppieq Vvaries due to different
loading conditions.

The ANN process starts with initial weighting factors and
bias values and then applies a backpropagation learning
algorithm in order to minimize the Mean Square Error
(MSE) over the full range k of the training set as shown in

Eq. (9).
(9) MSE = % {-{zl(ti - aOL,i)Z

The backpropagation learning algorithm calculates the
gradient of the MSE taking into account the weight and
bias values [4]. First the gradient values of the output layer
are calculated and then propagated backwards to the
hidden layer using the chain rule resulting in an update of
weight and bias values. In the presented study the
Levenberg-Marquardt algorithm is chosen for the
calculation of the gradients. Further details about the
backpropagation algorithm can be found in [2], [3] and [4].

Finally Bayesian regularization is used in order to improve
the generalization of the neural network and to avoid
overfitting [8]. Overfitting appears when the network is
trained too strict according to one specific data set and
then does not show proper behaviour for a different data
sample. For the regularization algorithm an additional
penalty term is added to the MSE equation that involves
the sum of squares of the network weight E,, [7]. The
mean square error using Bayesian regularization MSEgjy is
stated in Eq. (10). Here the two factors f and a are the

optimization parameters where a higher ratio % leads to a

smoother network response [3]. The optimization of the
regularization parameters  and a is described more in
detail in [7].

2
(10) MSEgg = ﬁ%Z{'{:l(ti - aOL,i) + aZ]g-:1 Ey

4. CONSTRUCTION OF SURROGATE MODEL

This chapter starts with the data basis which is generated
together with the Airbus Operations GmbH and is used for
the construction of the surrogate model. Further the
application of the ANN approach itself on this data basis is
explained.

41.

The data basis for the proposed load case selection
process using the multilayer perceptron network is
provided by the Airbus loads and stress department. Here
the considered design space orientates according to the
loads and flight parameter although the surrogate model is
mainly constructed using the material properties and the
GFEM fluxes. The idea is to cover most of the flight
envelope (cf. Tab 2) which then drives the changes in the
GFEM fluxes.

In this sense 1924 vertical flight maneuver cases are
provided which consist in particular of different flight
parameter (cf. Tab 2) and different control surface
deflection angles respectively (cf. Tab 3). These cases

Data basis for surrogate model

consider extended and retracted airbrake configurations,
spoiler and aileron load alleviation as well as clean and full
slat / flap configurations. A summary of the design space
for the control surface deflection angles is given in Tab 3.
Note that these 1924 load cases are just a subset of load
cases which are already filtered by the SMT approach.

ny [] h [m] Veas [M/s] Mach [-]
[-1;2.5] | [0; 12633] [58; 187] [0.17; 0.93]
Tab 2. Flight parameter design space
Y1, [deg] Youe [deg] Ysp [ded] Yap [deg]
[-15; 11] [-15; 11] [-30; 0] [-30; 0]
Psiae [deg] Priap [deg]
[0; 23] [0; 32]
Tab 3. Wing control surface design space

In the next step (cf. Figure 1) the SMT values of these
load cases are de-integrated and applied on the GFEM
wing in order to perform a linear static analysis. The
resulting internal fluxes and material properties are the
next input for the necessary data basis. Finally the
corresponding RF values for wrinkling and flexural
wrinkling are provided by the stress department. An
overview of the range of the stress parameters is provided
in Tab 4. Note that the RF values are listed as RFy;y and
RFEy4x in this paper without giving explicit values.

dip [mm] dgp [mm] Ay [mm?]

[3; 13] [3; 14] [322; 1508]
Nxx,p [N/mm] Nyy.p [N/mm] Ny 1p [N/mm]

[-5300; 2100] [-450; 420] [-760; 955]
Nyxrp [N/mm] Nyy rp [N/mm] Nyy rp [N/mm]

[-5300; 2100] [-1300; 600] [-990; 1150]
NX,STR [N/mm] RFWrinkling RFFlex,Wrinkling
[-648*10°% 260*107] [RFyin; REyax] [REyn; RFyax]

Tab 4. Stress parameter design space

The 1924 load cases are applied on 540 stiffened panels
which belong to the upper cover of the wing. This leads to
an input matrix with 1038960 rows and 17 columns and
two different output vectors containing the RF values for
the different failure modes.

