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Abstract

A biologically inspired concept is investigated which can be utilized to develop energy efficient, lightweight
and applicational flexible adaptive structures. Summarizing basic demands and barriers regarding shape
changing structures, the basic challenges of designing morphing structures are listed. The analytical
background describing the physical mechanisms of PACS is presented in detail. This work focuses on the
numerical approach of calculating the geometrically highly nonlinear deformation states of pressure actuated
cellular structures. Beyond the calculation of equilibrium states a form finding algorithm is presented, which
allows determining structural designs following predefined target shapes. Initially made assumptions are
dropped incrementally to show the effects on the accuracy of the modeling. FEM-based calculations and
experimental test results provide the computational target data for the varying grade of simplifications.
Representative of more complex structures, like aircraft control surfaces, the examined geometries are
chosen to evaluate the numerical methods and to validate the functionality of the basic working principle.

1. INTRODUCTION

Fluidic actuators can be used to integrally combine an
efficient, lightweight and accurate drive system with a
deformable structure. The advantages of pneumatic and
hydraulic actuators compared with other drive systems are
examined by Huber (Huber J. E. et al., 1997). The specific
stresses and strains as well as the resolution of motion of
this actuators lead to a wide range of use and
predestinates it for aeronautical applications. In nature, the
combination of fluidic actuation and shape variable
structure can be discovered at the special group of nastic
plants. Representatives like the thigmonastic Cape
Sundew (Drosera Capensis) and Venus Flytrap (Dionaea
Muscipula), which use their touch sensing capabilities to
trap small insects are examples for a successful
implementation of biological integral morphing structures.
Another common example is given by the seismonastic
Mimosa Pudica that protects its fragile leafage through a
folding mechanism when shaken. Sibaoka, investigated
the mechanisms of nastic plants. He describes the loss
and gain of turgor - internal hydrostatic cell sap pressure -
(symbolized by H20 in at the upper right depiction of
Figure 1) as the driving force for the distortions (Sibaoka,
1991), which leads to cell pressures of more than 8MPa
(Howard, 1991).

Researchers working on form variable cellular structures
made huge efforts to adapt this principle to a mechanically
usable structural system. Vos et al. developed the
Pressure Adaptive Honeycomb (PAH) concept for
actuating their Gurney Flap. This trailing edge flap
autonomously changes its shape in different flight altitudes
and takes advantage of aerostatic pressure differences
(Vos R. et al., 2010). Pagitz et al. transferred the idea of
fluidic pressure driven morphing structures into a two
dimensional concept with a promising degree of
deformation, high flexibility and sizeable characteristic
(Pagitz M. et al., Pressure-actuated cellular structures,
2012). Compared to the PAH concept, the main difference
of PACS consists in the variable side length of its cells. A
PACS structure of multiple pressure dependent shapes
can be mathematically deduced by manipulating the

equilibrium state of each cell and thereby of the cell
compound. Pagitz et al. showed with analytical methods
how the deformational shape of such a structure can be
controlled for multiple cells and cell rows using flexure
hinges (Pagitz M. et al., Compliant Pressure Actuated
Cellular Structures, 2014). The form-finding approach they
established allows conceiving structures to vary their
shapes stepless between multiple form functions.

The applicational flexibility of PACS is demonstrated by
the examples of a morphing airfoil and a shape adaptive
backrest (Pagitz M. et al., A modular approach to adaptive
structures, 2014). With their real life implementation of a
single row PACS demonstrator Gramuller et al. showed
the practicability of the theoretical basis (Gramiller B. et
al., 2014). Figure 1 summarizes the preceding work on
shape changing structures using pressurized cellular
structures.

2. DEMANDS ON ADAPTIVE STRUCTURES
AND DIFFICULTIES

The design of conventional structures is usually driven by
two groups of requirements. The first one is of
programmatic manner and holds general demands like low
costs, high quality and reduced development time. As a
second group, structural demands with reference to
structural mechanics are determined by the expected
loads and in addition by geometrical requirements. These
needs are also valid for shape variable structures and a
PACS structure has to withstand the design loads and
simultaneously ensure to keep deformations in a tolerable
range.

The actuation of shape changing structures can be divided
in two functional elements, the energy adjusting element
(e.g. compressor), which transforms energy (e.g. electrical
energy) from the auxiliary energy source into a usable
energy form (e.g. pressure and volume) and the energy
converter, that modifies the received energy in order to
obtain the desired energy driven effects (e.g. deformation)
(Janocha, 1992). The special attribute about PACS is the
unity of energy converter and structure as shown in
chapter 3.
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Figure 1: Example from nature: Venus Flytrap (Dionaea
Muscipula; left); Concepts of deduced operating principle:
(1) PAH (Barrett R. et al., Biomimetic FAA-certifiable,
artificial muscle structures for commercial aircraft wings,
2014) and (2) PACS (Pagitz M. et al., Pressure-actuated
cellular structures, 2012)

