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Abstract

This paper provides an overview about the time-linearized analysis of motion-induced and gust-induced
airloads with the DLR flow solver TAU. Time-linearized CFD methods to compute an aircraft’'s aerodynamic
response to sinusoidal oscillations promise a reduced computational effort while retaining the fidelity of the
RANS flow characteristics. Two approaches are presented: a system identification method which excites the
nonlinear steady background flow state with a broad-band pulse signal of small amplitude resulting in the
aerodynamic frequency response function, and the DLR TAU linear frequency domain (LFD) solver which
solves the linearized and Fourier transformed unsteady RANS equations for the first harmonic of the
aerodynamic response. Both methods are validated with forced-motion pitching oscillations of the 2-d NACA
64A010 airfoil in comparison to the response of the fully nonlinear solver. Furthermore, the pulse method
and LFD method are extended for sinusoidal gust encounters

NOMENCLATURE

a = incidence angle

c = chord length

C = lift coefficient

Ma, = freestream Mach number

A = wave length, pulse length

¢ = phase angle

Rey = freestream Reynolds number
T = oscillation period, simulation time
Uy = freestream velocity

vy = grid-node velocities

w® = (reduced) angular frequency
x = grid-node coordinates

Superscripts:
= temporal derivative d/dt
time-invariant mean state
perturbation amplitude, Fourier coefficient
Abbreviations:

ALE = arbitrary Lagrangian-Euler formulation
DVA = disturbance velocity approach

FRF = frequency response function

LFD = linear frequency domain solver

RHS = right-hand-side vector

1. INTRODUCTION

The numerical evaluation of unsteady airloads employing
high-fidelity Reynolds-averaged Navier-Stokes (RANS)
methods already implies high computational effort.
Moreover, the analysis of flutter stability of an aircraft or
the analysis of the maximum loads due to gust encounters
requires a large number of simulations in a huge
parameter space comprising the steady aeroelastic trim

state at various mass configurations, the Mach number
and altitude for which the aerodynamic response to
oscillatory deflections of the elastic mode shapes need to
be considered at multiple frequencies. Time-linearized
CFD methods aiming at the computation of the aircraft’'s
aerodynamic response to small-amplitude oscillatory
perturbations promise a reduction of computational effort
while retaining the fidelity of the RANS flow solution [1]. In
contrast, today’s state-of-the-art highly efficient unsteady
aerodynamic analysis methods like the doublet-lattice
method (DLM) [2] are based on compressible acceleration
potential theory that do not account for effects of wing
thickness, recompression shocks and boundary layer
laminar-turbulent transition or flow separation.

Flutter stability analysis is commonly conducted in the
frequency domain on the basis of linear aerodynamic
transfer functions that relate a rigid-body or elastic
deflection input to the output response of a generalized
aerodynamic force. The linear frequency domain approach
is suited here because small disturbances are sufficient for
predicting the stability of the fluid-structure-coupled aircraft
system. Forced-motion simulations of harmonic excitation
are employed in order to obtain the transfer functions at
the excitation frequencies. In contrast, gust load analyses
are commonly conducted in the time domain to safely
determine the instant peak loads in the time-accurate
response of the combined aerodynamic and inertial loads.
Furthermore, while the flutter problem is inherently limited
to the consideration of small oscillatory perturbations of
the steady state, the gust response of an aircraft typically
yields large perturbations and linearity can no longer be
assumed. However, experience shows that a linearized
approach leads to conservative results in most cases and
under the assumption of superposition sinusoidal gust
simulations at small amplitude can be used to construct
the actual gust response by inverse Fourier
transformation.

