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Abstract

Experts from various aircraft sub-domains have to collaborate in order to design an aircraft system. Each sub-domain
thereby focuses on a particular aspect of the system and uses special software tools to model those aspects and run
various calculations. As those models partially overlap, inconsistencies can occur that might lead to delays in the
design process or malfunctions of the aircraft system. Hence, different models need to be checked for consistency.
Furthermore, exchangeability of model data between tools enables the reuse information from an already existing
model.
To ensure that model data is compared and transformed appropriately to its meaning, a common, semantic repre-
sentation of aircraft knowledge can be used to establish a reference. As ontologies are a formal, human and machine
readable knowledge representation mechanism that explicitly captures semantics, they can serve as such a common
semantic reference.
In this paper we describe the development of the AIRCRAFT ontology following the NEON process model. In partic-
ular, we describe our experiences from applying the NEON methodology and the resulting AIRCRAFT ontology. The
AIRCRAFT ontology is an OWL ontology that covers system decomposition and component parameters of a single
aisle civil transport aircraft. It can be used as a common semantic reference during model comparison and trans-
formation. Furthermore, the AIRCRAFT ontology can be extended using the NEON process model to serve other
purposes that require a semantic representation of aircraft knowledge.

1 INTRODUCTION

During the design of a new aircraft, designers and
analysts create and refine several aircraft models us-
ing different software tools. Each model covers parts
of the whole aircraft and usually focuses on one as-
pect of the aircraft. Especially during conceptual
aircraft design the degree of diversity and content
overlap are high compared to later design phases.
Inconsistencies between those models may arise during
the design process as those models are often developed
in parallel, describe the same aircraft, and partially over-
lap. Some of those inconsistencies, if detected during
the design process, might lead to delays in the design
process when components have to be redesigned in or-
der to react to a detected inconsistency. If inconsisten-
cies between models are not detected during the design
process, some of them bear the risk of aircraft malfunc-
tions, e.g. if two components do not fit together as ex-
pected. Usually, the earlier an inconsistency is detected,
the less expensive it is to react on it. Hence, inconsis-
tency checking is desirable already at an early design
phase.
Model integration deals with the problem to integrate
different models into an overall, consistent model. It
not only keeps overlapping content consistent but also
enables designers from different disciplines to exchange

content easily between models in order to complement
one another. Because of model heterogeneity, a big
challenge of model integration is the identification of
model elements which represent the same thing across
different representations in different models. One ap-
proach to tackle this challenge is to link model elements
to the appropriate domain concepts in a common
reference ontology which represents these concepts by
formal semantics. This methodology has been demon-
strated in the integration of different generic modeling
languages by Kappel et al. [1], and between different
business process modeling languages by Roser [2].
A framework for ontology-based integration of aircraft
design models was shown by Glas [29] which also uses
a reference ontology. If this framework, however, cannot
use a publicly available reference ontology, its users
have to derive it from the integrated design models. This
derivation process not only diminishes the efficiency
of the overall integration process but can also lead
to a reference ontology which is tied to a specific set
of models and is difficult to reuse in other integration
scenarios. Even now – to the best of our knowledge –
there is no ontology publicly available which represents
concepts for aircraft design and that can be used as
common representation.
Therefore, we decided to develop such an ontology
representing aircraft design knowledge and make it
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publicly available. We used the NEON process model
for ontology development in order to create this on-
tology in an efficient way. As initial scope we chose
the description of the static aircraft system structure
consisting of a system decomposition and component
parameters. Obviously, there are many other knowledge
areas that are interesting for aircraft design such as
system behavior during missions. Hence, we see our
ontology as a foundation for further extensions.

The contributions of this paper are the following: First,
we describe our experiences and lessons learned
while applying the NEON process model to develop the
AIRCRAFT ontology. Second, we report the design and
results of an ontology evaluation method using expert
interviews, instantiating and detailing guidelines for the
evaluation of ontologies from the NEON methodology.
Third, we describe the resulting AIRCRAFT ontology. It
is an OWL ontology that is publicly available and covers
system decomposition and component parameters of
a single aisle civil transport aircraft. With both parts
we hope to enable colleagues to use the AIRCRAFT
ontology and extend it to fit their needs.