Together with the increased complexity the overall power
demands and the additional weight of the energy
converter, adjusting element and peripheral sub
components like wiring, the first basic problem about
shape variable active structures appears. It can be
condensed to the following: The development and
implementation of a concept for shape changing structures
is only reasonable if the anticipated benefit outweighs the
invested efforts. Figure 2 specifies this general demand.
The energy consumption and related peripheral weight,
depends on the required forces and travel ranges needed
to deform the structure. Common concepts for
aeronautical shape variable structures like the horn
concept (Mueller, 2000), the ripless plain flap (Bauer,
2000), the active flexspar actuator (Barrett R. et al,
Missile flight control using active, 1996) and the vertebrate
structure (Elzey D. et al., 2003) are in need of stiff and
weighty structural components to withstand aerodynamic
forces. On the contrary Barrett et al. even describe the
possibility of reducing structural weight by adaptive
structures. An artificial muscle structure based on the
pressure driven honeycomb, similarly to PACS benefits of
its weight efficient structural integrated actuator and
provides the non-concentrated forwarding of distributed
aerodynamic loads. Structural hard points can thus be
eliminated for further weight reduction and provide an
additional contribution to the advantages for airborne
applications (Barrett R. et al., Biomimetic FAA-certifiable,
artificial muscle structures for commercial aircraft wings,
2014).

1st Basic Challenge:
- Profitability -
- Advantages - - Disadvantages -
General: General:

Costs & Efforts,
Risen Complexity,
Additional Source of Errors

Functional Integration,
Enables novel Structures & Tools,
Design & Style Aspects

Airborne:

Energy Consumption,
Additional Weight (usu.),
Fatigue Strength,

Safety Critical fragile Structure,
Certification,

Figure 2: Challenge of generating profitable adaptive
structures

Airborne:
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Benefit Efforts

A raise of structural stiffness increases the sufferable
external forces on the corresponding structure but
heightens the necessary efforts for changing the
structures shape and limits the boundaries of tolerable
deformation. Thus the second challenge of developing a
profitable morphing concept can be formulated: An
efficient concept for shape variable structures circumvents
the seeming contradiction of a specific design being stiff
and flexible at the same time (see Figure 3). There are
some concepts available which have implemented this
principle, like the flexible rib from Monner (Monner, 2001),
the cellular planar morphing structure from Vasista
(Vasista S. et al., 2013), the tendon-actuated compliant
cellular trusses (Ramrakhyani D. et al., 2005) or the
zigzag wingbox (Ajaj R.M. et al., 2012). The common
principle behind these examples is a steered release of
specific degrees of freedom (dofs) by integrating hinges,
compliant mechanisms or linear bearings.

2nd Basic Challenge:
- Structural Dilemma -
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Figure 3: Challenge of circumventing the dilemma of
structural flexibility, stiffness and strength

Other demands on the morphing structure’s actuation
element concern its performance-based properties, the
maximum forces respectively momentums, e.g. stall
torque for an electric motor, and the related travel ranges.
Regarding the combination of actuator and structure, the
structural response, depending on the actuators
characteristics as well as on the structural stiffness and
mass distribution, underlies the requirements for control
speed and frequency and is essential for the definition of
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the operating range of such a concept. Other, not unique
airborne subjects as fatigue strength and certification are
essential for building a real life morphing structure. Before
investigating efforts in these topics, the potentials of a
concept for adaptive structures are revealed in this further
step of doing research into PACS.

PACS are conceptualized to generate two-dimensional
deformations on single-curved surfaces. The conceivable
operating range regarding structural dimensions can be
varied from centimeters to meters without having any
losses of functionality, due to the possibility of adapting
certain counteracting design variables. Their potential for
future airborne or general structures is based on its
lightweight and energetically efficient actuation and
design. These properties constitute a good foundation for
profitable adaptive structure. The concept is further
characterized by a blended structure-actuator
construction, possesses a necessary minimum of stiffness
in the hinge regions of the cells and generates structural
stiffness through pressurization. With a high flexibility in
shape variations and an adaptive structural stiffness
PACS meets the second challenge for morphing concepts.

3. PHYSICS OF PACS

The analytical equations necessary to find and control the
equilibrium state of a pressure actuated cellular structure
are essential for understanding the mechanics of this
concept. Both proofing the already found analytical results
for validity through recalculation and investigating the
conceptual boundaries of a realization using compliant
hinges, can be reached with the implementation of a
respective algorithm. After a summary of the already
published information, a continuative approach for the
developed implementations is presented. The different
strategy beyond that carries new aspects about handling
internal and external forces as well as an alternative form
finding approach.

3.1.

The functional principle of pressure actuated cellular
structures is based on the reduction of inner energy due to
volume  maximization. Figure 4.1 provides a
comprehensible visualization of the effects, which lead to
the driving forces of this concept. Similar to a flattened
balloon, a flexible membrane does not have any defined
state of shape without being pressurized. Not until the
balloon is loaded with a particular pressure p, the resulting
distribution of forces lead onto bending moments and,
assuming membrane characteristics, a structural shape of
maximum volume. Thus the pressure is minimized
(p1 > p, > p3) and equally the inner energy is reduced.

Background

As shown in Figure 4.2 the PACS cells consist of two
kinds of elements, hinges and cell sides. Depending on
the level of detail used for modeling these elements, the
assumptions behind the calculations lead to five major
variants which are posted in Table 1. Variant one to three
is part of the following chapters, variant four is exemplary
and gives a prospect to the ongoing work and variant five
is covered by finite element method (FEM).