Two approaches to perform the time-linearized analysis
are presented. First a method of system identification is
applied. Therefore, a steady-state RANS solution is



Deutscher Luft- und Raumfahrtkongress 2015

excited with a broadband, short-time signal of very small
amplitude. Due to the small-amplitude perturbation on the
steady mean state, the dynamic response can be
considered as linear and, hence, a frequency response
function (FRF) can be derived. The second approach is
the linear frequency domain solver (LFD) [3] of the DLR
TAU code which solves the time-linearized system of
discretized RANS equations. Therefore, the unsteady
RANS equations are linearized around the steady state,
transformed into the frequency domain and directly solved
for the first harmonic of the flow’s response.

At first, the governing equations with the necessary
extension for forced-motion and gust simulations are
presented along with the two time-linearized approaches.
Both methods are validated by comparing the obtained
FRF for NACA 64A010 pitch oscillations with the Fourier-
transformed response of the dynamically nonlinear time-
accurate simulation. The LFD solver is additionally
extended and validated for sinusoidal gust encounters.

2. NUMERICAL METHODS
2.1.

The governing equations of DLR’s flow solver TAU [4] are
the unsteady Reynolds-averaged Navier-Stokes (URANS)
equations with an eddy-viscosity closure provided by a
turbulence model and with an arbitrary Lagrangian-Euler
(ALE) extension introducing grid-node velocities [5]. They
are expressed for an open physical domain Q in an
integral conservation form:

Governing Equations

(1) %jnmw(ﬂm +R(W,x,v,) =0

The state vector W consists of the conservative variables
of the flow assuming a calorically perfect gas and the
variables of the turbulence closure. The residual R
depends on the time-dependent coordinates x(t) and the
grid-node velocities v (t):

(@) RW,x,v5) = [, (f —Wv,)-ndlol - [, @dlQl

The integral of fluxes over the domain boundary 9Q with
the unit normal-vector n comprise the convective and
viscous fluxes f and the flux due to grid-node velocities.
The latter is approximated by a geometric conservation
law [6]. The source term including Q results from the
turbulent modelling.

The DLR TAU code employs an unstructured, edge-based
cell-vertex finite volume discretization of equation (1) and
equation (2) is evaluated by a node-centered numerical
flux with the artificial-dissipation scheme by Jameson et. al
[7]. The temporal discretization uses Jameson’s dual time
stepping of second-order accuracy [8]. The turbulence
model can be chosen from a variety of one- and two-
equation models.

In case of a forced-motion simulation, the time series of
the coordinate vector x(t) corresponds to a deformation of
the volume mesh. At each time step, the motion of the grid
nodes on the surface boundaries results in a deformation
which is propagated into the volume mesh by the help of
radial basis functions [9][10]. The radial basis functions
weigh the amount of deformation with the distance from
the moving surface nodes. Thus, in the case of small
deflections in comparison to the overall configuration, the

method provides smooth deformations. The grid-node
velocities at each time step correspond to the time-
differentiated grid-node locations:

(@) vy =x(1)

However, the grid-node velocities can represent additional
flow velocities as it is considered in the field velocity
approach proposed by [11]. This method is implemented
in the DLR TAU code for gust analysis as the disturbance
velocity approach (DVA) [12]. This approach is used to
model gust encounters by directly inducing flow velocities
in the flow field which correspond to a gust velocity-profile
w(t). Thus, the grid-node velocities are the induced gust
velocities but with inverse orientation:

(4) vy =-w(t)

By directly prescribing the grid-node velocities, the DVA
cannot model the influence of the aircraft on the gust and
hence it is a simplified model. Its accuracy, in comparison
to a gust which is convected through the flow field,
depends on the gust’s wave length which should be at
least greater than the reference chord length [13].

Consequently, the DVA yields to a similar treatment of
gust encounters as of motion-induced flows by employing
grid-node velocities v, (t). However, for the gust analysis,
the grid-node coordinates x remain time-invariant and the
grid velocities are prescribed independently.