This paper is structured as follows. In Section 2, we give
some background knowledge about ontologies. In Sec-
tion 3 we briefly describe several ontology development
methodologies and our rationale for choosing the NEON
methodology. In Section 4 we describe how we put the
NEON methodology in action. We also describe how we
evaluate the resulting ontology using interviews with do-
main experts. In Section 5 we describe the resulting AIR-
CRAFT ONTOLOGY. Finally we discuss interesting obser-
vations and lessons learned in Section 6 and conclude
in Section 8.

2 ONTOLOGY BASICS

Ontology originates from Greek philosophy, namely the
study of being and existence, dealing with the questions
what kinds of things exist and how they relate to one
another. This concept has been adapted for use in com-
puter science. Studer et al. [3] define an ontology as
“a formal explicit specification of a shared conceptual-
ization of a domain of interest”, emphasizing formality
which is needed for automated processing, a consensus
about the contents, and the focus on a specific domain
whereas the view on that domain is influenced by a cer-
tain interest for the ontology in mind.

2.1 Types of Ontologies

Depending on their purpose, ontologies can be catego-
rized into the following types [4]:

Top-level ontologies cover general and abstract con-
cepts, e.g notions of time and space that can be reused
and refined in other ontologies.

Domain or task ontologies cover knowledge about a
specific domain (e.g. aircraft) or a specific task (e.g.
cooking); since this distinction is somewhat imprecise,
both are normally referred to as domain ontology.

Application ontologies are typically developed in
complement to an application and with certain usage
scenarios in mind. They cover and refine specific
aspects of domain ontologies for use in that specific
application.

The ontology developed in the context of this paper can
be categorized as domain ontology.

2.2 The Ontology Language OWL

As a language for describing ontologies, the World Wide
Web Consortium W3C1 recommends the Web Ontology
Language (OWL) [5], respectively its revision OWL 2 [6].
The foundations for defining semantics between con-
cepts in OWL are logical declarations which can be eval-
uated by reasoners. Reasoners are programs which pro-
vide services such as checking the consistency of logical
declarations in an ontology and inference of new knowl-
edge from explicitly declared knowledge.
In general, ontologies consist of concepts and roles.
The concepts are organized in a hierarchical structure
formed by is-a relations between these concepts. In
OWL, these concepts are called classes, e.g. an Airbus

A320 is a specialized sub-class of its superclass Air-

craft.
With the use of roles, more context can be added to
classes in form of semantic relations. OWL expresses
roles by properties which represent relations between
two concepts. Possible sources and targets of these re-
lations can be defined by the specification of appropriate
domains and ranges of properties. OWL stipulates two
kinds of properties: object properties relate two classes,
whereas data type properties relate classes to data
types. For example, an object property hasWing defines
a relation between a class Aircraft and a class Wing.
Object properties can be defined further by logical char-
acteristics. For instance, isPartof can be declared tran-
sitive to express, that if Cabin isPartOf Fuselage and
Fuselage isPartOf Aircraft, then Cabin isPartOf

Aircraft. In this example declaring isPartOf antisym-
metric can forbid that Fuselage isPartOf Cabin. As
an example for an data type property, numericalValue
defines a relation between a class SingleAircraftPa-

rameter and the double data type.
Finally, to fill an ontology with concrete concepts and
values, classes and data types can be instantiated. The
instance of a class, also known as class-member, is
called individual in OWL. For example the individual
A320_MSN1471 is an instance of the class Airbus A320.
The instance of a data type is a data value. For example,
0.5424 is an instance of double.

1http://www.w3.org
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2.3 The Open World Assumption

A peculiarity of ontologies is the open world assumption.
Essentially, it states that all knowledge, that is not ex-
plicitly or implicitly stated in an ontology, has to be re-
garded as unknown. In contrast, according to the closed
world assumption, which is normally used with traditional
data models such as database systems, missing knowl-
edge would be regarded as non-existent. Take for exam-
ple a knowledge base that consists of the single state-
ment "Airbus is an aircraft manufacturer", and the ques-
tion "Is Boeing an aircraft manufacturer?". According to
the closed world assumption, the answer to the ques-
tion would be "No", whereas the open world assumption
would result in "Unknown". According to the open world
assumption, no conclusions are made until more knowl-
edge is available which might result in an unambiguous
answer. Practically, it means that in principle it always
possible to add new logically consistent knowledge to
an ontology without invalidating its conceptualization or
content, whereas with traditional data models in a closed
world this might possibly require a complete overhaul of
the model or its content.