In the highest level of simplification, variant 1, the
mechanical model of PACS consists of flexible hinges
connecting straight cell sides of infinite stiffness. A
representative cross section of such a cell is shown in
Figure 4-2. The inner volume of this five-edged single cell
can only be enlarged by changing the angle between

neighbored cell sides. The equilibrium state is again
reached, when the trapped volume is maximized. Due to
the conceptual idea, the pressure stays constant during
the deformation process.

Table 1: Cell elements and associated stiffness and hinge
eccentricity assumptions

Variant 1 Variant2 Variant3 Variant4 Variant5

Cell Side ] ] ] El El, EA
Hinge 0 El El El El, EA
Hinge N ) X X %
eccentricity

Illustration

Complexity «
/ Accuracy

Coupling an arbitrary number of cells allows superposing
the deformations of the single cells to form a shape
variable surface. Pagitz et al. showed that one cell row of
pentagonal units lead to a single form function at an
infinitesimal amount of pressure (Pagitz M. et al,
Pressure-actuated cellular structures, 2012). With the
realization of a second cell row of hexagonal cells a further
state of shape can be reached when only this row is
pressurized. Adjusting the ratiop,/p, between the
pressure in row one p; and the pressure in row two p, at a
certain value effects in a shape that ranges between these
extreme form functions (see Figure 5). A stepless
transition among these states can be reached.

Y X i i g g
] 12
i P P

Figure 4: Schematic diagram of (1) adiabatic expansion of
pressurized fluid within flexible membrane (2) isobaric
increase in volume within pressured cell

The mathematical approach describing PACS is used in
two different ways. For a given cellular structure with cell
side lengths v the equilibrium state is reached when a
change of the vector of hinge angles @ + da causes a
raise of structure inherent energy. For a given cell
pressure p the forces and momentums within the structure
can be calculated. In order to implement a form finding
algorithm, hinge angles provide the fixed parameter for the
system of equations and are determined to model the
target shape. The cell side lengths are variable. Also for
this approach, forces and momentums can be excerpt for
the equilibrium state that depends on the respectively
used pressure.

3.2. Quotation — Approach of volume

maximization

For a polygonal single cell as well as for a double row
cellular structure consisting of pentagonal and hexagonal
cells, the equilibrium state can be found numerically. The
first approach exploits the behavior of pressurized
systems to deform into a state of maximum volume V. This



Deutscher Luft- und Raumfahrtkongress 2014

endeavor bases on the 2™ law of thermodynamics, which
demand an increase of entropy S for any spontaneous
change of state. For a closed thermodynamic system, the
amount of substancen and the gas constantR are
invariable. At a constant temperature T, a decline of inner
energy AU < 0 causes a raise of entropy AS due to the
reduction of the enthalpy AH (Charles E. Mortimer, 2007).
The equations 1-3 show the relation between these values
and explain how an increase of volume results in a raise of
entropy.

(1) AS =24

T

(2) AH = AU + AnRT

const

@) AU=—["(p0V)=p) oV =@ —p)Vs—Vs)

const

Pagitz et.al. make use of this physical law and formulate
the following equations for calculating the equilibrium state
of a cellular structure. In order to present the complete
numerical knowledge about PACS and since this
approach is used to verify modeling variant 1, a short
summary about the approach of volume maximization is
given in equation (4) to (11) (Pagitz M. et al., Pressure-
actuated cellular structures, 2012).

@ f =X fent It fun =0

, 0Apn

(6) with fp, =pp 0u£n
0AHn

©6) and fun=DPug, "

The global force vector f for all pentagonal cells of
quantity np and hexagonal cells of quantity ny vanishes in
equilibrium. It is calculated as the sum of weighted
derivatives of the cells’ areas Ap,, or Ap, with respect to
the rotational degree of freedom u.

(7) 4du =-K@) f(w)

®) K=Y Kpn+ 302 Ky

n=1

2
©)  with Kpn=pp 5™
Pn

azAHn
6uﬁn

(10) and Ky, = py
For the calculation of the increment Au of the cell side
angles at the current state, the stiffness matrix K is
needed and can be found as the weighted second
derivative of the respective areas. It was shown that for
given cell side lengths v the equilibrium state, defined by
the cell side angles a can thus be calculated iteratively.

A separate way to reach equilibrium is to retain parts of
the matrix of cell side angles and thus compute the

required cell side lengths. These angles can be defined
such that the structure’s surface moves into a given target
shape. The strategy of calculating the shape of a given
structure when pressurized is thereby replaced with a form
finding algorithm (Pagitz M. et al., Pressure-actuated
cellular structures, 2012):

(1) Av = 2S] . rg

Computing the increment Av for the current cell side
lengthsv and the associated cell side angles in
equilibrium state allows to iteratively approaching the
target shape. The factor 1 defines the step length during
form finding in order to minimize the 2-norm of the residual
shape vector rg that comprises the difference between
current and target angles.SLbst2 is the sensitivity matrix
coupling the change of angles with the change of cell side
lengths for the two target states st; and st,.

3.3.

An alternative solution to the approach of volume
maximization is given by the method of virtual work. As it
relies on the information of hinge and cell side positions,
angles and displacements, it is easy to extract element
stresses and also to apply external loads. Through the
more universal nature of this method, it can be modified
comparatively quickly. The flexibility has however to be
paid in the form of computation time. The general
approach, the calculation of structural loads, the
procedure of considering external forces as well as a fast
converging form finding algorithm are illuminated on the
basis of modeling variant 1. For reduced assumptions this
implementation is extended in the subsequent chapters.