2.2,

The method of linear system identification determines a
system’s dynamic response due to an arbitrary input
signal by identifying the frequency response of the system.
The linear frequency analysis allows finding the system’s
response by the multiplication of the frequency response
function G with the Fourier-transformed input signal U:

(5) Y(iw) = G(iw)U(iw)

Linear System Identification

This is only valid for linear, time-invariant systems which
impose the superposition principle for the input and output
signals. This linearity in the dynamic response is virtually
found for nonlinear systems, if the disturbances are
sufficiently small. Thus, the time-linearized/small-
disturbance approach allows identifying the dynamic flow
field by the frequency response for small disturbances
affecting the steady flow field [14].

Accordingly, the application of an impulse on the system
and measuring its response results in the system’s
frequency response by rearranging equation (5):

. Y5(io)
(6) G(l(u) = m

Considering a time-discretized system as described in
section 2.1, the pulse input determines the quality of the
obtained frequency response function. A short-time, small-
amplitude pulse excitation is needed followed by long time
series of zero excitation in order to compute the system’s
response. The length of the time signal T defines the

frequency resolution Aw = 27" of the frequency response

function. The time-step size At determines the maximum

resolvable frequency, known as the Nyquist frequency,

21 .
WN =S However, zero values in the frequency spectrum

of the applied pulse signal further limit the frequency
response’s bandwidth, since it is the denominator of
equation (6). Therefore, the pulse signal is defined by the
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help of a smooth step function s(t) compiling the ascent
and the descent of the pulse:

fs(%), 0<st<ri
7 5(t)= —t+A
(7) S(A—(l_r)), rA<t<A
0, t=>A1

The length of the non-zero part 1 is divided into the ascent
and descent with r specifying the ratio of the ascent’s
length. For r = 0.5 the shape of the pulse yields to zero
values in the magnitude of the frequency spectrum. This is
avoided for r = 0.3 which results in a smooth magnitude of
the frequency spectrum, see Fig. 1. The smooth step
function s(t) is chosen to be a polynomial of fifth order.

The method’s benefit is that the system to identify has not
to be adapted for the time-linearized analysis. However,
the validity of the dynamical linearity assumption has to be
asserted by an amplitude study.
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Fig. 1. Comparison of the pulse’'s shape and its
corresponding magnitude of the frequency
spectrum for r = 0.5 and r = 0.3 (vertical lines)
displaying the ascent (solid) and descent
(dashed) portion.

2.3. Linear Frequency Domain

The DLR TAU code possesses the linear frequency
domain (LFD) solver which solves for the first-harmonic
time-linearized/small-disturbance solution [3]. Instead of
solving the fully nonlinear unsteady RANS equations,
equation (1) is linearized around the steady mean state.
The process of linearization includes the turbulence
closure which is provided in the LFD solver for the one-
equation turbulence model by Spalart and Almaras [15].
This is of importance, since a common simplification is to
consider the eddy-viscosity to be time-invariant in the
dynamically linear response [1]. The accuracy of this
frozen eddy-viscosity approach has been demonstrated to
decrease with increasing interaction between the shock
and the boundary-layer [3] which renders its application
unsuitable for transonic flows.

The derivation of the LFD equations evolves from the
finite-volume discretized form of equation (1) as described
in section 2.1:

8) M 4 R(W,x,v,) =0

The integration matrix M consists of the discrete control
volumes |Q;| which only depend on the grid-node
coordinates.

Under the considered assumption of a predominately
linear aerodynamic response due to a small-amplitude
excitation, W can be separated into a time-invariant mean
state W and a time-dependent, small perturbation.
Therefore, the linearization comprises a Taylor series
expansion around the steady state which is truncated after
the first-order term. Furthermore, by expressing the time-
dependent perturbation in terms of a complex Fourier
series expansion and moreover, only considering a first
harmonic  excitation and response, W can be
approximated as:

(9) W(t) =W + Weit

Consequently, the time-dependent grid-node coordinates
and velocities are approximated accordingly:

(10) x(t) ~ X + Reit
(1) vy(t) = vyetet

The time-invariant mean state W is known by a steady-
state RANS simulation employed on the reference grid x.
The mean state of the grid-node velocities is considered to
be zero, v, = 0, for the investigated flows, although it is
formally written for completeness.

