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Abstract
This work presents a novel holistic framework for Distributed Integrated Modular Avionics (DIMA) architec-
ture design and optimization. IMA is a standardization of avionics components. IMA is beneficial in weight
and costs if the complexity of sizing, function allocation, and topology selection is mastered. A holistic
framework enables model and algorithm-aided design of avionics architectures. Domain specific modeling of
systems software, hardware, and aircraft anatomy enables automated verification and early evaluation of
architectures. Moreover, the model is the foundation for a flexible kit of eight optimization routines. For de-
sign issues in which humans likely lose the overview optimization routines are proposed. Automation ranges
from function mapping over routing to a complete architecture generation. Routines for platform selection,
network, and topology optimization are unique and unrivaled today. All optimization problems are solved
globally optimal and a multi-objective solving algorithm calculates the best trade-off architectures for contra-
dicting objectives, the Pareto optimum. All optimization routines are extensively tested by designing the op-
timal DIMA architecture for aircraft system functions in an A320-like scenario. Results show significant opti-
mization potential of generated architectures compared to a manually designed one. The resulting architec-

tures are analyzed and compared in performance and structure in detail.

1. INTRODUCTION

Integrated Modular Avionics (IMA) are state-of-the art for
avionics systems of recent aircraft. An IMA system con-
sists of standardized hardware for computing and 1/O, as
well as a common high-bandwidth network. The resources
of the hardware are shared in a safe manner between
hosted aircraft system functions, i.e. IMA is a single avion-
ics system for multiple avionics functions. Its purpose is
defined by function allocation and configuration [1]. The
shared utilization of fewer devices and fewer device types
make IMA systems superior in weight and costs compared
to traditional avionics systems [2]. The second generations
of IMA platforms, so called Distributed IMA (DIMA), in-
crease the saving potential by a separation of computing
and 1/0 and by spatially distributed IMA device installa-
tions [3].

The main challenge in developing DIMA avionics sys-
tems, called DIMA architectures, is the complexity result-
ing from shared resources and spatial distribution [4, 5].
Currently CPUs, memory, and I/O are shared by approxi-
mately 1000 individual functions and peripheral compo-
nents such as sensors and actuators. Current architec-
tures comprise round about 50 DIMA modules, and up to
1000 installation locations exist for modules and periph-
erals. Bringing systems, hardware, and anatomy together,
as visualized in FIG 1, is the main design challenge in
planning DIMA systems. Moreover, since the number of
hosted functions and capabilities of electronic devices
rises continuously [6], the number of possible architecture
variants explodes. Moreover, systems have safety and
performance requirements and the importance of complex
contradicting economic design objectives rises. Today
DIMA architectures have reached a number of objects,
relations, requirements, and objectives that make engi-
neers struggle with finding a valid and, especially, with
finding the optimal architecture. A straight and target ori-

ented systems engineering, alias systems architecting [7],
is hardly possible by hand. The manual design process is
an iterative trial and error procedure. At the end of the
design process the correctness of the architecture is as-
sured, but the optimality is unknown. This situation could
be improved by computer-aided design methods.
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FIG 1: The main design challenge of modern avionics

Computer-aided design of IMA architectures is an active
research area. Research is mainly divided in modeling,
function allocation, and signal routing. Approaches for
modeling IMA architectures with the goal of simulation and
verification can be found in [8], [9], [10], [11], and [12].
Most often these approaches are based on AADL [13] or
SysML [14]. Both seem not rigid and complete enough for
holistic algorithmic aid. The optimal distribution of func-
tions is a traditional challenge in computer science. Ap-
proaches for IMA can be found in [15], [16], [17], [18], and
[19]. These approaches range from function distribution to
redundancy allocation. The relations of different automa-
tions are commonly not considered. Moreover, the size for
which methods are demonstrated is typically only around
20 functions. The last major topic is the assignment of
signals to a common bus system. This is most commonly
done for AFDX as for instance in [20], [21], [22], [23], and
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[24]. The relation between function allocation and network
allocation is not considered, and the demonstration
scopes are again small.