Variant 1: Infinitesimal hinge stiffness

3.3.1.

A mechanical system is in equilibrium when the derivative
of the potential energy IT vanishes:

General Approach

. SwW equil.

(12) I=-5=~f =

The difference between the following approach and the
one presented by Pagitz et al. is rooted in the calculation
of potential energy. The derivative of this potential energy
is equal to the introduced global force vector f. Implicitly
using the potential energy of pressurized volumes
dislocates the computational approach from the
mechanical units. The theory of virtual work utilizes the
forces which explicitly act on single structural elements,
like in this case cell sides. It can be used for conservative
forces which are present here. The application of virtual
displacements ér provides an efficient way of calculating
the derivative of potential energy. A simple example shall
explain the concept.

Figure 5.1 shows a flexible mounted rigid cantilever which
is loaded with a force F normal to the beam and its vertical
weight force mg. The virtual work AW is then calculated as
the sum of all external forces Fge) times the associated
force parallel component of the virtual displacement Ar;.
Equation 13 gives the solution for the depicted example
and allows calculating the angle « for the equilibrium state
(see Eq. 15(15)).

(13) 8W = X, F%r,
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(14) W = [F - %mgsin(a)] ada

sw equil.

for agq = asin (;_1;)

For a pressurized single cell of j = [m] cell sides the
equilibrium shape can be found equally. The cell's
geometry in a two dimensional space is determined by a
matrix of cell side lengths v with size [m] and a matrix of
rotational dofsu with sizek =[m—3]. To find the

equilibrium state for a given PACS the cell side lengths
provide the known and the rotational dofs or cell side
angles the unknown variables. Figure 5.2 shows the
notation of the variables for a single cell with the pressure
load p.

Figure 5: Principle of virtual work, applied to a rigid
cantilever and an n-edge cell

The cell side vectors are

(16) aj = [%x  %y], with |a;| = v;.
Assuming infinite stiffness for cell sides and flexible hinges
the force vector is computed with the unit vector e to

(17) F] = pU] I:”Zﬁ X eg] = p[a] X e3].

The local virtual displacement vector 6x is computed as a
function of the virtual displacement at the rotational

dof 8u;, and illustrated in Figure 6. It is determined as the
displacement at the center of each cell side due to the
displacement duy:

(18) 8xj, = g(w,u, Suy)

The function g() holds the trigonometric terms necessary
to describe a polygon with the parameters v and u which
can be found in the work of Pagitz et al. (Pagitz M. et al.,
Pressure-actuated cellular structures, 2012). With the
additional information about the virtual displacement 8u;,
at hinge k the displacement of the point of origin for the
resultant force vector Fj, 8x;  is calculated.

The vector quantity of the force parallel virtual
displacement is formed by the vertical projection of the
local displacement on the local force:

The first derivative of the potential energy can be

computed to

(20) I, = — Wi = =ik

Suk Suk

=—fi =0.

In order to solve this equation and find the equilibrium
shape of the cellular structure the Newton’s method with
quadratic convergence for this system provides a valuable
approach. This iterative solution is chosen because of its
flexibility with respect to an arbitrary number of cell sides
as well as to multiple cells:

)

(21) xp41 = xp (Newton’s method)

fxn)

Figure 6: Schematic description of the kinematical
correlations of an m-edged single cell used for the
approach of virtual work

The current state variable u,,, for the iteration stept + 1
results from the following equation:
i

(22) Uppq = Uy — aion = W K1

The second derivative of the potential energy is needed to
calculate the stiffness matrix K (cf. Eq. 23). The size of K
is[m—-3 x m—3].

T 0I1; 0l a1, 1
a_ul a_uz Oum—3
o on, o, o,
(23) K = Ju ou, Ou, U3
03 0llms 03
L Juq du, 0Uypy—3

The equilibrium state for an m-edged single cell is thus
found. Applied to a cellular structure of i =n cells these
equations keep their validity and can be superimposed to
describe more complex structures. Depending on the kind
of cell combination the number of independent state
variables alternates and thus the size of the stiffness
matrix does. For a double row PACS structure of iy = np
pentagonal and i, = ny hexagonal cells, which Pagitz et
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al. described in their publication, the number of
independent  variables  reduces  to [np(mp —3)] +
[ny(my —3 —2) + 1] = 2np + ny + 1 what is equal to 3np.
Figure 7 shall illuminate this assertion.

O coupled dof

Figure 7: Reduction of the number of independent state
variables due to geometrical coupling

@ dependent dof

& independent state variable

Similarly to the computation of the equilibrium for the
single cell, the derivative of the potential energy is built by

m
_ Wik _ Z]’=1 Fi,jsri,j,k
Sui_k '

(24) Il =

5ui'k

The stiffness matrix K for this example has the size [3np X
3np] and can still be deduced from the derivative of the
potential work after the state variable vector u:

[ oIy, 0I14 ﬂ'

a_ul le OUnmy, -3

FYii 617_12 617_12 —61'71,2

(25) K = P ouy ou, OUn,mp—3
ann,mn—3 ann,mn—3 aﬁn,mn—3
[ OJuy ou, OUn,my—3

3.3.2.