3 PROCESS MODEL SELECTION

Developing an ontology is no trivial task. However, com-
pared to software engineering, ontologies and their de-
velopment are a rather young discipline which emerged
only in the early 1990s. Thus, relevant development
processes are not as widespread and well known as
those in software engineering. Hence, we needed to
get an overview about available ontology development
processes for selecting an appropriate process for our
project.
We focused our literature research on ontology de-
velopment methodologies which exhibit the essential
characteristics of a software engineering process. The
following process models conform to this requirement:

METHONTOLOGY [7] (1997/1999): The goal of this
process model was to establish a proper engineering
approach and reproducible process for ontology de-
velopment in contrast to “construction guidelines” from
earlier publications on ontology creation. This resulted in
a waterfall-like model of process activities, with defined
products for each process phase that also serve as
documentation.

OTK [8] (On-To-Knowledge, 2002): This is a detailed
process model that discriminates between more project
phases and more iterative steps. It incorporates “com-
petency questions” as introduced by Grüninger and Fox
[9] for specification purposes. The development of the
ontology is embedded in the context of developing and
using a "‘knowledge application"’.

DILIGENT [10] (Methodology for DIstributed, Loosely-
controlled and evolvInG Engineering of onTologies,
2005): This process model is designed for distributed

development and evolution of ontologies. While users
of ontologies take an active role in this development,
making suggestions and adapting the ontology to
their needs, the latter leads to various versions of this
ontology which have to be consolidated in an iterative
development of the root-ontology organized via a board
of experts.

HCOME [11] (Human-Centered Ontology Engineering
Methodology, 2005): Similar to DILIGENT this process
model stipulates a distributed development of an ontol-
ogy. However, this development is solely made by the
ontology users, with only domain experts being available
as counsel in case of questions. Thus the development
is dependent on a special tool framework that supports
the users in this process.

UPON [12] (Unified Process for ONtology building,
2005/2008): This process model is an adaption of the
Unified Process [13] for ontology development. The
development is embedded in the context of a specific
application. It is use-case driven and makes intensive
use of the Unified Modeling Language (UML2).

NEON [14] (NeOn Methodology for Building Ontology
Networks)3, 2006/2010): This process model addresses
scalability in the context of an environment of intercon-
nected ontologies. Its focus lies on integrating existing
ontological resources into the development of an on-
tology and allows for a flexible process by describing a
set of development scenarios which can be combined.
Although a specific application context is recommended,
it is not necessary.

As for selection criteria, recency was an important factor
as most process models incorporated experience from
previously proposed models. We further assessed the
process models regarding applicability for our develop-
ment objective. Level of detail was considered helpful
for our objective as we had no experience from prior de-
velopment projects, thus requiring more detailed guid-
ance. Accordingly, we wanted to select one process
model we could use for our first development cycle with-
out major adaptions, rather than creating a new process
model as combination of different process models.
Applying these criteria, we were able to select an ap-
propriate process model. Distributed development, be-
ing the focal point of both DILIGENT and HCOME, was
not an issue in our project, so both these process mod-
els were not applicable. As well, both OTK and UPON
require the ontology development to be put into context
with an accompanying application. As mentioned in sec-
tion 2, the ontology development we had in mind did not
correspond to this requirement, so these two process
models were also not applicable. From the remaining
two process models, NEON was more up to date, pro-
vided more details and covered a broad spectrum of de-
velopment scenarios, as compared to METHONTOL-

2http://www.uml.org
3http://www.neon-project.org
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OGY. Concluding, we selected NEON as the process
model for our development.

4 ONTOLOGY DEVELOPMENT

In the following, we provide a short introduction into the
NEON methodology, show its application in our project,
and conclude with the evaluation of the developed ontol-
ogy.

4.1 NEON Methodology Overview

NEON addresses developing ontologies in the context
of a networked environment where several different
ontologies or semantic knowledge bases exist, possibly
with various interconnections [14]. NEON approaches
the ontology development by the use of scenarios. Each
scenario covers certain aspects within the ontology
development, for example the reuse or re-engineering
of non-ontological resources, the application of ontology
design patterns, etc. A scenario is described by a set
of activities that have to be executed in a given order.
Scenarios can also be combined with one another. All
scenarios are also accompanied by several support
activities, e.g. documentation.