The framework presented supports the DIMA design pro-
cess with model-based engineering and mathematical
optimization. Therefore, it presents a novel domain spe-
cific model especially for planning avionics architectures.
In addition, methods for architecture optimization from the
different domains are stream-lined, and based on a math-
ematical foundation that allows global optimal and multi-
objective optimization. Moreover, completely novel ap-
proaches for device sizing, topology generation, and com-
plete architecture generation are presented. Most im-
portant, model and optimization are integrated in a seam-
less flexible framework.

This paper is structured as follows.

Chapter 2 presents a domain specific model for DIMA
architectures and requirements that allows a formal and
rigid representation of architecture data. The model covers
systems, hardware, anatomy, and mapping.

In Chapter 3 a holistic set of optimization routines for
DIMA design issues is presented. A general description of
the routines, as well as the fundamental mathematical
solution approach is given.

Chapter 4 demonstrates modeling and optimization. Four
aircraft systems from the air-domain are modeled and
optimization routines are extensively applied. Resulting
improvements and architectures are analyzed.

The paper ends with a discussion and conclusion in chap-
ter 5 and chapter 6.

2. AVIONICS ARCHITECTURE MODEL

The baseline of the avionics architecting framework is a
domain specific model especially designed for planning
avionics architectures. Planning DIMA architectures is a
highly concurrent process [1]. The actual architecture is
developed by the avionics design engineer. The planning,
however, strongly depends on the functions to be hosted,
the peripherals to be connected, the available hardware,
and the aircraft anatomy. Functions, DIMA hardware, and
aircraft anatomy are developed in parallel. It is, therefore,
of major importance to decouple the system, hardware,
and structure domain as good as possible. Nevertheless,
one of the main challenges is to bring software, hardware,
and anatomy together optimally. Moreover, in the early
design stages requirements can quickly be changed and
several architecture variants must be compared. Besides
avionics architectures, therefore, the system requirements
that are driving for an architecture must be represented.
The modeling of those requirements must be rigid enough
to enable automatic verifications. Moreover, the attributes
shall be modeled that allow early evaluations of architec-
tures and variants in respect to mass or costs.

The model developed is a static model of systems, hard-
ware, and installations. Static means a time invariant rep-
resentation of functions, signals, and resource sharing.
The top level structure of the model is depicted in FIG 2.
The main three layers are systems, hardware, and in-
stallation. Those are almost independent. However, all
three layers are built upon the same components from a
definitions layer, e.g. resource or device types. The opera-
tional avionics architecture is composed in a mapping
layer. It integrates elements from systems, hardware, and

software models. Several different mappings might exist.
Therewith high reuse of model elements and an easy
comparison of architecture variants are enabled. A sce-
nario layer includes parameters for evaluation.

The concept and content of the systems, hardware, instal-
lation, and mapping layer, is described in detail in the
following.

Definitions

~TT

Systems Hardware

Installation

Mapping Scenario

FIG 2: Class diagram of the main layers of the avionics
architectures model

21.

The main driver for an avionics architecture are the aircraft
systems to be hosted. When considering DIMA, the main
components of systems are software functions, sensors,
and actuators. In addition, functions and peripherals ex-
change data. The system functions, I/Os to connect pe-
ripherals, and the communication backbone must be pro-
vided by DIMA hardware. Therefore, systems are modeled
as a set of tasks that exchange signals. An example is
given in FIG 3.

Systems
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Cabin Pressure

e Signal
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S Peripheral
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Valve effector Valve effector

FIG 3: Model example for a system

Both tasks and signals specify required resources. A re-
source is a countable quantity that has to be provided by
the hosting hardware. The task or signal specifies how
much of a certain resource type is consumed upon host-
ing. Examples for resources are CPU power in MIPS,
memory in MB, bandwidth in Mbps, the number of analog
interfaces, or the number of CAN busses. This simple
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resource model allows a major verification. After systems
are assigned to hardware, the resources on none of the
devices must be exceeded. However, resources are not
sufficient to express operational, safety, and performance
needs of systems. Therefore, eight general additional
constraints have been identified sufficient to characterize
all function needs.

e Peripheral constraints connect functions to pe-
ripherals. During mapping it must be ensured that
the function requiring the peripheral is physically
connected to the peripheral. This requires an 1/0
interface, as well as wiring. The latter induces
weight and cost.

e Device constraints limit the possible mapping of
a function to a set of devices. Alternatively, a set
of devices can be excluded for the function, alt-
hough resources might be available.