For the structural design of PACS as well as for the
appraisal of use-dependent practicability stress values
provide the necessary input. The computation of stresses
is also processed using the method of virtual work. Equal
to the virtual rotation du a virtual displacement §v of cell
side lengths causes the virtual work W. The quotient of
virtual work and virtual displacement yields to the force
value within the observed cell side:

Calculation of stresses

. __%__Z;lleSTj__ _
(26) 11; = svj sv; fi=0
Depending on the respective wall thickness t;, the cell
side stress for a PACS cell of depth 1 is
f .
@7) 0 =2
J

For all of the subsequent depictions showing structural
stresses a wall thickness of 1 is underlying.

3.3.3. External forces

Equally to the pressure induced forces external loads of
number n,, if present, are considered by calculating the
product of external force F,,, times the related virtual

displacement 87,

. SW; W,
— J ext\ __
(28) Ny = _(Su 5 ) -
k Uk
n
_ Z;'n=1 Fj‘srj,k‘*'zhilFext,hsrext,h,k -0
Suk -

3.3.4. Form Finding

The difference between finding the equilibrium state of a
given PACS structure and calculating the structure for a
desired shape variation lies in the set of known and
unknown variables. As visualized in Figure 8 the outer
shape of PACS can be defined by one angle per
pentagonal cell plus one additional angle for the connector
cell side of the last pentagonal cell. For a double row
cantilever with two attainable shape functions at the
pressure sets st; and st,, 2(n, + 1) known variables are
given. The vector of known variables is uy. The mixed
vector of unknown state variablesw whereas consists
ofn,—1 pentagon andn,+1 hexagon angles
summarized inu; and4n,+1 pentagonal and3n, +1
hexagonal cell side lengths v.

p,>0, p,=0 S

Figure 8: Known variables at pressure set pg;, for the form
finding approach

oo u=[le]: w=[]

The first derivative of the virtual work is again found
according to equation (24) as the equilibrium state still has
to fulfill equation (20). Thus the unknown variables add up
to 9n, this number is three times higher than the number
of equations from (20), 3n,,. Multiple solutions exist which
fulfill the demand of two shape states at the related
pressures. An algorithm that mathematically combines
unknown variables can thus be used to control the cells
shape in order to additionally handle manufacturing
requirements or external geometrical boundary conditions.

Pagitz et al. presented a method for the form finding of
PACS structures that is based on computing a sensitivity
matrix which relates the change of rotational dofs to the
change of cell side lengths (Pagitz M. et al., Pressure-
actuated cellular structures, 2012). The initial state of u, is
chosen to be identical with the manufacturing state. A
number of 2,000 to 20,000 iterations are necessary to find
the shape of an optimized structure with an accuracy of at
least 0.01° related to the target values (Pagitz M. et al.,
Compliant Pressure Actuated Cellular Structures, 2014).

A novel approach for solving the form finding problem for a
PACS structure reduces the required number of iterations
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significantly. In contrast to evaluating the deviation
between current and target cell angles after each iteration
step, the residual energy potential of the structure is used
to compute the increment for the change of cell side
lengths. This allows to additionally coupling the change of
unknown rotational dofsu; to the change of cell side
lengths v. For an initial state the target shapes st; and st,
are used. The stop criterion from the approach of
calculating a PACS structure’s equilibrium state is still
valid and leads to a maximum angular deviation towards
target geometry of 1.90e-7° for the example shown in
Figure 10. The target shapes are characterized by an
angular deflection of +5° per pentagonal cell. The related
pressure sets can be obtained from the respective
depiction.

Figure 9 shows the convergence behavior in dependency
of the hinge stiffness, which is introduced in the following
section. The number of iterations needed to fulfill the stop
criterion for the remaining virtual work is equal for
calculating the equilibrium state and for form finding
assuming infinitesimal hinge stiffness. As the change of
the manufacturing state of the structure and thus the
change of initial cell side angles are also coupled to the
change of cell side lengths, a non-zero hinge stiffness
does not substantially raise the necessary number of
iterations.
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Figure 9: Convergence curve for exemplary structure
extracted from the form finding procedure for infinitesimal
and finite hinge stiffness
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Similar to equation (22) the mixed vector of unknown state
variables w is computed by

(30) Wiy = We — W, — ns_l.

n —_
of/ow
where § is the sensitivity matrix which relates the change
of unknown variables to the virtual work and thereby to the

remaining energy potential. It is calculated at the
equilibrium state of u, where

sw

(31) H=_E=O,
by

32) §= 20 _om_
( ) T ouow  ow

[ 0111,5¢1 Ol yst1 Ollyst1 My 51 T
duq Ouyanp-1 vy v7ny,—1
Al s¢1 Oy 51 05 51 015 5¢1
dug,q Ouyanp-1 vy v7ny,-1
an3np,st1 3173np,st1 ‘9173np.st1 an3np,st1
ouq Ouyanp-1 vy 7,1
Al ,5¢2 Oy stz 0l ytso 0My 5¢2
uq g Ouyanp-1 vy 9v7ny, -1
O, st2 A5 5t2 05 5t2 05 5t2
Oug,q Ouyanp-1 vy 9v7ny, -1
an3np.5t2 OMzny,st2 Ollzny,t2 aanp,stZ
ouq Ouyanp-1 vy 0v7n,-1 |

The inverse of the sensitivity matrix is computed according
to the Moore-Penrose method. For the present case of a
non-quadratic matrix, this approach minimizes the 2-norm
of TS~ and leads to stable convergence behavior.

