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Abstract

Performing a Direct Numerical Simulation (DNS), a mesh study for the transonic flow around the well known
NACA 0012 airfoil at a moderate Reynolds number of Rec = 5 ·105 is presented. The three-dimensional Navier-
Stokes equations for an unsteady, compressible flow are discretized in a generalized curvilinear coordinate
system. The spatial derivatives of first-order are approximated by a fifth-order WENO scheme, the second-order
derivatives by a sixth-order central scheme and the time derivatives by a fourth-order Runge-Kutta scheme.
The focus of the investigation is on the demonstration of the applicability of DNS for simulating an airfoil flow
at a moderate Reynolds number. At this Reynolds number, theoretical estimations for the necessary number
of mesh points are far away from realizable mesh sizes. In the present study five three-dimensional meshes are
compared where the largest mesh consists of one billion mesh points (8192 x 512 x 256). This mesh size is close
to the practical limit of recent simulations since the numerical effort, expressed in core-hours, is 16 · 106 h.
The other meshes are gradually coarsened by a factor of 0.25 resulting in only four million mesh points for the
coarsest mesh. The mesh study is performed by the comparison of aerodynamical and turbulent quantities. On
the one hand the main flow features are studied, which are mostly determined by large flow scales. On the other
hand the turbulent intensities are compared, which are influenced by the smallest scales. In this context, the
analysis of the energy-spectrum of the turbulent kinetic energy is a useful tool to evaluate the quality of the
turbulent boundary layer. Furthermore, pressure waves are studied for all meshes which are generated at the
trailing-edge moving upstream.

1 INTRODUCTION

Direct Numerical Simulations (DNS) of the transonic
flow around the well known NACA 0012 airfoil at a
moderate Reynolds number of Rec = 5 · 105 based on
the chord length c are performed for five meshes. The
focus of the investigation is the study of the applicabi-
lity of DNS for simulating a wall bounded airfoil flow
at a moderate Reynolds number. Wall bounded flow
means that the turbulent structures appear only near
the wall of the airfoil and its wake and not in all regi-
ons of the mesh, resulting in the possibility to coarsen
the mesh.

In contrast to other numerical methods that use stan-
dard turbulence or subgrid-scale models, in a DNS, the
smallest scales of turbulences have to be resolved sin-
ce the original Navier-Stokes equations are numerically
solved without any turbulence modelling. In DNS, flow
structures which are smaller than the mesh spacing are
not resolved. In this context, a DNS of a turbulent flow
around an airfoil at real flight conditions (Rec > 107)
is with today’s available resources not possible. The
necessary number of mesh points causes a computatio-
nal effort that exceeds the recent capabilities of super
computers. For the present case a general estimation
of the necessary mesh points can be done by the for-

mula N3D = Re
(9/4)
c and results in N3D = 6.6 ·1012 for

Rec = 5·105. In a recent publication, Choi [1] estimates
the number of mesh points, necessary for a DNS of a

wall bounded turbulent flow, to NDNS,Moin ∼ Re
37/14
Lx

with the streamwise length of the flat plate Lx. Both
approximations consider uniform mesh resolutions in
streamwise, spanwise and wall-normal direction. Alt-
hough the performance of supercomputers grows ex-
ponentially and it has reached the petascale compu-
ting, it is reasonable to assume that such a fully resol-
ved DNS of an airfoil flow at even this relatively low
Reynolds number is not possible for the next years. Ne-
vertheless, both estimations are not fair and very con-
servative due to the fact that the flow is wall bounded.
Therefore, by clustering mesh points in viscous zones
(boundary layer, wake) and stretching the mesh in the
inviscid flow area, the number of required mesh points
can be reduced significantly. The practically required
number of mesh points is much lower but cannot be de-
fined a priori. Consequently, a mesh convergence study
for DNS has a big scientific and practical worth sin-
ce it is very rare in literature because of its enormous
computational cost.

Tucker and DeBonis [2] summarizes the recent situati-
on of so called near-direct solutions (NDS) which invol-
ves large eddy simulations and quasi-direct numerical
simulations. Depending on the flow which is simulated
(airframe, aeroengine, aeroacoustic), an eddy resolving
simulation will be possible within the next decades. Le-
le and Nichols [3] predict that non-wall bounded flows
at high Reynolds numbers can be simulated by NDS
within the next 5-10 years. In this context, the present
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study allows to quantify the error of under resolved
but recently practicable DNS compared to a reasona-
bly highly resolved DNS.