¢ Installation locations constraints. Prohibit or
force certain locations for functions, i.e. the de-
vice hosting the function must or must not be in
one of the specified locations. For instance the
rotor burst area can be excluded for a function.

e Power supply constraints specify the power
supply that a device must, or must not have if a
function is mapped on the device. For instance
safety critical functions may only be mapped on
devices connected to the emergency power bus.

e Segregation constraints prohibit two or more
functions on the same hardware. This is a very
common constraint for redundant lanes of a sys-
tem.

e Location segregation constraints prohibit not
only the same device, but also all devices in the
same location for the mapping of two functions.
This incorporates spatial safety considerations.

o Dissimilarity constraints are applied to func-
tions that for redundancy reasons must be
mapped to different device types.

e Latency constraints can be applied to a series
of functions and signals that form a time-critical
path. It is assumed that this chain is executed pe-
riodically, and that each execution must be faster
than the specified maximum execution time when
mapped to hardware. Therefore, the execution
and transmission times for signals and tasks on
different hardware types must be known in terms
of Worst-Case-Execution-Time (WCET).

2.2. Hardware

The execution platform for system functions is the DIMA
hardware. This is modeled in the hardware layer. Hard-
ware is basically expressed by general devices and links.
It is independent of a certain technology. Each device is
an instance of a device type. Device types are stored in
the definitions layer. The device type specifies physical
characteristics such as weight, dimensions, or reliability.
Moreover, the device type specifies the resources availa-
ble for task hosting. Basically, the number and type of
available resources is specified. Since resource provision
can be ambiguous the resource model is extended by
capabilities. For instance for I/Os with lightning protection
or current levels a minimum requirement exist, but all 1/0s

with higher levels might be used as alternatives. A capabil-
ity defines for a device type, which task can be mapped
under which precise resource consumption. There can be
multiple capabilities for the same type with different re-
source consumptions on the same device type. Links are
point-to-point communications between devices. Links
provide resources and capabilities like devices. If the
communication is a switched network or a bus, the switch
or bus is represented by an additional device. An example
of Core Processing Modules (CPM), Remote Data Con-
centrators (RDC), and an AFDX network is given in FIG 4.
It shows the resources available on the device and link
types, as well as the resources consumed if mapping a
Controller, Monitor, Pressure or Valve task; or a Float or
Boolean signals.
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FIG 4: Resource sharing and capabilities model
2.3.

The aircraft structure or anatomy is the container for avi-
onics. Installation space and infrastructure like fixation,
cooling, and power are required. The available installation
structure is modeled in the installation layer. Rooms for
devices are installation locations. Locations provide
infrastructure resources like A600 slots, volume or cooling
capacity. Device types define the numbers of resources
required. In a valid architecture the resources of locations
shall not be exceeded by the infrastructure resources
required by the installed devices. Links and peripheral
wires can be inside a location. Connections between in-
stallation locations are modeled with cable routes and
joints. A cable route is a point-to-point connection with a
fixed length. Cable routes may be split and merged at
cable route joints. Routes and joints form a topology of
the installation anatomy. The lengths of cable routes can
be correlated to 3D coordinates, but this is not necessary.
An example of three installation locations, their infrastruc-
ture resources, and connections is depicted in FIG 5.