Compared to Figure 8 the structure depicted in Figure 10
shows three additional elements which came up to be
important during the work on the realization of a PACS
structure (Gramuller B. et al., 2014). Finite hinge stiffness
and eccentric hinge positions are described in the further
chapters. The connection concept at both ends of the
cantilever is needed for clamping a real life structure to its
test bench or to connect multiple PACS units. It is
developed together with M. Pagitz et al. (Pagitz M. et al., A
modular approach to adaptive structures, 2014).

0 50 100 150 200 250 300 350

100 -

I1)p,=0.1 MPa oy

s0F { e N2

-100 -

-150 -

N/mm?
Figure 10: Resulting structure from the form finding
procedure after nine iterations for E=2.0GPa

3.4. Variant 2: Finite hinge stiffness

In contrary to the previously shown approach the cells of
nastic plants do not dispose of discrete hinges of
infinitesimal stiffness. Though a man-made structure can
be built which most widely satisfies this assumption by
using pinned hinge joints, compliant mechanisms hold two
essential advantages. According to the functionality of a
plant cell a compliant PACS cell is pressure-sealed in
radial direction without any auxiliary structure. Beyond that
the integral design of a compliant PACS saves weight and
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substitutes the respective assembly process. Both for the
calculation of the pressure dependent shape of a given
PACS structure and for the form finding process, the
integration of a finite hinge stiffness in the numerical
model enhances the results. As this section extends the
already presented approach the equations of chapter 3.3
are still valid and necessary.

The equivalent stiffness for a compliant hinge joint can be
calculated by considering the hinge to be a beam with the
flexural stiffness EI. This beam of lengths; and
thickness t; (see Figure 11) holds the torsional stiffness c;
at the non-coupled (independent state variables and
dependent dofs, cf. Figure 7) hingel. The size ofc
is [9n,, + 1]. For a material of Young’s modulus E it results
in

3
(33) ¢ =2l =p

sy 125,

As depicted in Figure 10 conjugated eccentric hinges h1
and h2 are combined by:

1
1/cypi+1/cLnz’

(34) ¢, =

Variant 2

Figure 11: Compliant hinge element with wall thickness t
and length s

The formula for calculating the virtual work §W,, has to be
extended by the approach of torsional stiffness and
completed by the resulting distortion dependent
momentums. The updated virtual work is

1
(35) 6Wk = Z;n:1 FjST}"k + Z?:1ECl(Aut,15ul,k + Suf,k),

(36) with Aug; = ug; — up.

The angular deflection Au,,; at the iteration step t is equal
to the difference of the non-coupled angle u,, and the
manufactured hinge angle u, of the unloaded structure.

As ¢; depends on the structural design and is constant and
the varieties ofu; are already part of the existing
calculations, the computation time is not much affected by
this supplement. The approach of virtual work further
allows adding this sub-formula without huge changes in
the overall code.

3.5.

Without a novel approach for describing mechanical
element properties variant 3 provides a remedy for the
assumption of locally concentrated one-dimensional hinge
elements. In a real-life PACS structure the hinge length

Variant 3: Eccentric hinges

varies between five and twenty percent of the cell size. As
the center of a compliant hinge not always coincides with
the intersection point of linked cell sides, the dislocation of
the effective hinge positions can be on the same scale.
Figure 12 gives an example for unavoidable eccentricity of
hinge joints. Two possibilities for the design of compliant
hinges in the crossover point of three interconnected cell
sides are shown for a GFRP (glass fiber-reinforced plastic)
cell with the size of fifty millimeters. It can be obtained that
at this crossover an accumulation of material increases
bending stiffness. The effective hinge location migrates to
an eccentric position.

Figure 12: Eccentric compliant hinges at crossing points of
adjacent cells

Overriding the approximation of concentrated hinges
claims the implementation of eccentric hinge elements and
leads to a more precise modeling of the real structure.

In order to keep the number of additional unknown
variables small and considering computation time, the
eccentric hinge is modeled as rigid triangle with fixed side
lengths and only one rotational dof u;. In the context of the
approach of virtual work, a suitable way to describe this
triangle is depicted in Figure 13. The vector of
eccentricity {;; at cell i and hinge [ defines the geometry of
the element. Together with the angle u;, the initial state
for the eccentric hinge is defined.

Variant 3

Ci.H

0.0

Figure 13: Definition and notation of eccentric hinge
element

The vectoru which contains the state variables for
pentagonal and hexagonal cells has to be extended by
rotation angle u;. The number of independent variables
thus increases by 4n, —4 to 7n, — 4. The equations for
calculating the vector of virtual work, stiffness and
sensitivity matrices are still valid. The adaption of u
however leads to a new size of these arrays. The form
finding approach described in chapter 3.3.4 is also
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applicable for eccentric compliant hinges. Figure 10
depicts an exemplary double row PACS structure
calculated on the basis of variant 3.

3.6.