It has to be noted that the flow is wall bounded and a
high-order numerical method is applied. The positive
influence of the wall bounded flow on the number of
mesh points has already been mentioned. Another im-
portant factor is the spatial and temporal order of the
used numerical method. Moin and Mahesh [4] points
out the lower resolution requirements for high-order
schemes. Comparing a second- and a fourth-order cen-
tral difference scheme, it is easy to show that the re-
quired mesh resolution of the second-order scheme is
approximately twice the one of the fourth-order rea-
ching the same accuracy.

2 DIRECT NUMERICAL
SIMULATION

The numerical method and its governing equations ha-
ve also been used in former publications which show a
good agreement with experimental results [5].

2.1 Governing equations

The three-dimensional Navier-Stokes equations for an
unsteady, compressible flow in curvilinear coordinates
are used in conservative non-dimensional form:

∂U

∂t
+
∂F

∂ξ
+
∂G

∂η
+
∂H

∂ζ
=
∂F ν

∂ξ
+
∂Gν

∂η
+
∂Hν

∂ζ
(1)

Here, the solution vector U , the inviscid fluxes F , G,
H and the viscous fluxes F ν , Gν , Hν are defined as

U = J


ρ
ρu
ρv
ρw
ρe

 , F = J


ρθ1

ρθ1u+ ξxpΥ
ρθ1v + ξypΥ
ρθ1w + ξzpΥ

ρθ1

(
e+ p

ρΥ
)



G = J


ρθ2

ρθ2u+ ηxpΥ
ρθ2v + ηypΥ
ρθ2w + ηzpΥ

ρθ2

(
e+ p

ρΥ
)

 , H = J


ρθ3

ρθ3u+ ζxpΥ
ρθ3v + ζypΥ
ρθ3w + ζzpΥ

ρθ3

(
e+ p

ρΥ
)



F ν = J



0
Ψ (ξxτξξ + ξyτξη + ξzτξζ)
Ψ (ξxτξη + ξyτηη + ξzτηζ)
Ψ (ξxτξζ + ξyτηζ + ξzτζζ)

Ψ(u (ξxτξξ + ξyτξη + ξzτξζ) +
v (ξxτξη + ξyτηη + ξzτηζ) +
w (ξxτξζ + ξyτηζ + ξzτζζ))+

Γ (ξxqξ + ξyqη + ξzqζ)


(2)

Gν = J



0
Ψ (ηxτξξ + ηyτξη + ηzτξζ)
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Ψ (ηxτξζ + ηyτηζ + ηzτζζ)

Ψ(u (ηxτξξ + ηyτξη + ηzτξζ) +
v (ηxτξη + ηyτηη + ηzτηζ) +
w (ηxτξζ + ηyτηζ + ηzτζζ))+

Γ (ηxqξ + ηyqη + ηzqζ)



Hν = J



0
Ψ (ζxτξξ + ζyτξη + ζzτξζ)
Ψ (ζxτξη + ζyτηη + ζzτηζ)
Ψ (ζxτξζ + ζyτηζ + ζzτζζ)

Ψ(u (ζxτξξ + ζyτξη + ζzτξζ) +
v (ζxτξη + ζyτηη + ζzτηζ) +
w (ζxτξζ + ζyτηζ + ζzτζζ))+

Γ (ζxqξ + ζyqη + ζzqζ)


Θ1 = uξx + vξy + wξz, Θ2 = uηx + vηy + wηz,

Θ3 = uζx + vζy + wζz

Υ =
1

γMa2∞
, Ψ =

1

Re∞
, Γ =

1

(γ − 1)Ma2∞Pr∞

where ξx,y,z, ηx,y,z, ζx,y,z are the metric coefficients
and J is the Jacobian of the transformation of the
Cartesian coordinates x, y and z into the curvilinear
coordinates ξ(x, y, z), η(x, y, z) and ζ(x, y, z). The per-
fect gas law relates the density ρ, the pressure p and
the temperature T whereas the viscosity µ is calcula-
ted by Sutherland’s law. τ and q are the transformed
shear stress tensor and heat flux vector, respectively.
The total energy e is defined as

e =
u2 + v2 + w2

2
+

Υ

γ − 1

p

ρ
, (3)

The ratio of the specific heats γ is set to 1.4 and the
Prandtl number Pr∞ is 0.72. For the nondimensio-
nalization of the equations (1)-(3) following reference
variables are used: Lref = c (chord length) = 0.08 m,
T∞ = 300 K, u∞, p∞ and µ∞.