Installation
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FIG 5: Modeling elements of the installation layer
2.4. Mapping

The avionics architecture is only operational if tasks are
mapped to devices, signals to links, devices to locations,
and links to cable routes. This is modeled in the mapping
layer. One mapping references one systems layer, one
hardware layer, and one installation layer. For each ele-
ment of the referenced layers a mapping object in the
mapping layer exists. For instance devices are represent-
ed by device assignments and tasks by task assign-
ments. These assignment objects are arranged hierar-
chical, i.e. a task assignment is a child of a device as-
signment which is a child of a location assignment. Sig-
nal and wiring assignments are split in several segments
along their route. Each segment is assigned to a link,
device, or cable route. With this hierarchy the mapping
directly presents the realization of a certain architecture.
All verifications and evaluations are carried out on a map-
ping. Moreover, the same system, hardware, and installa-
tion elements can be referenced in multiple other map-
pings to express alternatives. In addition, changes in the
systems, hardware, and installation layers will directly
propagate to all referencing mappings.

2.5.

The model described above is implemented in the Avion-
ics Architect (AA) of SYSTAR Innovation' . The Avionics
Architect (s. FIG 6) is a planning environment for avionics
architectures. It supports modeling, verification, evalua-
tion, and comparison as described above. It is an Eclipse-
based implementation, using the formal data modeling
language ECORE for the architecture domain model. The
model is extended with a flexible verification and evalua-
tion framework. Both verification and evaluation can be
extended by arbitrary custom rules and objectives. Rules
and objectives are evaluated on-the-fly during modeling.
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FIG 6: Avionics Architect of SYSTAR Innovation

" TuTech SYSTAR Innovation GmbH is a Spin-off of the Hamburg
University of Technology

Modeling is carried out in a hierarchical editor or in special
2D views for different aspects. 2D editors exist for defini-
tions, systems, hardware, installation, and mapping. Edi-
tors and views provide seamless interface to optimization
routines, which are described in the following.

3. OPTIMIZATION ROUTINES

During the design of avionics architectures several design
issues appear, where the human can likely lose the over-
view. This are all assignment issues where the number of
elements to assign or the number of targets, or the num-
ber of cross relations is large, e.g. the assignment of all
tasks to DIMA modules. For this the resources and con-
straints of approximately 1000 tasks must be considered.
A mapping can be derived and verified manually. If this
mapping is, however, optimal especially in respect to
complex objectives as maintenance costs is often un-
known. Moreover, design engineers face contradicting
design objectives, where the best trade-off must be found.
To speeding up assignment issues and to get improved
and verified architectures is envisioned by optimization,
design automation, and architecture auto-completion.

Eight optimization routines as depicted in FIG 7 were
developed. The routines are organized in three levels of
automation. Routines of the first level are single assign-
ments as known from distributed systems research, e.g.
task assignment or signal routing. They depend on each
other. For instance task assignment depends on device
assignment and vice versa. Level two routines are com-
bined device type or network optimizations, which lever-
age some level one dependency. The full potential for
optimization has level three with combined device and
network optimization. All routines can be applied to a
single objective or calculate the multi-objective optimum in
terms of the Pareto optimum. In practice the routines
which match the process and available data best are se-
lected. In addition, the scope can be chosen from single
system optimization to full or even multiple aircraft optimi-
zations. Each single routine is explained in the following.
This is, however, only a top-level summery. For details on
mathematics see [25], [26], [27], [28], and [29].

1-level assignment 2-level assignment

Device type optimization

3-level assignment

‘ Device assignment

‘ Task assignment

Topology optimization

‘ Peripheral wire assignment|

X ‘ Link assignment !