By applying the truncated Taylor series expansion
including equations (9) to (11) to the integration matrix
M(x) and the residual R(W,x,v,), the terms of the
linearized form of equation (8) are derived:

(12)R(W,x,v,) ~ R(W,%,7,) + g—;lW’f’@Wei“’t +

7= plwt

i OR
Folwt
Xe + _avg |—W1@ vge

OR
x |W,x@
(13) M(x) ~ M(®) + 25 | zei“t

The first term of equation (12) is the residual obtained by
the steady-state RANS solution and thus, it is legitimate to
presume:

(14)R(W,%,7,) =0

Finally, the application of equations (12) and (13) in
equation (8) with the neglect of higher-order perturbation
terms WZx yields to a linear equation system for the
amplitude of the conservative variables W:

(15) AW = b

The system matrix A comprises the steady integration
matrix and the Jacobi matrix of the residual R evaluated at
the steady state. The Jacobi matrix has been derived
analytically for the DLR TAU code in the context of the
discrete adjoint method [16].

R

ow [Wxv,

On the right-hand side (RHS) of equation (15), the vector
b comprises the derivatives with respect to the grid-node
coordinates and velocities:

(16)A = iwh +

—

OR . = O0M ~ oR
(17) b=- (a |W.7.@+ la)W;b)x - alelwvg

The derivatives of equation (17) are evaluated by central
differences. The step sizes of the finite differences are the
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perturbation amplitudes X and ¥, which have to take
account of the numerical errors implied by this
approximation of the derivatives. The evaluation of
analytically or automatically [17] obtained derivatives could
remove this obstacle. The central differences are
computed by evaluating the residuals with W on the
deformed mesh and with induced velocities. For building
the central differences, the residuals have to be computed
for the positive and the negative perturbation amplitude.

The linear system is solved iteratively by employing the
Krylov generalized minimum-residual (GMRES) [18]
scheme with the incomplete lower-upper (ILU)
preconditioning [19]. The stability and efficiency of this
solution technique regarding the properties of the resulting
linear equation system has been demonstrated thoroughly
for two- and three-dimensional forced-motion simulations
in [3].

The RHS vector of equation (15) depends on the applied
excitation. For a forced-motion simulation, the grid-node
velocities are the time-differentiated coordinates, see
equation (3). Thus, the perturbation amplitude on the grid
velocities yields to 7, = iwx and the RHS vector can be
written as:

dR . JdR — OM P
(18) b=- <a W.Y.@ +ilw (a |W.7.@ + Wa x))x

In case of the DVA, the grid-node coordinates are time-
invariant. Consequently, for the perturbation follows X = 0
and the RHS vector reduces to:

_ _OR &~
(19)b = o, Wx; Vo
The perturbation amplitude on the grid velocities v, for the
case of sinusoidal gust analysis is derived in section 3.2.

3. VALIDATION RESULTS

The time-linearized methods are validated by comparing
the dynamic derivatives with time-accurate simulations
employing the unsteady RANS equations as described in
section 2.1. The time-domain results are transformed into
the frequency domain with reference to the excitation
amplitude in order to compute the transfer function at the
simulated frequency of the sinusoidal excitation.

The validation is performed for a transonic test-case of the
NACA 64A010 airfoil [20] at Ma,, = 0.8 and Re,, = 12.5-
10° with a mean angle of incidence @ = 0. The turbulence
model of Spalart and Allmaras [15] is employed. Both
methods are validated for forced pitching oscillations
around the y axis at the airfoil's quarter point (x = 0).
Additionally, the LFD solver is employed for sinusoidal
gust encounters and validated against the Fourier-
transformed time-domain results.

The NACA 64A010 is a symmetrical airfoil with a relative
thickness of 10% at 40% of the airfoil’s chord length c. Fig.
2 displays the two-dimensional computational grid in the
vicinity of the airfoil. The unstructured grid of triangles is
combined with a structured grid of quadrilaterals resolving
the boundary layer. The far-field boundaries are in a
radius of 100 chord lengths from the airfoil's quarter point.