2.2 Numerical method

For time integration an explicit, fourth-order, low sto-
rage Runge-Kutta scheme is applied. The viscous flu-
xes F ν , Gν and Hν are approximated by using a sixth-
order central-difference scheme. The inviscid fluxes F ,
G and H are approximated by using a fifth-order
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Weighted Essentially Non-Oscillatory (WENO) finite
difference scheme corresponding to Jiang and Shu [6].
Exemplary for the flux in ξ-direction, the scheme is
explained in the following. The derivative of the flux
F at the mesh point i is given as(

∂F

∂ξ

)
i

=
Fi+1/2 − Fi−1/2

∆ξ
(4)

where the cell boundary fluxes Fi+ 1
2

are

Fi+ 1
2

=
r−1∑
m=0

ωmM
r
m (5)

Mr
m =

i+m∑
l=i+m−r+1

arm,lFl.

Mr
m is the m− th of r (r = (N+1)/2 = 3) sub-stencils

with polynomial coefficients arm,l for a fifth-order of
approximation (N = 5). The normalized weighting co-
efficient ωm, defined as

ωm =
ω̄m

ω̄0 + ...+ ω̄r−1
ω̄m =

brm

(ε+ ISm)
2 , (6)

preserves monotonicity in the vicinity of strong gradi-
ents by the means of the smoothness indicators ISm.
The parameter ε is added to avoid a division by zero at
smooth solutions and is set to ε ≈ 10−150 which is clo-
se to the minimal floating point value. The coefficients
brm are called optimal coefficients for the fifth-order of
accuracy in smooth solution regions.
In order to improve the numerical stability of the sche-
me, the propagation direction of the characteristics is
taken into account resulting in a decomposition of the
fluxes into two parts

Fi+1/2 = F+
i+1/2 + F−i+1/2 (7)

where the algebraic sign of the eigenvalue λ of the
matrix A = ∂F/∂U determines the propagation direc-
tion. Matrix A can be transformed into the charac-
teristic form A = RΛR−1 with the diagonal matrix
of eigenvalues Λ, the right eigenvector R and the left
eigenvector R−1. Due to the usage of the maximal ei-
genvalue λi,max within the stencil, it is called a local
Lax-Friedrichs flux-vector splitting. Finally, it yields
to

Fi+1/2 =

central term︷ ︸︸ ︷
1

12
[−Fi−1 + 7Fi + 7Fi+1 − Fi+2] +

5∑
s=1

[
−ΦN

(
R−1s ∆F s,+i−3/2, ...R

−1
s ∆F s,+i+3/2

)
(8)

+ΦN

(
R−1s ∆F s,−i+5/2, ...R

−1
s ∆F s,−i−1/2

)]
Rs

∆F s,±i+1/2 = F s,±i+1 − F s,±i

F s,±i =
1

2

(
F si ± λi,maxÛ

s
i

)
where the function ΦN computes the non-linear cor-
rections added to the central term depending on the
weighting coefficients shown in equation (6), the s− th
component of the flux differences ∆F s,±i+1/2 and the ei-

genvectors Rs and R−1s .

2.3 Configuration

For the mesh study a NACA 0012 airfoil is consi-
dered at the transonic flow conditions M∞ = 0.65,
Rec = 5 · 105 and an angle of incidence of α = 2◦.
The mesh size in spanwise direction is Lz = 0.1c. The
distance between the airfoil and the upper boundary
of the computed regime is approximately Ly ≈ 30c
(slightly different for all meshes). The distance bet-
ween the trailing-edge (TE) and the outflow boun-
dary is Lx = 8c. In spanwise direction the mesh is
equidistant. At the leading-edge (LE) and the TE,
the streamwise mesh points are clustered. In wall-
normal direction, the mesh is extruded starting with
an initial wall-normal mesh spacing which is the smal-
lest spacing of the mesh. Fulfilling the requirement
∆ywall < 1 · y+, in a preliminary two-dimensional stu-
dy, the first wall-normal mesh spacing is determined
to ∆ywall = 40c/Rec = 8 · 10−5c for all meshes. In
the results, see Tab. 2, it is shown that this estimation
is too optimistic and the computed y+ becomes lar-
ger than unity in the area of maximal turbulent wall
friction. Since the Courant-Friedrichs-Lewy condition
(CFL = λ∆t/∆x) links the mesh spacing ∆x and
time step ∆t, this smallest mesh spacing is of great
influence on the computational effort. On this account
this value is a compromise between essential mesh
requirements for DNS and the possibility to achieve
quasi-stationary results in practice.
Depending on the wall-normal mesh points, the mes-
hes’ growth factors and consequently the number of
points within the boundary layer are different. In the
fourth column of Tab. 1, the number of the mesh
points are listed, at which the height of the boundary
layer δ99 at the TE is reached.
In summary, the results for five meshes have been stu-
died, shown in Tab. 1. The finest mesh has about one
billion mesh points and its size is close to the practical
limit of recent simulations since the numerical effort,
expressed in core-hours, is 16 · 106 h. The other mes-
hes are gradually coarsened in streamwise direction
by a factor of 0.5 and alternately in wall-normal and
spanwise direction additionally by a factor of 0.5.
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Mesh resolution size [mio.] jδ99,TE
Mesh 1 (M1) 512x128x64 4 64
Mesh 2 (M2) 1024x128x128 17 66
Mesh 3 (M3) 2048x256x128 67 79
Mesh 4 (M4) 4096x256x256 268 79
Mesh 5 (M5) 8192x512x256 1.074 227