N Network optimization

1
Signal assignment | !
1

Level of automation

FIG 7: Comprehensive set of eight architecture optimiza-
tion routines

e Device assignment finds the optimal installation
locations for a set of devices in a given anatomy.
The devices are already assigned with functions.
Optimized is, for instance, the minimum mass for
peripheral wirings.

o Task assignment maps a set of tasks to devices
installed in an anatomy. The mapping considers
all resource and segregation constraints. Task
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assignment can, for instance, minimize the de-
vice mass by using less devices or the peripheral
wiring mass.

e Peripheral wire assignment assumes an archi-
tecture with tasks and peripheral already as-
signed to locations. It finds the optimal, e.g.
shortest, routes for peripheral wires. If the related
tasks need to be segregated routes are also seg-
regated.

e Link assignment finds the cable routes for links
from the hardware layer if devices are already
assigned. If signals are assigned to links also
spatial segregations are respected.

e Signal assignment calculates the optimal routes
for signals if tasks, devices, and links are already
assigned. While respecting bandwidth limitations
and segregations, signal assignment, can, for in-
stance, minimize the number of necessary links
and switches.

e Device type optimization derives the optimal
number of devices, the allocation of tasks and the
device sizings in parallel. Its inputs are a set of
device types, system tasks, and the anatomy.
The resources per device types are not specified,
but the possible types and an upper limit is given.
According the infrastructure resources the algo-
rithm decides how many instances of which de-
vice type are used in which location and how
tasks are distributed. The objectives can be de-
vice and wiring mass, but also costs.

e Network optimization finds the optimal number
of links and switches for a given set of signals
and the locations of devices and tasks. An addi-
tional input is the number of ports per switch. The
results are switch and link instances placed in in-
stallation locations. Moreover, all signals are
routed while resource and segregation con-
straints are hold.

e Topology optimization combines device type
and network optimization. Since the only inputs
are tasks, signals, device types, and the anato-
my, it is almost complete architecture generation.
It finds the optimal number of devices and net-
work topology, while considering the trade-off be-
tween device and network weight or costs.

3.1.

The eight optimization routines presented above are
solved with the same mathematical foundation. All optimi-
zation routines are combinatorial optimization problems. A
well-known mathematical representation and the most
advanced global optimal solving algorithms are used. All
problems are expressed as binary programs (BP) and are
solved with the Branch-and-Cut approach. The difficulties
are finding a suitable BP formulation for each DIMA design
problem and making the right simplifications such that also
architectures above 100 elements can be optimized.

Algorithms and Solving

The general form of a binary program (BP) is to find a
binary solution vector x such that

frx

is minimized subject to

Ax<b
A€9x = pe1
x € {0,1}".

x encodes - depending on the optimization routine - either
task assignment possibilities, signal routes, or topologies
and so on. See the mentioned publications for details. The
cost vector f allows quasi-linear objectives. “Quasi”
means that by introducing auxiliary variables also certain
non-liniearities can be considered. The objectives section
in the next chapter gives examples of what kind of objec-
tives can be expressed. Linear inequalities A and equali-
ties A°? express consistency, resource, segregation, or
uniqueness constraints. The most advanced global opti-
mal approach to solve BPs are Mixed-Integer-Linear-
Program (MILP) solvers based on Branch-and-Cut. Alter-
natively, Boolean Satisfiability (SAT) solvers might be
used.

If considering multiple at least partially contradicting objec-
tives a multi-objective extension must be made. Instead
of calculating a single optimum, it is proposed to calculate
the set of Pareto-optimal solutions. As depicted in FIG 8
Pareto optimal solutions are the best trade-off solutions for
the given objectives, i.e. those candidates from which the
design engineer would chose his final favorite. Formally
speaking, Pareto optimal or efficient solutions are not
dominated. Domination means there is no architecture
more optimal in all objectives.
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FIG 8: Pareto optimum for two minimum objectives

The presented combinatorial optimization approach is
extended for an arbitrary number of linear cost functions
by surrounding it with an adapted version of the Pareto-
Front-Sampling (PFS) algorithm from [30]. As depicted in
FIG 9 PFS is an iterative algorithm. In each iteration a
single objective BP is solved. The solution is one point of
the Pareto optimum. Between iterations variable artificial
bounds on the objectives are applied, such that the
boundary of the solution space is sample point by point.
Although multi-objective optimization with PFS needs as
much iterations as Pareto optima exists, it enables to stay
with the most efficient global combinatorial solvers at the
lowest level. Solving can be speed up by artificially in-
crease the minimum stepping between two solutions.
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FIG 9: Pareto-Front-Sampling example
3.2,