The benefit of the reduction of assumptions and a more
detailed modeling method shall be shown. Thereby the
available variants can be assessed having regard to the
computation complexity. The FEM tool Ansys is used to
calculate the deformations of a pressurized reference
PACS structure. As this model is built of three-dimensional
linear solid elements including axial and bending stiffness,
this FEM-based approach provides the most reliable data.
The outcomes are thereby used as a reference for the
resulting deformation data of the alternative methods.

Variant 5: FEM-based approach

The target structure is a double row cantilever designed to
suit a modular concept. It consists of six pentagonal and
five plus two hexagonal cells. The length of the cantilever
is 350mm. Two separate regions are defined for meshing
the structure. The cell sides elements are determined to
have an element size of 2mm, hinge regions are modeled
with a refined element size of 0.3mm — see Figure 14.

Figure 14: Visualization of the FEM model for the modular
double row cantilever

4. EVALUATION
41.

The deformation and stress results for a loaded cantilever
calculated according to variant 1 (cf. Table 1) are
compared with the publicized results from Pagitz et al.
(Pagitz M. et al., Pressure-actuated cellular structures,
2012). Despite the completely different analytical
formulations the results show good correspondence.
Figure 15 pictures the deformed cantilever including cell
side stresses for method of volume maximization (VM) -
left - and virtual work (VW) - right. Deviations of colors are
due to varying imaging procedures what is made clear in
following quantitative exposition.

Verification of variant 1

5 kN/m 250

200

150
pp=0.4 MPa

p=20MPa A/ 100

- Virtual Work -

Figure 15: Visual comparison of deformational and stress
results between the approach of volume maximization —
left - and virtual work — right

For this approach of virtual work a virtual rotation of 6u =
2e — 6is used. || < 1e — 5 is chosen as stop criterion for
the iteration.

Table 2 and Table 3 show the quantitative values for hinge
positions and cell side normal stresses for the rightmost
pentagonal cell of the depicted cantilever. The different
pressurization conditions are identified by st; and st,. The
numbering of hinge points and cell sides can be obtained
from Figure 15. The maximum relative deviation of 2.18e-5
for hinge coordinates and 1.12e-5 for stresses results. The
validity of the approach of virtual work is thus verified.

Table 2: Hinge coordinates at equilibrium state for volume
maximization - VM - and virtual work - VW

HingePos 28 29 30 31 32
Xst1,ym[mm] 634.7420 648.7360 706.0260 628.0109 677.3280
Xstyw[mm] 634.7526 648.7465 706.0382 628.0246 677.3419
Vsym[mm] 497.7787 496.9998 553.0957 597.5519 605.7876
Ystiyw[mm] 497.7714 496.9911 553.0862 597.5448 605.7789
Xsz,ym[mm] 884.3763 884.3378 937.0112 984.3722 989.0510
Xsto,yw[mm] 884.3754 884.3366 937.0098 984.3712 989.0498
Ystoym[mm] -157.5712 -207.5713 -236.3032 -156.6585 -206.4391
Ysoaw[mm] -157.5725 -207.5725 -236.3046 -156.6603 -206.4406

Table 3: Cell side stresses at equilibrium state for volume
maximization - VM - and virtual work - VW

CellSide 37 38 39 40 41
osiwiMPa] -29.4297 33.7915 192.5062 193.2165 17.8448
oqiww[MPa] -29.4297  33.7915 192.5066 193.2167 17.8446
Osewn[MPa]  42.7883 204.0862 133.5500 131.7476 98.2794
osoww[MPa]  42.7882 204.0865 133.5502 131.7478 98.2794
4.2. Comparison of differing modeling variants

Differences in accuracy of the three presented
implementations utilizing the method of virtual work are
illuminated in this exemplary comparison. The outcomes
summarize the presented work on the numerical
computation of PACS and assess the quality of the
obtained results according to the concomitant efforts. The
pressure set-up is chosen to cover both, a state of shape
near the geometrical convergence which requires high
pressures () and the case where the geometry is not
converged and sensitive to slight pressure changes (lI).
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The FEM data described in chapter 3.6 is used as
reference for calculating deviations. Table 4 comprises the
quantitative values for the rotational deformation at the
first cell side of the sixth pentagonal cell as well as the
percentage variance in relation to FEM data. An
improvement of accuracy from +37.14% to 9.47% for the
first pressure setting and from +85.88 to +0.59 for the
second one clearly confirms the benefit of increased
modeling complexity. Especially in low pressure regions,
which are characterized by a non-converged geometrical
deformation, the modeling methods including infinite hinge
stiffness provide superior results. This can be explained by
the stiffening of the overall structure and a decreasing
sensitivity against non-pressure induced forces with rising
cell pressures. The eccentricity of the hinge points directly
affects the energetic potential of the pressured cellular
structure. The significant impact on the accuracy of
computational results is quantified. Figure 16 visualizes
the outcomes.

Table 4: Rotational deformation at cell side one of the
sixth pentagonal cell for the three presented modeling
variants and deviations from FEM results

methods about this concept for its practicability and to
evaluate the calculation results. The design process and
manufacturing strategy of this prototype is part of a
previous publication (Gramdiller B. et al., 2014). In favor of
further examinations the physical implementation of a
double row demonstrator is in progress.