NEON describes the following nine scenarios [15], which
are also visualized in Figure 1:

1. From specification to implementation.

2. Reusing and re-engineering non-ontological re-
sources.

3. Reusing ontological resources.

4. Reusing and re-engineering ontological resources.

5. Reusing and merging ontological resources.

6. Reusing, merging and re-engineering ontological
resources.

7. Reusing ontology design patterns.

8. Restructuring ontological resources.

9. Localizing ontological resources.

The NEON process lifecycle for one iteration consists
of a maximum of seven phases. The actual number of
phases depends on the applicability of the NEON sce-
narios. These scenarios also define the process activi-
ties which are assigned to these phases when creating
the project plan. The possible seven phases are:

1. Initiation phase: This phase deals with pre-project
studies, project preliminaries, specification and in-
stantiation of NEON for a concrete project plan.

2. Reuse phase: The second project phase is about
searching for and selecting appropriate ontologi-
cal and non-ontological resources for reuse in the
project, which is supported in NEON by (basic and
specific) activity flows [16, 17].

Figure 1: Overview of the NEON Scenarios, adapted
from Suárez-Figueroa et al. [15]

3. Re-engineering phase: This third project phase
covers the re- engineering of the identified ontologi-
cal or non-ontological resources [16, 18].

4. Merging phase: This phase deals with aligning and
merging two or more ontologies that cover similar
concepts.

5. Design (Modelling) phase: This phase is about
fully conceptualizing and formalizing the ontology.

6. Implementation phase: In this project phase the
fully conceptualized and formalized model is imple-
mented in the target ontology language.

7. Maintenance phase: This final phase is about
maintaining the ontology and discovering possible
improvements or incentives for further development,
possibly leading to further development cycles.

To get a concrete instance of NEON for an ontology
development project, the applicable scenarios for that
project have to be selected according to the project re-
quirements. The development can be divided into sev-
eral iterations, with each iteration only covering certain
scenarios. These decisions lead to the project plan for
the ontology development. This selection process and
acquiring the project plan is supported by the NEON
Toolkit4 in combination with the GONTT5 plug-in.

4.2 Applying the NEON Methodology

In the following we describe our concrete application of
NEON. We required about ten man weeks to perform the
development process, roughly distributed in 10% for the
initiation phase, 10% for the reuse phase, 20% for the re-
engineering phase, 50% for the design and implementa-
tion, and 10% for the evaluation and last corrections.

4http://neon-toolkit.org/
5http://neon-toolkit.org/wiki/Gontt
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Initiation Phase

At first, several preliminary decisions had to be made.
Some of these decisions were important for the ontology
specification, which itself is necessary for deriving the
project plan. Regarding the language for the ontology, it
was decided to use the OWL 2 Web Ontology Language
published by the W3C, specifically OWL 2 DL, due to
the availability of application programming interfaces
(APIs), development tools, and reasoners. PROTÉGÉ6

was chosen as development tool due to its open archi-
tecture, its large community of users and developers,
and its practical user interface. From the NEON Toolkit,
which has been developed together with the NEON
methodology, only the GONTT tool seemed sufficiently
stable to be used for project plan generation.

NEON requires the formulation of the Ontology Require-
ments Specification Document (ORSD). NEON provides
a template for the ORSD which is later used for the
generation of a project plan. It captures the ontology’s
purpose, scope, formality level, intended users and uses
as well as competency questions. These questions are
formulated in natural language and should be able to
be answered using the ontology; they also serve as a
benchmark for evaluation of the built ontology. Our main
focus lay on structural aspects of a standard passenger
aircraft, e.g. an A320, with the intention to also provide
standard units and measurement dimensions.

Following the ORSD, NEON scenarios 1, 2, and 3 were
applicable to our project. Due to limited time for the
project we only planned for one development iteration.
GONTT was used to generate a project plan conforming
to our project conditions. This plan was manually re-
produced in MICROSOFT PROJECT for more refinements.

We further adapted the project plan recommended by
NEON. In particular, the pre-development studies in the
initiation phase were not necessary in our project due to
its explorative character and limited scope. The merging
phase was also not applicable since we did not intend
to merge several different ontologies in this development
cycle. Due to the tight connection between the design
and implementation phases, and the usage of the OWL
2 DL, it was deemed practical to consolidate these two
phases into one. Although evaluation accompanies the
whole project, we felt the need to add a project phase
dedicated to the evaluation of the whole built ontology.
Finally, the maintenance phase was not applicable to this
first iteration.