The eight optimization routines are efficiently implemented
in the Avionics Architecting Toolbox (AAT), an add-on
for the Avionics Architect. The AAT is integrated seam-
lessly into the AA. By right-clicking on model objects opti-
mizations for the selection can be started. AAT is based
on MATLAB. Information for optimization is retrieved by
reading the domain specific model of the AA. From the
model all relevant information for the selected optimization
is retrieved and converted into the matrix representation of
the BP. In addition, pre-calculations are carried out. Matri-
ces are provided either to off-the-shelf MILP solvers or a
PFS implementation. Multi-objective optimization is op-
tionally supported by a live feedback as shown in FIG 10.
The interface to MILP solvers is generic. Implemented are,
for instance, CPLEX or GUROBI connectors. After optimi-
zation the results are automatically converted to model
elements and stored in the architecture model. Within the
AA optimized architectures can be viewed, evaluated and
edited. Moreover, differences to the previous architecture
are automatically visualized.

<> avienics
:—.8{¥ “architecting toolbox

Avionics Architecting Toolbox

FIG 10: Multi-objective Ul of the Avionics Architecting
Toolbox

4. OPTIMIZATION STUDIE

Modeling and optimization is demonstrated using an
A320-like scenario. The task is to find optimal DIMA archi-
tectures for four aircraft systems from the air domain.
Each of the optimization routines is applied and the results
are compared with a manual design.

41.

The objectives considered are mass, ship-set-costs, oper-
ational interruption costs and initial provisioning costs.

Objectives

Mass is the cumulative mass of all DIMA devices, periph-
eral wires, and the network.

Ship-set-cost (SSC) are the costs for all devices and
wires. SSC can also include credit, installation, and fixa-
tion costs. It is similar to mass. The major difference is that
the gap between device costs and wiring costs is bigger
that for mass.

Operational interruption costs (OIC) are costs spend by
the airline per anno for flight delays or cancelation caused
by the avionics system. It depends on the mean-time-
between-failure (MTBF) of devices, the MEL-level of the
failed functions, as well as the accessibility of the location.
The MEL level is defined roughly as

*  NOGO for no costs,
*  GOIF for low countermeasure costs, and
* NOGO for high repair costs.

Moreover, airline parameters as spare part availability,
fleet size, usage, and prices are considered.

Initial provisioning costs (IPC) must be spent for spare
parts before an airline can operate a new aircraft type. IPC
depend on the MTBF, the MEL-level, and the individual
device costs.

4.2.

For demonstration the tasks of the four aircraft systems, a
ventilation control (VCS), a bleed-air (BAS), a pneumatic
(PS), and an overheat detection system (OHDS) are mod-
eled as shown in FIG 11. Each system is composed of two
redundant controller task (C) and peripheral tasks (1-9).
The tasks of two redundancies must be segregated and
OHDS and PS must be dissimilar. In total 58 task and 54
signals needs to be mapped. The MEL-level of the VCS
and OHDS is NOGO. The BAS has GOIF and the PS is a
GO system. MEL-level and segregation is inherited to
signals.

Scenario

_________________________

OHDS 1

OHDS 2
Overheat detection system (OHDS )

--- Segregated - Dissimilar hardware

FIG 11: Systems and signals to be mapped

The anatomy and the position of system peripherals are
given in FIG 12. The dimensions are similar to an A320-
200. For DIMA devices on actively cooled avionics bay
and six remote locations in the nose, middle, and tail exist.
Cable routes connect locations and peripheral positions.
For each installation location the access time for repair is
known.

The avionics hardware shall be selected from a platform
similar to the A350. Core Computing Modules (CPM) can
host up to three controller tasks and need active cooling.
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Remote Data Concentrators (RDC) connect peripherals to
the AFDX network and can be installed in any installation
location. Owing to the dissimilarity constraint two types of
RDC and CPM are needed. Each device is assigned with
a mass, cost, MTBF, and resource limit reasonable for the
selected aircraft systems. For hosting the systems ten 1/O
types are needed. For each I/O type the space require-
ments in the device, as well as potential bundle sizes are
known. The network shall be composed of AFDX switches
with five ports and AFDX links.