Tab. 1: Attributes of studied meshes

3 Results

First, the temporal convergence to a quasi-stationary
solution is studied for all meshes. It has to be noted
that the number of time steps is a critical parame-
ter, especially for DNS. On the one hand, the solution
has to converge to a quasi-stationary state, and on
the other hand, the computational costs have to be
taken into account. The process of convergence beha-
ves asymptotically with simulated time steps and is
dependent on the flow parameters. Therefore, it is dif-
ficult to formulate an exact point of convergence. In
the present study, the analysis of integral values (co-
efficients for lift cL and drag cD) showed a very fast
convergence. The reason for this is that integral values
neglect some kind of oscillations. For example, if the
pressure rises simultaneously on the upper and lower
side of the airfoil, this rise skipts out in the formula for
lift and the resulting integral value remains constant.
As a result, the local pressure coefficient at the LE is
considered for the convergence study (see Fig. 1). This
location has the advantage that it is not superposed
by instantaneous disturbances, which occur in the tur-
bulent flow at the TE, for example.
At time step = 0, the two-dimensional solution is used
to initialize the computation on the mesh M5. After
322, 500 time steps, the simulations with the meshes
M1-M4 are initialized starting from M5. It has to be
noted that the results for the mesh M5 were already
present when the mesh study was performed. This ex-
plains the unconventional procedure (interpolating re-
sults from a fine mesh onto a coarser mesh instead vice
versa). As a consequence of the initialization, the re-
sults of M1-M4, shown in Fig. 1, illustrate large distur-
bances shortly after initialization. The symbols and
colors of the graphs, which are used for the different
meshes, are the same for all figures in this paper. The
coarser the grid, the lower is the number of mesh points
compared to M5 and the stronger is the initial distur-
bance of the solution. Within the simulated time, this
disturbance vanishes for all meshes. Recalling the use
of cL and cD for a convergence study, both parame-
ters show significantly weaker the initialization distur-
bances since the disturbances occur on the upper and
lower airfoil surface simultaneously. It is reasonable to
assume that an asymptotic convergence is achieved for
all meshes and that further time steps would show on-
ly slight changes in the solution. Since the time scales

of turbulence are much lower than the one of pressu-
re waves, which are studied in Fig. 1, the turbulent
quantities are in a quasi-stationary state, too.

t [s]

Time step [­]

c
p

,L
E
 [

­]

0 0.02 0.04 0.06

0 1E+06 2E+06 3E+06
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M4

M5

Initialization of
M1­M4

M3, M4
M5

M1

2D Start

M2

M1

M2

M1

Fig. 1: Convergence behaviour for all meshes

In Fig. 2 the pressure and friction coefficients are illu-
strated. Considering the cf graphs of the suction side,
for M3, M4 and M5, transition occurs at x/c ≈ 0.45
and for M1 and M2 further downstream. On the pres-
sure side, transition starts at x/c ≈ 0.88 depending
on the mesh size. The transition begins at distinguish-
able different positions where the finer meshes show
the transition more upstream than the coarser ones.
This is obvious by both, the pressure and the suction
side transition behaviour. Beside the areas of transi-
tion, for the pressure coefficient, the agreement of all
graphs is very good, especially for the meshes M3, M4
and M5.