4.2.

For the construction of the surrogate model using the
multilayer perceptron network the following testing table is
used (cf. Tab 5). Here 4 different variations are performed
in which the control surface deflection angles are
considered or neglected in the input data base while this
setting is combined with the use of Bayesian
regularization. These 4 combinations are performed for
both failure modes which results in 8 runs in total.

Building the surrogate model

ANN run Control surface Bayesian
deflections regularization
1 No No
2 No Yes
3 Yes No
4 Yes Yes
Tab 5. Overview of different ANN runs

A summary of some network performance indices is given
in Tab 6 in which the MSE value, the final gradient, the
coefficient of determination R and the optimization steps
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are provided. The first column of Tab 6 indicates which
ANN configuration is considered using 3 digits. Here the
first digit (0 = No / 1=Yes) applies to the control surface
deflection angles, the second digit (0 = No / 1=Yes)
applies to the Bayesian regularization and the third digit (1
= Wrinkling / 2 = Flexural Wrinkling) applies to the failure

modes.

ANN MSE Gradient R Steps
0-0-1 0.000567 0.000464 0.99577 1000
0-1-1 0.000474 | 0.0000387 | 0.99647 1000
1-0-1 0.000469 0.000675 0.99651 505
1-1-1 0.000464 0.000874 0.99654 1000
0-0-2 | 0.000510 0.000107 0.99541 379
0-1-2 | 0.000517 0.00124 0.99535 1000
1-0-2 | 0.000586 | 0.0000686 | 0.99473 464
1-1-2 | 0.000687 0.000310 0.99382 1000

Tab 6. Summary of results for different ANN runs

These network performance indices are explained using
the wrinkling failure mode as an example. In Figure 8 and
Figure 9 the network output is plotted against the target
RF values. The values are normalized and inverted on
both axes.

Mo control surface parameter - Mo regularization - R = 0.99577

Nomalized ANM: 1RF, 0[]

; .
07 08 08 1
Warinkling []

ANN performance plot: 0-0-1

i
0 0.1 0z 03 04 05 0B
Mormalized Target: 1/RF

Figure 8.

Wyith control suface parameter - YWith regularization - B = 0.99654

Mormalized AMN: 1fRFWka"ng [

01 i | I i L i I i
il 0.1 D2z 03 04 05 0B 07 08 08 1
Mormalized Target: 1/RF,

Wrinkling Fl

Figure 9. ANN performance plot: 1-1-1

In the best case the network output matches with the
target values which then results in a straight 45° line. Here

a coefficient of determination R value close to 1 indicates
that a linear relationship exists. As can be seen in Figure 8
and Figure 9 in both cases the R value is higher than 0.99
which is a good indicator. However the two plots also
highlight that some output of the constructed neural
network does not match with the target values. But in the
end some investigations show that the RF values for these
cases are far over 1 and the structure can sustain the
applied loads of these load cases. It is necessary to
mention this because the purpose of the ANN is to be
used for load case selection and not for the sizing of the
structure. Finally note that the sample points which don’t
match properly and have an absolute error which is higher
than 0.2 are 0.1736% from the original sample size
(1038960 rows) only. On the other hand the network
results match very well for small RF values as can be
seen in the top right region of Figure 8 and Figure 9.

The MSE and the gradient value of each ANN run
converge to zero while the number of optimization steps in
which the bias and weight values are updated differ. The
training of the neural network ends when the targeted
MSE value (target put to 0), maximum number of
optimization steps (1000 steps), maximum number of
validation checks (6 checks) or a gradient value of less
than 1*10° is reached [6]. The number of validation
checks puts a limit to following iterations in which the MSE
value using the validation set does not decrease.