1 NOSE-RIGHT (5 min)
2 NOSE-LEFT (5 min)

3 AVIONICS-BAY (5 min)
4 MID-RIGHT (45 min)

5 MID-LEFT (45 min)

6 TAIL-RIGHT (45 min)
7 TAIL-LEFT (45 min)

w gg

40m

FIG 12: Installation locations and cable routes for the
optimization studies

As a reference a task mapping (s. FIG 13) and network
topology (s. FIG 14) was derived manually in all con-
science. The architecture is a left-right symmetric utiliza-
tion of four CPMs and ten RDCs. The design drivers were
short peripheral wires to RDCs and segregation. Wire
mass and SSC should be minimal. OIC and IPC could not
be optimized manually. The network topology requires
eight switches and four redundant routes. In summary the
manual architecture evaluates to 35.6 kg in mass, 203 k$
SSC, 2451 $/a OIC and 768 $/aircraft IPC.
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FIG 13: Manual task mapping
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FIG 14: Manually derived network topology

43.

In total six optimizations were carried out. The resulting six
Pareto frontiers include 32 valid architectures. For all ar-
chitectures the four objectives were calculated. FIG 15
compares the optimization results and the manual design
(M) in four quadrants. It is visible that 80% of the solutions
dominate the manual design. It can be stated that the
higher the automation level, the higher the improvement.
The maximum decrease is 11.3 kg (30%) in mass, 73 k$
(36%) in SSC, 1850 $/a (75%) in OIC, and 415 $/aircraft
(54%) in IPC. All minima are achieved for topology optimi-
zation. The minima cannot be achieved in the same solu-
tion. Mass and OIC are clearly contradicting, while Mass
and SSC, as well as OIC and IPC share some minima.
Moreover, the trade-off space is not linear, but shows a
big decrease of OIC and IPC for small mass/SSC increase
with some knee-points in all device optimizations. Optimi-
zations including the network show a more equal distribu-
tion between mass/SSC and OIC/IPC. The runtimes for
optimization ranged from the below one minute for signal
and device assignment to 10 and 45 minutes for task and
device type optimization up to 4 and 48 hours for network
and topology optimization on a 3 GHz desktop computer.
For the latter only four points of the Pareto optimum could
be determined. Runtimes, therefore, strongly correlate
with the achieved improvements.

Results
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FIG 15: Pareto optimal architectures for all optimization
routines

For a better understanding three extreme solutions (1-3)
are analyzed in detail. In the following the architectures for
the OIC-optimal task assignment, the lightest device type
optimization and the mass-optimal topology optimization
are given.

The architecture with the lowest OIC in the Pareto opti-
mum of task assignment is depicted in FIG 16. Com-
pared to the manual solution one RDC has been removed
lowering the OIC. In addition, tasks with high MEL-levels
are grouped on two nose and two middle RDC. This cre-
ates two additional GO RDC with no OIC. Because the
removal of one device and the smart shifting of tasks also
mass and SSC are lower than in the manual mapping,
although the resources per device type are the same than
in the manual design.
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FIG 16: Solution 1 — Task assignment with minimum OIC

A big decrease in device weight is made by device type
optimization. FIG 17 shows the Pareto optimal solution
with the lowest mass and SSC. Obviously the decrease is
made by having only six RDCs compared to the ten in the
manual design. By resizing the number and types of re-
sources per device type it is possible to increase the us-
age rate of RDCs from 75% to 95%. The increase in cable
weight is more than compensated. Interestingly no CPMs
can be removed because segregations are the dominating
driver. By removing four RDCs also OIC and IPC are de-
creased.
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FIG 17: Solution 2 — Device Type optimization minimum
mass