The skin-friction coefficient reacts much more sensiti-
ve to the mesh size since it is computed by the velo-
city gradient, cf = 2τwall/(ρu) = 2µ(∂u/∂y)wall/(ρu).
At the stagnation point, cf is maximal and decrea-
ses while moving downstream. This decrease, within
the laminar boundary layer, agrees well for all mes-
hes. Indicating a widespread area of boundary layer
separation, the skin-friction coefficients become nega-
tive at x/c = 0.26. In the vicinity of the transition,
cf drops further and then rises due to the transiti-
on to a turbulent boundary layer. Its rise significantly
depends on the number of mesh points in spanwise di-
rection. Coarser meshes underestimate significantly cf .
The differences of two meshes having the same num-
ber of spanwise mesh points (M2-M3 and M4-M5) are
negligible denoting the importance of the spanwise re-
solution.
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Sensitive parameters (location of transition, skin-
friction coefficient) show differences between the mes-
hes. The main flow features (pressure distribution, ap-
pearance of transition on both airfoil sides, boundary
layer separation regions) are detectable for all meshes.

x/c [­]

c
p
 [

­]

c
f [

­]

0 0.2 0.4 0.6 0.8 1

­1

­0.5

0
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0

0.005

0.01

0.015

0.02

0.025

0.03

M1_512x128x64

M2_1024x128x128

M3_2048x256x128
M4_4096x256x256

M5_8192x512x128

pressure side
transition

suction side
transition

c
f
 ­ suction side

c
p
 ­ suction side

c
f
 ­ pressure side

c
p
 ­ pressure side

Fig. 2: Pressure and friction coefficients along airfoil

Tabel 2 lists the spanwise as well as time averaged
wall units, taken at the mesh dependent location of
the maximum turbulent cf,max on the suction side.
Additionally, ∆y+TE is presented. It is interesting to
note, that the coarse meshes show a lower ∆y+. This is
a result of the underestimated velocity gradient which
is also visible in the lower cf -values for the coarser mes-
hes (see Fig. 2). The lower the velocity gradient, the
larger the viscous length scale δν becomes. For coarser
meshes, this leads to a lower ∆y+ = ∆ywall/δν since
∆ywall is constant for all meshes. In the area of cf,max
the wall-normal spacing ∆y+ is larger than unity. At
the TE, ∆y+TE is smaller than unity. With hindsight,
the first wall-normal spacing is slightly too large.

Mesh ∆x+ ∆y+ ∆z+ ∆y+TE
M1 72.7 1.1 21.7 0.2
M2 47.8 1.4 14.1 0.3
M3 24.0 1.4 14.1 0.3
M4 14.0 1.7 8.3 0.7
M5 8.7 1.7 8.2 0.7

Tab. 2: Wall units of studied meshes

Figures 3a-e visualize the flow around the NACA 0012
airfoil at M∞ = 0.65, Rec = 5 · 105 and an incidence
of α = 2◦. Colored by the local Mach number, iso-
surfaces of the positive second invariant of the velo-
city gradient, Q-criterion, illustrate structures of the

boundary layer flow. In the laminar part of the boun-
dary layer, the iso-surfaces are smooth. For the shown
iso-surfaces, here, the flow velocity is maximal and the
Mach number reaches about one. Then, in the regi-
on of transition, the large scale Tollmien-Schlichting
(TS) waves become visible which finally break down
to smaller scales. On the suction side, the boundary
layer becomes turbulent at approximately the half of
the chord length and on the pressure side, this happens
close to the TE. The shape factor drops to H = 1.4
for M2-M5 at x/c = 0.55 indicating that the transiti-
on ends and the turbulent boundary layer starts. The
mesh M1 does not reach H = 1.4 but H = 1.7. On the
pressure side, the shape factors for all meshes reaches
the turbulent range just at the TE. Therefore, it can
be assumed that the boundary layer is still influenced
by transitional processes like the TS-waves. Hence, in
the following, the pressure side boundary layer is called
transitional boundary layer. As a result of the inter-
action of the turbulent and the transitional boundary
layer at the TE, the tonal noise phenomenon occurs
for this flow condition. In contrast to the interaction
of two turbulent boundary layers generating broad-
band noise, the emitted pressure waves are dominated
by one tonal frequency. In this case, the frequency of
the upstream moving pressure waves is equivalent to
the frequency of the TS-waves. The colours of the sli-
ce in the background are determined by instantaneous
pressure fluctuations (p′ = p(t)−1/T

∫
p(t)dt). For all

meshes, the tonal pressure waves generated at the TE
are detectable. This confirms the assumption that on
the pressure side the TS-waves reach the TE.