The computational grid consists of around 21.4 - 103 grid
nodes.

In Fig. 3 the pressure distribution of the steady mean
solution is presented. For the considered flow conditions,
the flow around the airfoil remains attached.

e

Fig. 2. Near-field grid around the NACA 64A010 airfoil
with the chord length ¢ = 1.0.
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Fig. 3. Distribution of the steady pressure coefficient over
the NACA 64A010 surface at Ma, = 0.8,
Re,, = 12.5-10%and @ = 0.

3.1. NACA 64A010 Pitching Oscillations

The forced pitching oscillations of the NACA 64A010 airfoil
at the prior described flow conditions is a standard test
case in the field of aeroelasticity [20]. The pitch oscillation
is expressed in terms of the angle of incidence:

(20) @ = @ sin(wt)

The rotation is performed around the y axis at the airfoil’'s
quarter point (x =0). The angular frequency w is
expressed as the commonly presented reduced frequency
which is defined non-dimensional by the chord length ¢
and the freestream velocity U,,:

=
21w =W~

For the validation of the presented time-linearized
methods, the dynamic derivative of the lift coefficient C; is
compared with the results of single-frequency sinusoidal
time-domain simulations. The dynamic lift derivative is
defined according to equation (6) by the help of Fourier
analysis:
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DFT(C,())

(22) €, (iw) = DFT(a(t))

The discrete Fourier transformation (DFT) is computed by
the Fast Fourier Transformation (FFT) algorithm [21]. The
inverse transformation of the complex-valued derivative
yields the time-dependent lift-coefficient in case of the
sinusoidal oscillation of equation (20):

(23) C,(t) = C; + Re(Cy )@ sin(wt) + Im(C; )@ cos(wt)

In order to investigate the assumption of the dynamically
linear response due to small perturbations, the time-
accurate simulations are performed for a range of
oscillation amplitudes. Fig. 4 shows the first harmonic of
the dynamic lift coefficient for the reduced frequency
w* = 0.2. It exhibits a linear behavior up to the amplitude
of approximately one degree. This long span of linear
response region is found because of the moderate
dynamic flow conditions at a& =0. For the following
comparisons, the amplitude is chosen to @ =103
degree.

Tab. 1 summarizes the employed simulation parameters
for the harmonic time-domain simulations. A set of five
pitching frequencies in the interval between 0.1 and 1.0
are computed. The time-step size is adapted to the
frequency in order to ensure a consistent time-resolution
of the harmonic response. Moreover, for each frequency
five periods are computed for obtaining the flow-field’s
periodicity.

In contrast to the simulation of a fixed number of periods
of the harmonic motion, it should be pointed out that
convergence of the first harmonic may be reached earlier.
Therefore, the Fourier analysis can be performed at each
time step in order to monitor the convergence. For
performing the Fourier analysis, a moving window
approach must be applied which only accounts for the
latter time steps assembling one period. Moreover, the
application of a Cauchy criterion allows creating a
termination criterion defined by a specified accuracy.

Tab. 1. Time-domain simulation parameters for the
sinusoidal pitching oscillations.

Parameter Value
Number of time steps per period 128
Number of pseudo time iterations 300

CFL number (fine/coarse grid) 40/10
Multigrid cycle (level, type) 4, w-sym
Number of periods 5
Reduced frequencies (5) 0.1-1.0
Amplitude @ 10" deg

Tab. 2. Time-domain simulation parameters for the pulse

excitation
Parameter Value
Number of time steps per reference period® 128
Number of pseudotime iterations 300
CFL number (fine/coarse grid) 40/10
Multigrid cycle (level, type) 4, w-sym
Number of time steps 2500
Amplitude @ 10" deg
Pulse shape factor r 0.3
Number of time steps of pulse 128

®The reference period is chosen to be the highest
considered reduced frequency w* = 1.0.

mag [deg']

phase [deq]

Fig. 4. Comparison of the dynamic lift derivative C;, from
sinusoidal time-domain simulations for different
pitch amplitudes in degree with a reduced
frequency of 0.2.