From topology optimization only the four extreme solu-
tions could be determined because of extremely high
runtime. FIG 18 and FIG 19 show the mapping and net-
work topology of the solutions with the overall lowest
mass. The decrease of additional 12 kg in mass shows the
major influence of network mass and the correlation of
task placement and network links. Looking at the mapping
in FIG 18 it shows that the same number of device is used
as in device type optimization. The device positions and
the task allocation is, however, slightly different. Most
important, one RDC is moved from the tail to the middle.
This saves long links and makes it lucrative to only have
four switches in the avionics bay instead of eight in the
manual design. Although the mapping and network is
asymmetric, the assignment of systems is left-right sym-
metric. This was not the case for device type optimization
and task assignment. Left-right symmetry seems benefi-
cial when targeting smaller networks, which is reasonable
since it eases signal segregation.
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FIG 18: Solution 3 — Topology optimization minimum mass
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FIG 19: Solution 3 — Topology optimization minimum mass
5. DISCUSSION

Analyzing the results from the optimization studies, it can
be stated that the scenario bears high optimization poten-
tials in all objectives, which were not visible manually. It
shows that these improvements are especially high if
complex and non-traditional objectives as OIC and IPC
are considered. Moreover, architectures looking asymmet-
ric or odd on the first glimpse might be optimal, but would
never be chosen manually. The assumption that DIMA
design issues are dependent and that higher automation
level increases the room for improvements is proven. The
runtime was acceptable for level one and level two rou-
tines. For topology optimization this small excerpt of a
complete aircraft hits already the computational feasibility
limit. The latter can be weakened by restricting the solu-
tions space. See [29] for a success-full optimization of an
A380-like network. However, it is visible that for bigger
architectures such complete and unbounded optimization
studies are maybe not feasible. Therefore, the framework
especially optimization cannot be a replacement for the
design engineer, but a valuable helper and sparring part-
ner. In this tandem the proposed method works also on
aircraft level sized architectures. Not only can it help to
discover improved architectures, but it shows up new
architecture variants and insights into objective relations.
Moreover, the global optimal approach enables formal
justification of architectures even if found manually. The
flexibility in scope, objectives, and level of automation
allows an adaptation of optimization to architecture sizes
and specific designer’s needs. This requires, however, an
understanding of the designer of optimization routines.
This, in addition, increases the trust in solutions.
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6. CONCLUSION

In avionics systems based on the DIMA concept standard-
ized avionics modules and network are shared by safety
critical system functions. Current architectures host ap-
proximately 1000 functions, which cause non-optimal
manual selections, sizings, and allocations of DIMA archi-
tectures. To support design engineers a model and algo-
rithm-aided systems architecting framework for avion-
ics architectures is proposed. The framework comprises a
domain specific model and optimization routines, both
seamlessly integrated. An architecture model especially
for planning enables the independent modeling of sys-
tems, hardware, and anatomy, which can be combined to
multiple architecture variants. Information is rigid enough
for early verification, evaluation and optimization. A set of
eight flexible optimization routines is presented, that au-
tomates design tasks ranging from function allocation,
module selection, and network definition to complete to-
pology generation. The latter are unique in the IMA scope.
Routines can be chosen from three automation levels, and
are free in their input scope and objectives. The stable and
efficient foundations for solving the optimization problems
are Binary programs and best-effort MILP-solvers. Moreo-
ver, a multi-objective solver extension is provided, that
retrieves Pareto optimal architecture sets. Model and
optimization are implemented in the Avionics Architect
and its Toolbox. The applications of six of the optimiza-
tion routines to an A320-like example of four aircraft sys-
tems reveals optimization potentials up to 75% compared
to manual design. It showed up the best possible trade-
offs for mass, SSC, OIC, and IPC. Moreover, the resulting
architectures showed how mass or cost improvements
affect the architecture. Overall, the optimization potential
increases with the automation level, but solving time fol-
lows. However, if the solution space is manually bounded
and objectives are wisely chosen, optimizations can be
applied on full-scaled avionics architectures, leading to
results, insights, and design justifications, hardly achieved
manually.
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