On the suction side in the vicinity of the LE, the
flow becomes supersonic influencing the propagation of
pressure waves. Since supersonic regions prevent acou-
stic waves from a further upstream movement, acoustic
waves steepen resulting in shock waves that are able
to pass the supersonic region. For the meshes M3-M5,
the shock waves are distinguishable in the vicinity of
the LE as single sharp red lines.

a) M1 (512x128x64)
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b) M2 (1024x128x128)

c) M3 (2048x256x128)

d) M4 (4096x256x256)

e) M5 (8192x512x256)

Fig. 3: Q-criterion isosurfaces (Q=1) coloured by Mach num-
bers, slice coloured by instantaneous pressure fluctuation
(p′ = p(t) − p̄)

At x/c = 0.2 on the suction side within the laminar
boundary layer, Fast Fourier Transformation (FFT)
of the pressure histories has been performed. In Fig. 4
the corresponding results are shown for all meshes. For
displaying purpose, the meshes M2, M3 and M4 have
an artificial offset of the nondimensionalized ampli-

tude pA of 0.001, 0.002 and 0.003, respectively. The
mesh M5 yield shorter simulation periods resulting
in coarser resolution of the FFT, especially for low
frequencies. Therefore, this FFT is not shown. In all
FFTs the pressure waves effect peaks in the range of
1000 Hz < f < 5000 Hz. The investigation of the
original pressure signal shows steepened pressure wa-
ves at this frequency denoting that the peaks in the
FFT is caused by pressure waves and not by distur-
bances within the boundary layer. The results for M1
identify a dominant frequency at f = 1000 Hz, which
is not detectable for finer meshes. This means that
the generation mechanism of the pressure waves is in-
fluenced by the low mesh resolution. The FFTs for
the meshes M3 and M4 show the highest peak around
f = 2500 Hz. Also, the amplitude equals for both
meshes. Since the pressure waves are generated at the
TE by an interaction of the turbulent and the tran-
sitional boundary layer, a wrong TS-wave frequency
of the transitional boundary layer might be a possible
explanation for this. However, the general appearance
of pressure waves seems to be very insensitive to the
mesh resolution.
In the following, the boundary layer flow and its tur-
bulent quantities are studied.

M4

M3

M1

M2

f [Hz]

p
A
 [

­]

0 2000 4000 6000 8000 10000
­0.0005

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

Fig. 4: FFT of pressure history taken at x/c = 0.3,
∆ywall/c = 0.002, z/c = 0

First, the thickness of the boundary layer δ99, the dis-
placement δ∗ and the momentum thickness Θ are stu-
died along the suction side of the airfoil (Fig. 5). The
region of the transition area is distinguishable in the
δ∗ graph. Furthermore, the graphs of Θ and δ99 show a
bending at the location of transition x/c ≈ 0.5. Com-
paring the results of all meshes with each other, the
coarser meshes overestimate δ∗ but underestimate and
Θ. Beside M1, the results of δ99 agree very well.
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Fig. 5: Boundary layers thicknesses δ99, δ∗ and Θ along suction
side

Since the boundary layer integral values do not show
large differences between the results, in the following,
the different parameters within the turbulent bounda-
ry layer are considered. In Fig. 6 the boundary layer
u+ profiles for the position on the suction side at
x/c = 0.71 are plotted in wall units. Additionally,
the corresponding results of Spalart’s DNS [7] of a
flat plate are illustrated. The results of Spalart and
the one for the mesh study, show at this location a
Reynolds number of approximately Re∗δ = 2000 and
Re∗δ = 1500, respectively. The results for M1 is far
away from all other graphs. The difference between the
remaining meshes can be seen at higher values for y+

because the growth rate in wall-normal direction dif-
fers. In the buffer layer (5 < y+ < 50) and the log-law
region (y+ > 50) the differences become more obvious.
The results of the meshes having the same number of
spanwise mesh points agree well demonstrating again
the importance of the spanwise resolution. The log-law
behaviour, shown in Spalart’s results, is not even re-
ached for the finest meshes. Considering a transonic
airfoil flow, the disagreement can be explained by the
compressibility and by a non-zero pressure gradient.
Sandberg’s [8] mean velocity profiles from a DNS of
the NACA 0012 airfoil demonstrate the same trends.
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Fig. 6: Mean velocity profile at x/c = 0.71

In Fig. 7 the nondimensionalized averaged turbulent
kinetic energy k = 0.5 · (u′u′ + v′v′ + w′w′) is plotted
versus the distance from the wall ∆ related to the
boundary layer thickness δ99. The results are tempo-
ral averaged over the last 100 data sets. Beside the
temporal averaging of k, a further spatial averaging
over the whole span is performed. For all meshes,
k rises to a maximum kmax and vanishes outside of
the boundary layer. The meshes M4 and M5 reach
kmax at ∆/δ99 = 0.05, M2 and M3 slightly above at
∆/δ99 = 0.06 and M1 at ∆/δ99 = 0.11. The value of
kmax is approximately 0.0135 for all meshes.
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Fig. 7: Averaged profiles of turbulent kinetic energy at x/c =
0.71