Reuse Phase

Special requirements regarding the ontological and non-
ontological resources can be derived from the ORSD,
which is relevant for the assessment, comparison and
selection of the identified resources for possible reuse.

6http://protege.stanford.edu

Regarding non-ontological resources, reference models
from the two aircraft design tools SIMCAD and PACE
APD were provided. SIMCAD is a tool which has been
developed and operated at Airbus Future Project Office
in SCILAB7 for conceptual aircraft design. It contains
173 aircraft parameters with units which are saved in a
tree data structure in 49 container objects. PACE APD
is a framework based on the PACELAB SUITE8. We
focused on 387 scalar aircraft parameters with units
which are organized in a tree data structure composed
by 71 container objects.

For this development iteration, we wanted to avoid
additional overhead and thus relinquished to derive
knowledge from textual resources such as Federal
Aircraft Association Standards via natural language pro-
cessing. Finally, on-site experts from Bauhaus Luftfahrt
were available for interviews. However, due to having
a high workload and tight schedules of their own, we
were not able to involve these experts into the ontology
development as much as we originally intended to.

With respect to the ORSD and possible ontological re-
sources, it was planned to search for ontologies that
comprise concepts of units, measures and quantities.
Selection criteria were the proper ontology language and
dialect with respect to the ORSD (OWL2-DL), semantic
richness, useful content (e.g. also unit symbols, dimen-
sions or conversion factors), and the usability with typical
OWL reasoners, such as FACT++, HermiT, Pellet, Racer.
The ontology that was finally selected is the Library for
Quantity Kinds and Units (QU)9.

Re-Engineering Phase

The selected unit ontology uses OWL, thus it could be in-
tegrated without modifications. Our non-ontological ref-
erence models were given in an XML format for mod-
els (XMI). These models were manually transformed into
mind maps to better grasp and compare the underlying
concepts. The content of those mind maps was then
pruned regarding our requirements in the ORSD and
consolidated to be used as the reference for the following
project phase.

Design and Implementation Phase

With respect to the design and implementation, NEON
refers to other established ontology development
methodologies [19]. For this project it was decided to use
the relevant aspects of OTK [8, 20, 21], especially since it
also recommends the use of competency questions and
encourages the use of mind maps for the conceptualiza-
tion.
Due to our manual approach for creating the ontology,
a top down approach was applied for the conceptualiza-

7www.scilab.org
8www.pace.de
9http://www.w3.org/2005/Incubator/ssn/XGR-ssn-20110628/

#Units_of_measurement_and_quantity_ontologies
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tion, meaning to start at a generic level and then extend-
ing into more detailed levels as needed. This is opposed
to a bottom-up approach when using automated tech-
niques, starting at the most detailed level and then inte-
grating concepts into more generic levels, or a middle-
out approach which is a combination of these two. Con-
cepts from the mind maps were iteratively added to the
ontology and enriched by relational concepts that were
required according to the ORSD. To ensure a minimum
level of quality and readability, certain naming conven-
tions were applied, as well as some established best-
practices (i.e. for model composition), and descriptive
annotation comments where needed.

4.3 Evaluation of the AIRCRAFT Ontology

NEON regards evaluation as an accompanying activity
that is performed for each activity and phase and not as
an explicit project phase. However, we introduced a des-
ignated evaluation phase at the end of the development
cycle. One reason was that we wanted to involve domain
experts not before our first implementation had reached
sufficient stability.
NEON itself differentiates between three dimensions
for evaluation [22]: structural, functional, and usability-
related. However, NEON focuses on metrics, gold
standards such as implementation benchmarks, which
were not available for our case, and formal methods,
which are not suitable for this project. Thus, we es-
tablished our own evaluation criteria for this phase in
our project: first, expert interviews to find faults in the
ontology, and second, the coverage of the competency
questions from the ORSD.

For the interviews, two experts were available for an one-
hour interview each. The focus lay on the correctness
of the concepts in the ontology, with a conventional civil
passenger aircraft in mind.
The interviews were structured as follows: First a short
introduction about the ontology and the objective for the
interview was presented. Second, ontology statements
about the structural composition were discussed. The
most complex and thus potentially most controversial
concept definitions were discussed first in order to
ensure that less controversial concept definitions had to
be skipped if interview time ran out. Finally, parameter
sets and their associations with component concepts
were discussed. Again, the focus was on the most com-
plex and thus most error prone parameter set definitions.