When applying the backpropagation learning algorithm all
inputs are feed to the network during one optimization step
before updating the weight and biases in order to compute
the complete gradient value [3]. Using vector notation the
total gradient of the MSE value is defined as follows:

(11) VMSE = V{% (- QOL,i)T(Ei - EOL,i)}

It is possible to derive some conclusions using the
different settings by having a look at the evolution of the
gradient values over the different optimization steps.
Figure 10 shows the gradient values using the wrinkling
failure mode with no control surface deflection angles and
no regularization used. Here the maximum number of
optimization steps ends the training of the network.
Although the MSE value converges close to zero and the
final gradient value indicates a minimum it can be seen
that the gradient value is strongly pending after step
number 250.

i Mo contral surface parameter - Mo reqularization - Final Gradient 0.00046368
10" prererrerererer - ——

Gradient values [-]

i 1 | i L i 1 L i
0 100 200 300 400 500 GO0 700 800 900 1000
Optimization steps [-]

Figure 10. ANN gradient evolution plot: 0-0-1

Figure 11 shows the behaviour for the same data set but
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this time including the control surface parameters. The
network training stops without reaching the maximum
number of iterations and without reaching the target MSE
value. Hence the maximum number of validation checks is
reached at step 505. One can conclude that using the
control surface deflection angles helps to speed up the
learning process of the network since they provide
information about the flight condition in addition to the
stress parameters.

| With control surface parameter - No regularization - Final Gra
10 S —

—_— -

Gradient values [-]

1 | 1 I 1 1 1 1 i
0 00 200 300 400 500 BOO FOO 8OO BOO 1000

Optirnization steps [-]

Figure 11. ANN gradient evolution plot: 1-0-1
However Figure 12 shows that applying Bayesian
regularization on the previous data set changes the
behaviour of the network training. Here again the training
stops after reaching the maximum number of optimization
steps without reaching the target MSE value or the
maximum number of validation checks. Starting at
optimization step 757 the gradient values oscillate as it
was the case in Figure 10.

Wlth control suface parameter - With regularization - Final Gradient 0.00087411
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Figure 12. ANN gradient evolution plot: 1-1-1
Similar behaviour appears when using the data sample for
the flexural wrinkling failure mode except for the 0-0-2
configuration. Here the training stops already after 379
steps which must be based on the deterministic
relationship of the data basis for this failure mode.

One would suggest the configuration using the control
surface deflection angles and the Bayesian regularization
to be the most reliable one because of the few training
steps and the generalization of the ANN. However the
MSE values for all tested configurations don't differ very
much. Hence the choice of the best configuration depends

rather on the quality of the selected load cases which is
demonstrated in the next chapter.

Also it is worth to be mentioned that indeed [9] used
Mixture of Experts to improve the quality of his surrogate
model for later local optimization of stiffened panel
properties. Further [10] and [11] propose a different
surrogate model process which is also used in [20] to get
higher accuracy than ANN. However in the scope of this
paper the achieved accuracy is adequate enough to carry
on with the load case selection.

5. COMPARISON OF LOAD CASE SELECTION

In the scope of this paper an already existing data set of
load cases and their corresponding RF values is used for
the construction of the surrogate model. In future use
cases the surrogate model can be used without
recollecting data samples in order to make quick
predictions for new incoming load cases (flight maneuver
cases).

At this stage the idea is to assess the number of load
cases which can be reduced from the data basis by
performing a down selection using the ANN approach. For
this purpose the vertical bending moment My along the
wing span is chosen as a 1-dimensional SMT criterion.
The following Figure 13 shows the SMT envelope of all the
load cases which are part of the data basis. Here 6 load
cases contribute to the positive envelope and 4 cases to
the negative one. The assumption is that the closer a load
case is to the envelope the more critical it is for the wing
structure.

MNormalized vertical bending moment IVIX [Nm]

) 1} 5 10 15 20 25 30
Wing SMT stations

Wing SMT - vertical bending moment

Figure 13.

The differently constructed ANNs are tested in order to
find the critical load cases in terms of RF values using a
threshold and to compare the resulting SMT envelope
against the original one. As can be seen on Figure 14 the
2 SMT curves are very similar to each other. This means
that in terms of SMT the ANN approach yields an
appropriate envelope and thus covers at least a
comparable SMT range as the original SMT envelope
cases.