Deutscher Luft- und Raumfahrtkongress 2014

7



The averaged Reynolds stresses normalized by the tur-
bulent kinetic energy are plotted in wall units. The
averaging is identical to the one before. For coarse mes-
hes, the Reynolds stresses u′u′/k are overestimated.
The Reynolds stresses v′v′/k and w′w′/k tend to be
underestimated. This linkage between mesh resolution
and the Reynolds stresses is also observed by Fröhlich
[9].
Showing only slight differences, the graphs of M4 and
M5 agree well over the whole boundary layer. The re-
sults for M2 and M3 demonstrate for the whole boun-
dary layer differences to M4 and M5. The coarser the
mesh, the larger is the difference to M4 and M5. Again,
the coarsest mesh M1 shows the largest error related
to M4 and M5. For the remaining meshes M2-M5 the
graphs for u′u′/k, v′v′/k and w′w′/k are in principle
agreement with literature [10].
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Fig. 8: Averaged profiles of Reynolds stresses normalized by k
at x/c = 0.71

Next, three one-dimensional energy cascades (Figs. 9,
10, 11) of the turbulent kinetic energy are shown to
study the turbulent behaviour of the flow in full de-
tail. The spectra have been determined at the same
wall distance ∆ywall/c = 0.0065 of the suction side
for all considered meshes, which for mesh M5 is equi-
valent to y+ = 120. Considering spectra within the
outer boundary layer, the −5/3 behaviour is expected
to extend over a wide frequency and wavenumber ran-
ge. The spatial spectra are averaged over 10 data sets
at intervals of ∆t = 0.2025c/u∞. The spanwise spectra
are taken over the whole span at x/c = 0.71 and the
streamwise spectra in the range of 0.5 < x/c < 1.0 at
z/c = 0. The frequency spectra are taken at x/c = 0.9
and z/c = 0.05. In order to improve the quality of
the spectra, a hanning window is applied. Furthermo-
re, the signal of the turbulent kinetic energy is divi-
ded into two and four segments, which overlap with

50%, for spatial and frequency spectra, respectively.
The spatial wavenumbers κ are related to the Kolmo-
gorov microscale η = Lref/Re

3/4 = 5.3 · 10−5c. The
energy is related to ηu2τ with the nondimensional fric-
tion velocity uτ = 0.043 taken from results for mesh
M5.
In theory, the energy cascade consists of three ran-
ges. First, the small wavenumbers/frequencies form
the energy-containing range. Next, larger wavenum-
bers/frequencies form the inertial subrange, that is in-
dicated by the −5/3 slope in Figs. 9, 10, 11. In this
range the eddies disintegrate from large into small ed-
dies. At large wavenumbers/frequencies, in the dissi-
pation range the eddies dissipate and the graphs peel
off the slope of −5/3. In all figures, it is obvious that
higher mesh resolutions extend the inertial subrange
and move the dissipation range to higher wavenum-
bers. This is reasonable since finer meshes can resolve
small eddies which dissipate on coarse meshes.
The orders of roll-off with increasing wavenumber and
frequency are listed in Tab. 3. Having small ∆τ as a
result of the high Reynolds number, very high frequen-
cies are resolved. In Jones DNS [11] of an airfoil flow
the energy roll-off order for the spanwise and frequen-
cy spectra are 3 and 7, respectively. The presented
results, shown in Tab. 3, show a comparable order of
eddy decay.

Mesh κz κx f
Mesh 1 (M1) 3 2 7
Mesh 2 (M2) 3 2 7
Mesh 3 (M3) 3 3 7
Mesh 4 (M4) 3 3 7
Mesh 5 (M5) 3 4 7

Tab. 3: Orders of roll-off
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Fig. 9: Spanwise power spectra of k, taken at x/c = 0.71,
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Studying the spanwise spectra in Fig. 9, it is clear-
ly ascertainable that the results for the meshes M4
and M5 are over a wide range approximately identi-
cal. The meshes M1-M3 yield identical results in the
energy-containing range but show differences in the
other ranges. For the finest meshes M4 and M5, the
κ−5/3 behaviour is easily detectable. Although the re-
sults for the meshes M4 and M5 agree well, this is no
proof for a converged solution since its spanwise re-
solution is identical. Again, the results of the meshes
having the same number of spanwise mesh points agree
well and show the same maximal wavenumber.

In Fig. 10, the streamwise wavenumbers are analyzed.
In contrast to Fig. 9, for the considered direction, all
meshes have a different resolution, and no graphs are
identical. Slightly diverging in the dissipation range,
the graphs for M4 and M5 indicate that the solution
is close to be mesh converged. The differences between
M4 and M5 are quite small. The results of the meshes
M4 and M5 follow the slope κ−5/3 over a wide range.