The interviews provided some general insights. First,
some concepts are named differently in American
English and British English, which can be misleading
if not properly declared. It is also very important to
clearly define and delimit concepts to avoid ambiguities.
As concept boundaries become fuzzy, generalization
becomes increasingly difficult. Second, with a growing
level of detail, interdependencies increase, making exact
distinctions between concepts difficult. For example,
the question was raised whether the landing gear

compartment has a stronger relation to the fuselage or
to the landing gear. During the interviews not all such
questions could be decided by the domain experts. In
these cases the ontology developer resolved the issue
by declaring both associations valid. Finally there exist
some terms that have an established meaning, which
were not properly used. A Group, for example, denotes a
loosely connected set of components pertaining to one
specific aspect like e.g. propulsion, whereas a System

denotes an integrated component with all its parts.

Regarding the specific results of the interviews, out of
343 class definition statements , 314 were covered and
29 had to be omitted as time ran out. Effectively this
means that only less than 10% of the least important
parts of the ontology were not evaluated by domain ex-
perts, while more than the most important 90% were.
We defined five different types of issues in Table 1 as
follows:

• W: The horizontal stabilizer was called
tailplane, which is in fact a more general term
that describes any stabilizing plane at the tail of an
aircraft

• A: The parameter isDescribedByRatioVolume

some DimensionlessParameter is somewhat vague
regarding its name, since it is a ratio, but is calcu-
lated by multiplying an area with a length, which one
would assume to be a volume.

• S: Some components had a parameter “centerline
chord", as well as a “mean aerodynamic chord”,
which is essentially the same. Ontologies allow a
formal definition of synonyms. However, we decided
to implement a proper handling of synonyms in later
development cycles and, for now, to delete one of
the synonyms.

• R: The parameter isDescribedByYKink some Dis-

tanceParameter for a wing is not clearly defined,
since it is not clear from where (and in what direc-
tion) this distance respectively length is measured.

• M: Due to the misconception of a parameter “lever
arm” for the vertical stabilizer, its “span” was omitted

All issues identified during the interviews (see Table 1)
were thereafter corrected in the ontology.

Accordingly, by interviewing domain experts the correct-
ness of most statements in the ontology could be vali-
dated. However, due to the open world assumption it is
impossible to validate the completeness of an ontology
on a general level. However, limited completeness of the
ontology with respect to its requirements from the ORSD
can be tested by checking whether the ontology can an-
swer the predefined competency questions correctly. As
shown in Table 2, all of the five questions categorized as
priority 1 (essential) can be answered. Out of the five pri-
ority 2 questions (wanted, but not essentially needed for
this first iteration), three can be answered. None of the
four priority 3 questions (nice to have, but not expected
for this first iteration) can be answered.
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Type Code Count

Name is Wrong W 4
Name or concept is Ambiguous A 11
Undeclared Synonym S 8
Reference for describing parameter
is missing

R 3

Missing parameter due to wrong as-
sumptions

M 2

Total 28

Table 1: Qualitative excerpt of the survey results among
stakeholders

5 THE AIRCRAFT ONTOLOGY

The AIRCRAFT ontology is available at a GITHUB repos-
itory10. This repository also contains the thesis that pro-
vides an in-depth description of the ontology.
The AIRCRAFT ontology itself contains 96 classes and
224 object properties. For demonstration purpose the
ontology also contains 22 individuals. The ontology
imports the public qu-rec20.owl ontology to reuse it for
defining appropriate quantity kinds and units of param-
eters. This imported ontology contains 275 classes, 22
object properties and 12 data type properties.

In the following we describe how the ontology rep-
resents knowledge about system decomposition and
parametrization of a civil passenger transport aircraft like
an Airbus A320, and give an example of how this knowl-
edge can be applied.