While for small SMT values the two curves match there is
a small discrepancy when coming closer to the wing root.
These discrepancies are shown in Figure 15 and Figure
16 using a zoom into the positive and negative envelopes.
Note that the SMT envelopes resulting from the ANN load
case selection are very similar to each other when using
the different ANN settings. Hence Figure 14, Figure 15
and Figure 16 are representative for all the settings.
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A comparison of the number of selected load cases using
the different ANN settings and both failure modes is given
in Tab 7. One can highlight that if there is a second Load
Case Selection (LCS) by RF values using the neural
network approach a possible reduction of 60% is possible
at least.

—8— SMT envelope

0.8 —'— ANN envelope |

0.6
0.4
0.2
0 3
0.2
0.4

-0.6

MNormalized vertical bending moment Mx [Nm]

-0.8

-1
o 5 10 15 20 25 30

Wing SMT stations
Both normalized SMT envelopes

Figure 14.

]

=1
o
&

—8— SMT envelope |

—— ANN envelope

=}
[}

[=}
wm
@

=]
~
o

Normalized vertical bending moment IVIX [Nm
=] =1
=l ==}

=]
=)
@

2 3 4 5 5] 7 a8 9
Wing SMT stations

Figure 15. Zoom in on positive SMT envelope
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Figure 16. Zoom in on negative SMT envelope

Setting 0-0-1 0-1-1 1-0-1 1-1-1
LCS 617/1924 | 722/1924 | 748/1924 | 783/1924
Setting 0-0-2 0-1-2 1-0-2 1-1-2
LCS 647/1924 | 617/1924 | 542/1924 | 425/1924
Tab 7. Comparison of load case selection with ANN

Finally the different ANN settings are compared against
each other in order to see if the same load cases are
selected and which settings can be used:

- The number of common selected load cases using
the 4 different ANN settings for the first failure mode
(wrinkling): 514 load cases

- The number of common selected load cases using
the 4 different ANN settings for the second failure
mode (flexural wrinkling): 392 load cases

- The number of common selected load cases using
the 4 different ANN settings for both failure modes:
328 load cases

Based on the resulting LCSs and the similar accuracy
regarding the MSE values one can conclude to choose the
ANN setting without the control surface deflection angles
and with regularization.

This idea is also underlined by the fact that different
deflection angles result in different internal loads on GFEM
level anyway since both quantities depend on each other.
In addition a data basis without deflection angles means
less input dimensions for the network training and for the
RF estimation although the training of the network with
deflection angles takes less iteration steps.

One major point of interest for future studies is the
regularization. More investigations are necessary on the
topic of regularization in order to make the surrogate
model more flexible to different kind of load cases.

Note that the comparison here is done using a single 1-
dimensional SMT criterion for load case selection. Further
studies should involve more sophisticated SMT criteria.

6. SUMMARY AND OUTLOOK

In order to improve the load case selection process which
is based on SMT quantities a surrogate model based
approach is proposed. Here a multilayer feedforward
neural network is used in order to replace the long lasting
strength analysis by a cheap to evaluate function
approximation for RF estimation. The weight and bias
values are updated using a backpropagation learning
algorithm with Levenberg-Marquardt optimization process.
In this way a two-step load case selection process is
proposed. The first step involves the state of the art SMT
load case selection whereas in the second step the
number of load cases is further reduced by RF values
using the neural network.

Using a backward sept metallic wing, flight maneuver
cases and wrinkling as well as flexural wrinkling failure the
study shows that a further reduction of load cases is
possible. However it is necessary to investigate more the
effect of regularization in order to make the neural network
more flexible for different kind of load cases.

7. NOMENCLATURE

F;, M; = Force, Moment acting on aircraft wing
y; = lever arm

RF = Reserve Factor

o = Mechanical stress value

d = skin panel thickness
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A = cross section area

N = GFEM internal load fluxes
a = network output

w = network weight

b = network bias

p = network input

err = absolute error value

t = target value

n = network value after weighting and adding bias
e = Euler number

MSE = Mean Square Error

k = sample size

[, @ = regularization parameters
Ey, = sum of squares of the network weight
g = number of network weights
V = Gradient operator

i,J = enumeration parameter
n, = vertical load factor

h = altitude

Vcas = calibrated airspeed
Mach = Mach number

Y = aileron deflection angle

y = spoiler deflection angle

p = Slat/ flap deflection angle
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