For the given PACS geometry built from the GFRP
material HexPly913 with a Young’s modulus of E =
42.0GPa an averaged hinge eccentricity of {;,, = 4mm,

the resulting hinge stiffness of ¢;, =10.938...27.344%

and the pressure p = 0.2MPa, numerical calculations are
processed. Table 5 contains the deformation results for
the first cell side of the sixth cell. A deviation of 1.013%
shows a good match between numerical - according to
variant 3 - and experimental data and confirms the
previous insights. The experimental value is measured
with an analogue protractor.

Table 5: Comparison of deformation results for the single
row cantilever at cell side one of cell six at p=0.2MPa

AﬁG,l,ecc [°] Aﬁé,l,exp [°] Necc,exp [%]

Variant 1 Variant 2 Variant 3 Variant 5

124.62 123 +1.01

Merp [1  35.04 29.80 27.97 25.55
Nvwrempr %] +37.14  +16.63  +9.47 -
MBsrpn [l 6.32 2.86 3.42 3.40
Nvxrempn [%] +85.88  -15.88 +0.59 -

=== Variant 1: Infinitesimal hinge stiffness
== Variant 2: Finite hinge stiffness
=== Variant 3: Eccentric hinges

'vl:/..

1) p,=0.05 MPa
p:=0.5 MPa

p,=0.1 MPa

Figure 16: Visualization of deformations from the four
types of numerical computation for two different pressure
set-ups

4.3.

The deformation results delivered by the most accurate
numerical non-FEM method, the eccentric hinge approach
are compared with the outcomes of the investigation of the
only existing real-life PACS structure. To simplify
manufacturing all of the cells are designed to have the
same dimensions. A GFRP single row cantilever
consisting of six cells of width 50mm and length 450mm
results that reaches an entire span of 300mm. The main
reasons for this demonstrator are to prove the theoretical

Validation by experimental investigations

10

The deformation results as well as normalized cell side
stresses for the cell side thickness of 1mm are depicted in
Figure 17. The related photographs of the prototype
demonstrator can be compared in Figure 18.

—_

0
G [N/mm?]

Figure 17: Results from simulation according to the
eccentric hinge approach for the single row cantilever
prototype at po=0MPa, p;=0.05MPa and p,=0.15MPa
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Figure 18: Demonstrator “Single Row Cantilever” at
p0=0MPa, p1=0.05MPa and p2=0.15MPa (Gramdiller B. et
al., 2014)
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5. DISCUSSION OF RESULTS

The method of virtual work provides an alternative solution
to the approach of volume maximization. Solving the
geometrical highly nonlinear problem of a pressurized
PACS structure can be used for both the computation of
equilibrium shape and for form finding. Three different
approaches with an increasing level of model accuracy are
presented and their results are compared with FEM-based
outcomes and experimentally achieved values. Two
substantial aspects about these results shall be discussed.

As it can be obtained from Figure 12 in a kinematical
structure where compliant mechanisms are used to realize
hinge joints, the determination of the position of effective
pivot points is not trivial. Depending on the hinge’s
geometry and loading this location shifts relatively to the
adjacent cell sides. Concerning the computation methods
of increased modeling details also the extraction of the
hinge stiffness and eccentricity of a given structure is not
trivial. Within a real PACS structure the gradual transition
between hinge and cell side elements complicates the
definition of the hinge stiffness according to equation (33)
and the related eccentricity {. Simulating the load
dependent deformation behavior of each compliant hinge
joint may provide relief and additional insight in this
relationship.

With the implementation of variant 3, the consideration of
eccentric hinges, some assumptions could be dropt but
others are still necessary. Beyond the theme of
concentrated hinges, the axial and bending stiffness of cell
sides as well as the axial stiffness of hinge elements is not
regarded. Further numerical approaches may profit from
the implementation of these open issues. Though the
presented methods yet show good accordance with FEM-
based computations and experimental investigations.

6. CONCLUSION

The most important demand on each shape variable
structure is defined by the imperative need for
improvement. Therefor the demands on the concept of
pressure actuated cellular structures are investigated. The
existing numerical theory about PACS is summarized and
confirmed by a novel approach using the method of virtual
work. Two advanced variants were presented extensively
which increase the level of detail within the numerical
model by first dropping the assumptions of infinitesimal
hinge stiffness and subsequently of centric hinges. In
comparison to a FEM calculation the different modeling
variants achieved varying degrees of accordance for the
two calculated states of internal pressure. With a deviation
of 9.47% and 0.59% in angular deflection for different
pressures the numerical approach using eccentric hinges
provides the most accurate results. Thereby it is approved
that the increased modeling and computational effort
enhances the quality of the results.

A single row PACS prototype consisting of six equally
shaped pentagonal cells is used to demonstrate the
functionality of the concept and to validate the computed
data. The compliance regarding the accuracy of
deformational results between eccentric hinge model and
experimentally measured values lies at about 1% for this
investigation.
The discussion shows that additional

of results
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investigations on the compliant hinge elements which
allow deriving accurate descriptive parameters would
improve the numerical model. An increase in the level of
detail through dropping further modeling assumptions
would also have a positive effect. This can be reached by
the consideration of axial stiffness for hinge and cell side
elements as well as by the implementation of bending
stiffness for the cell sides.
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