3.1.1.

The identification of the dynamic response due to pitching
oscillations for wide range of frequencies is obtained by
the application of pulse signal of the airfoil's rotational
motion. Thus, the excitation is the pulse signal as defined
in equation (7) acting on the angle of incidence. From this
time-domain simulation, the dynamic derivatives are found
as for the sinusoidal time-domain simulations by equation
(22). However, the flow response by employing time-
accurate simulations may contain disturbances caused by
numerical excitation. These can significantly flaw the
response due to a pulse-like excitation because these can
be of similar or greater magnitudes. Therefore, these
disturbances are removed from the pulse’s response by
subtracting the non-excited time-dependent flow response.
This process improves the accuracy of the numerical
Fourier analysis.

Pulse excitation solutions

In Tab. 2, the simulation parameters are summarized.
These differ from the single-frequency simulations’
parameters in the way the time-step size is chosen. The
step size is defined by the number of time steps for the
period of a reference frequency which is the highest
frequency of interest. Furthermore, the simulated time
length defined by the number of time steps has to resolve
the aerodynamic response. Hence, the total number of
time steps is much larger than those of the actual
excitation.

The frequency response function obtained by the pulse
excitation is presented in Fig. 5 for reduced frequencies in
the interval from 0 to 1.2. Although the FRF is computed
for much higher frequencies, up to the Nyquist frequency,
see section 2.2. The time-step size may not appropriate to
resolve these high frequencies. For the validation of the
obtained FRF, the first harmonic of the dynamic Ilift
derivative resulting from the time-accurate harmonic pitch
simulation at five frequencies are shown. According to Fig.
5, excellent agreement between the obtained FRF and the
time-domain solutions is achieved evincing the validity of
the system identification approach.
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mag [deg™']

phase [deg]

Fig. 5. Comparison of the frequency response of the
dynamic lift derivative C; obtained by the pulse
excitation with the sinusoidal time-domain results.

The FRF is identified by assuming a dynamically linear
behavior of the investigated flow due to a broadband
signal of small amplitude. The requirements on the
excitation signal have to be verified in the case that the
time-accurate harmonic simulations are not known. This is
achieved by convergence analyses of the simulation
parameters. Alternatively, the requirements can be
asserted by auxiliary time-accurate harmonic simulations.

For instance, the chosen pulse’s amplitude is found to be
on the lower end of the linear region of the harmonic
simulation for the reduced frequency w* = 0.2 and thus, it
renders to be a feasible choice. In Fig. 6, the FRF is
shown for different time-lengths of the pulse excitation
specified by numbers of time steps. It displays no
dependency of the FRF on the pulse’s time length. In
contrast, the length of the simulated time series is crucial
for the accuracy of the FRF, since it determines the
integrity of the response as well as the frequency
resolution, see section 2.2. The convergence of the FRF is
analyzed by the difference of its phase A¢ between two
adjacent time samples T; and T;_; at selected frequency
samples w,:

(24) A0 (T, n) = ¢(Tj, wn) = P (Tj-1, )

The phase of the FRF measures the convergence best,
since it exhibits the slowest rate of convergence in terms
of degrees. In order to obtain the value of the FRF at the
frequency sample, the FRF is interpolated with piecewise
monotonic cubic polynomials [22]. Fig. 7 shows the
convergence of the dynamic lift derivative’s phase for the
performed pitching oscillations. It displays a reduction of
the relative phase error for the first time steps which is
followed by a significantly slowed convergence. Although,
the phase error decreases with increasing simulation time,
it also displays a gradually slowing of the convergence
behavior. Moreover, Fig. 7 shows higher errors for higher
frequencies.