Studying the frequency spectra in Fig. 11, it has to
be noted that the simulations for all meshes are per-
formed using the same nonedimensional temporal step
size ∆τ = 4.5·10−5. Therefore, the temporal resolution
is identical for all meshes. The differences in the ener-
gy content is a result of the unequal spatial resolution.
Depending on the total number of mesh points, the
results show different ranges of the inertial subrange.
The coarser the mesh, the lower the frequency at which
the dissipation range begins. M4 and M5 demonstrate
nearly the same frequency range for the beginning of
the dissipation range.
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Fig. 11: Frequency power spectra of k, taken at x/c = 0.9,
z/c = 0.05, y+ = 120

In the spatial and the frequency spectra, as expected
the coarser meshes are not able to resolve the small
eddies and show the start of the dissipation range for
lower wavenumbers/frequencies. As a result, the visco-
sity of the flow is numerically increased and the kinetic
energy of not resolved eddies dissipates into heat. This
is even detectable in the visualization of the coherent
structures of the boundary layers, shown in Fig. 3a,b.
For the highly refined meshes, the turbulent boundary
layer consists of distinguishable smaller structures.
In Figs. 9 and 10 the largest wavenumbers do not reach
κη = 1. Considering homogeneous and isotropic tur-
bulence, in theory, at this wavenumber the dissipation
range begins since the smallest eddies have a size of
η. These large wavenumbers are not reached because
the spanwise and streamwise resolution in wall units,
shown in Tab. 2, are above unity. For the finest mesh
M5, the spanwise and streamwise wall units are in the
order of 10. Accordingly, in Figs. 9 and 10 the largest
spanwise and streamwise wavenumbers reach approxi-
mately 0.1. Although the theoretical optimal mesh re-
solution is not reached, the meshes M4 and M5 peel off
the κ−5/3 slope at κη ≈ 10−2. It is assumed that this
is not caused by the mesh. Firstly, both meshes yield
a sufficient number of larger wavenumbers that could
resolve a further energy transfer to smaller eddies. Se-
condly, both meshes peel off at the same wavenumber
indicating that the reason is not the streamwise mesh
resolution which is different for both meshes.

4 Conclusion

For the transonic flow around the NACA 0012 airfoil at
the transonic flow condition M∞ = 0.65, Rec = 5 · 105
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and an angle of incidence of α = 2◦, a mesh study for a
Direct Numerical Simulation is performed. The spatial
derivatives of first-order are approximated by a fifth-
order WENO scheme, the second-order derivatives by
a sixth-order central scheme and the time derivatives
by a fourth-order Runge-Kutta scheme. Consisting of
4(M1), 17(M2), 67(M3), 268(M4), 1.074(M5) million
mesh points, five meshes are studied. In the first part of
the results, common aerodynamic parameters (cp, cf )
are studied and only small differences are detectable
for the different meshes. Also, the study of the boun-
dary layer thickness δ99, the displacement thickness
δ∗ and the momentum thickness Θ along the suction
side shows only slight differences. Nevertheless, study-
ing the turbulent boundary layer near the TE in more
detail, a disagreement between the meshes becomes vi-
sible. The results for the coarsest mesh M1 illustrate
that the turbulent behaviour is not resolved correctly.
This could already be seen from the flow visualization
of the turbulent structures by using the Q-criterion.
For the meshes M3, M4 and M5 the agreement is bet-
ter. The spectra of the averaged turbulent kinetic ener-
gy demonstrate for low wavenumbers and frequencies a
good agreement for these meshes indicating that these
turbulent structures are resolved correctly. Here, the
meshes M1 and M2 are clearly apart. For higher fre-
quencies, especially in the dissipation range, the gra-
phs diverge. In all spectra the log-law behaviour k−5/3

can be identified showing that the inertial subrange of
the spectra is resolved correctly.
Furthermore, the profiles of the turbulent kinetic ener-
gy, the mean velocity and the Reynolds stresses are in
good agreement for the meshes M4 and M5. Slight dif-
ferences are visible but over wide parts of the bounda-
ry layer these parameters are in good agreement. Alt-
hough the mesh study showed only partly convergence,
it is reasonable to assume that further mesh refine-
ments will not show significant differences to the pre-
sented meshes. The number of mesh points in stream-
wise and wall-normal direction yield a converged so-
lution and only in spanwise direction a further refi-
nement could be useful. The spectra for the kinetic
energy could show further improvements for high wa-
venumbers/frequencies, but the aerodynamic parame-
ters and boundary layer profiles are nearly converged.
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