A comparison of the computational time between the
method of system identification and the time-accurate
harmonic simulation depends on the number and range of
interested frequencies. In the considered case, five time-
domain solution of 640 physical time steps are compared
with one time-domain solution of 2500 physical time steps.
However, the latter number has to be doubled if the
undisturbed flow response is taken into account.
Nevertheless, the accuracy of the FRF measured by the

frequency resolution is much higher for the method of
pulse excitation. For the considered frequency range, a
reduction of computational time by more than a factor of
2.5 is achieved.
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Fig. 6. Frequency response functions of the dynamic lift
derivative ¢, for different numbers of time steps
composing the pulse’s non-zero part 1 displaying
the invariance due to the pulse’s length.
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Fig. 7. Convergence of FRF’s phase of the dynamic
derivative C;, with increasing simulation time.

3.1.2. LFD solutions

The LFD method directly solves for the first-harmonic of
the flow response due to a small-amplitude harmonic
perturbation. The resulting linear equation system is
solved iteratively as described in section 2.3. The system
matrix is provided analytically and the RHS vector is
defined by the amplitudes X and ¥, = iwX. The harmonic
perturbation X is obtained by a grid deformation due to the
airfoil’s rotation around the y axis with @. The derivatives
of the residual are approximated by central differences
and thus, the accuracy of RHS is dependent on the
perturbation amplitude.

Tab. 3 lists the parameter for the LFD solutions. The
amplitude of the pitch oscillation is found by an amplitude
study, see Fig. 9. The dynamic lift derivative for the
reduced frequency w* = 0.2 is shown exhibiting constant
results for amplitudes less than approximately 10
degrees. The derivation from the amplitude-independent
behavior results from numerical errors due to the
approximation of the RHS. Hence, for the lower
amplitudes the linear equation system is solved for an
approximately constant RHS vector. However, the
numerical errors are small even for high amplitudes.
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In Fig. 8, the frequency response function C,d is shown at
twelve frequencies and compared to the time-accurate
harmonic results showing an excellent agreement. The
employed preconditioned GMRES scheme for solving the
linear equation system provides a high convergence rate.
This results in reduction factor for the computational time
of more than one magnitude in comparison to the time-
accurate simulation of five periods of a sinusoidal pitch
oscillation. However, the requirements on the
computational memory significantly increase for solving
the linear equation system. A detailed study of the
computational time and memory requirements is
performed in [3].

Tab. 3. LFD simulation parameters.

Parameter Value
Krylov GMRES iterations 120
Multigrid cycle (level, type) single grid
Minimum residual abort criterion 10°
Reduced frequencies (12) 0.01-1.0
Amplitude @ 10”° deg
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Fig. 8. Comparison of the frequency response of the
dynamic lift derivative C;, obtained by the LFD

with the sinusoidal time-domain results.
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Fig. 9. Dynamic lift derivative C; obtained by the LFD for
the variation of the pitch amplitude at the reduced
frequency w* = 0.2 displaying the increasing
numerical error due to the approximation of the
RHS.

3.2. NACA 64A010 Sinusoidal Gust Encounter

The evaluation of sinusoidal gust encounters of small
amplitude allows computing the dynamic derivatives with
respect to the gust frequency. Fig. 10 depicts a sketch of
the sinusoidal gust field around the airfoil. The gust field
travels with the speed U in the x; direction. Each point in
the flow field experiences a sinusoidal change in the gust
velocity w(x;, t) with a constant frequency w and a phase
shift ¢(x;). The gust frequency is defined by the ratio of
the gust translation-speed U and the spatial wave length A:

s
(25) w = 7

The phase shift is defined by a reference location x;, and
depends on the field point’s coordinate x;:

(26) p(x;) = 2m e
Taken together, the following equation for the gust velocity
expresses a sinusoidal gust field in the time domain:

~ . Ut+xio—x;
(27) w(x;, t) = wsin (ZT[TO)
Equation (27) is transformed into the frequency domain
yielding the complex-valued amplitude of the grid-node
velocities for the sinusoidal gust field according to
equation (4):

(28) Ty = —we$()

>N

u.
ﬁ.
w X
Xo A
Fig. 10. Sketch of a vertical sinusoidal gust field.
The sinusoidal gust encounter for performing the

validation is defined as a vertical gust field travelling over
the NACA 64A010 airfoil as shown in the sketch of Fig. 10.
The gust velocity w is directed in the z direction and the
gust field travels with the speed U, in the x direction.
Thus, the gust amplitude w only comprises the z direction.
The phase shift ¢ of the field points depends on the x
coordinate and is defined with respect to x, = 0.

The simulation parameters for the time-accurate
computations of the sinusoidal gust encounter and the
pulse excitation are listed in Tab. 4. The aerodynamic
pulse response is simulated for 2500 time steps. The LFD
is employed with the parameters listed in Tab. 3. The RHS
is computed with = 0 and 7, as defined in equation (28).

The gust amplitude is chosen to W, = 10> ?

In order to validate the results, the dynamic lift derivative
C,, is computed according to equations (22) and (23).
Therefore, the gust velocity is expressed in terms of a
corresponding angle of incidence which results from the
superposition with the constant gust translation-speed:

180

(29) a = arctan (3/—;) — deg
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In Fig. 11 the frequency response function of the dynamic
lift derivative is shown. The results obtained by both
methods match with the dynamically nonlinear derivatives.
However, small derivations for the LFD results are
observed. Consequently, the pulse excitation method as
well as the derived LFD approach is suited for computing
the time-linearized flow response due to sinusoidal gust
encounters.

Tab. 4. Simulation parameters for the time-accurate
sinusoidal gust encounter and for the pulse
excitation.

Parameter Value

Number of time steps per reference period® 128

Number of pseudo time iterations 200

CFL number (fine/coarse grid) 40/10
Multigrid cycle (level, type) 4, w-sym
Amplitude W, 10° m/s

®The reference period is chosen to be the highest
considered reduced frequency w* = 1.0.

|
o
=)

Fig. 11. The frequency response function of dynamic lift
derivative C; of the sinusoidal gust encounter
obtained by the pulse excitation and the LFD
compared with the dynamically nonlinear time-
accurate solutions.

4. CONCLUSION

The simulation of forced motions and gust encounters with
the DLR TAU code employing the unsteady RANS
equations is presented in the context of harmonic analysis.
Two methods for obtaining the time-linearized frequency
response functions are described and validated by
comparing the dynamic derivatives with the dynamically
nonlinear time-accurate results of the DLR TAU code.

The validation is performed for harmonic pitch oscillations
of the NACA 64A010 airfoil. The excellent agreement of
the dynamic results is demonstrated in the limit of small
amplitudes. Moreover, the reduction of computational time
is discussed. However, the reduction strongly depends on
the number and the range of the frequencies of interest.
Although, the LFD solver exhibits the greatest reduction
factors, since it directly solves for the harmonic small-
perturbation response, the method of system identification
may be better suited for broad frequency ranges.
Moreover, the pulse excitation does not need the
development of new solving routines employing directly
the existing implementation of the nonlinear equations.

Furthermore, the sinusoidal gust encounter is derived for
the LFD method and validated by comparison with the
dynamically nonlinear time domain results. As well, the
method of pulse excitation is employed for obtaining the
FRF for gust encounters. Both methods show a very good
agreement demonstrating the feasibility of the time-
linearization approach for harmonic gust analysis.

The presented methods for simulating forced motion and
gust encounters are bundled into one software package
regarding the demonstrated underlying resemblance of the
methodology. The software package is part of the
FlowSimulator framework [23] which is a simulation
environment  for  highly efficient and parallel
multidisciplinary ~ computations. The  FlowSimulator
framework provides an end-to-end interface to the DLR
TAU code allowing full control over the simulation process.
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