5.1 Representation of System Decomposi-
tion

Figure 2 shows how system components and their sub-
components are represented in the ontology, following
a clear naming and structure convention. In particular,
class names start with upper case, while properties start
with lower case. A class representing a component is
accompanied with a subcomponent class. For instance,
Engine is modeled as a subclass of AircraftSubCompo-
nent which is the subcomponent class of Aircraft. To
assemble a component by its subcomponents, a part-of
relation is modeled using appropriate object properties
shown in Figure 3 and Figure 4. Accordingly, Aircraft
has at least one hasEngine property to Engine and in-
versely Engine has at least one isEngineOf property to
an Aircraft). Component classes on the same level
of system decomposition can also be related to other
component classes by the connectedTo object property.
Accordingly, Engine can have a connectedTo relation
to Wing or to the Fuselage. Following the open world
assumption, this example does not specify a particular

10published at https://github.com/astbhltum/

Aircraft-Ontology under the Eclipse Public License, Version
1.0 (EPL-1.0)

Prio Result

Structure

1 What is the structure of a model com-
ponent (from the given models)?

X

1 Which component is component X
part of?

X

2 What is the wing configuration of the
airplane?

×

2 What is the undercarriage configura-
tion of the airplane?

X

2 What is the engine configuration of
the airplane?

X

1 Which structural parameters define
component X?

X

1 Which component(s) is component X
attached to?

X

2 What parameters are relevant for
aerodynamics?

×

Units

1 Which unit is a parameter measured
in?

X

2 Is a certain length X in foot equal to
another length Y in meter?

X

3 Which quantities does the speed of
sound depend on?

×

Behaviour

3 What is the operational radius of the
airplane?

×

3 Which parameters does the opera-
tional radius depend on?

×

3 Can the airplane go directly from
take-off to cruise?

×

Table 2: Evaluation results of the AIRCRAFT ontology by
competency questions defined in the ORSD

propulsion system configuration but represents knowl-
edge on known component arrangements.

5.2 Representation of Component Param-
eters

Besides knowledge about the structural interrelations of
system components, the ontology also contains knowl-
edge about relations of components to their defining pa-
rameters. However, while developing the ontology in
PROTÉGÉ we encountered that combining structural as-
pects with parameter relations resulted in very large and
cluttered class definitions. Therefore, we decided to in-
troduce a proxy class between each component and its
defining parameters. For example the class Engine is-

DescribedByEngineDescribingParameter called En-

gineDescribingParameter. This latter class is the proxy
and effectively forms the set of all parameters asso-
ciated to the component. The proxy is connected to
all these parameters via specialized object properties.
So, among others, EngineDescribingParameter is-

Deutscher Luft- und Raumfahrtkongress 2013

7



(Thing)

Aircraft

AircraftSubComponent

Engine

EquvalenceClass:WingMountedEngine

EngineSubComponent

(etc.)

Wing

WingSubComponent

[...]

Figure 2: Class structure composition excerpt

(topObjectProperty)

hasPart

hasDirectPart

hasEngine

[...]

Figure 3: Object property excerpt of hasPart-relation

DescribedByReferenceThrust with a ForceParameter.
Such explicitly named properties allow the restriction to
parameters with units of appropriate dimensions. This
is where the external ontology for units and dimensions,
QU, comes to use. By assigning a unit type to a param-
eter, its dimension (distance, area, etc.) is automatically
given, enabling the modeling of appropriate parameters.
QU furthermore provides a property to assign a numer-
ical value. So, following the example, ForceParameter
has a unit of type ForceUnit, and a numericalValue

as data type double.

5.3 Reasoning

Regarding reasoning, the two most relevant benefits are
consistency checks and automated classification. By us-
ing the restrictive capabilities provided by OWL, we were
able to enforce rather rigid consistency constraints. Try-
ing to assign an AreaUnit to a ForceParameter, or to
assign a DistanceParameter to Reference Thrust, will
result in an inconsistency error. Furthermore, an incon-
sistency will be detected when a LandingGear isFuse-

lageOf Wing. The subsumption service of reasoners can
classify an Engine that isConnectedTo a Wing as Wing-

MountedEngine. Given an individual of an Engine that
was accidentally created as a direct member of the most
general class Thing. When this individual isEngineOf
an Aircraft individual, the reasoner can classify it as
Engine.

6 DISCUSSION

In this section, we discuss our observations and lessons
learned from the development of the AIRCRAFT ontology.

Advantages of the NEON Methodology We found the
NEON methodology appropriate for our purpose. The

(topObjectProperty)

isPartOf

isDirectPartOf

isEngineOf

[...]

Figure 4: Object property excerpt of isPartOf-relation

scenarios defined by NEON allowed us to customize our
ontology development process to our specific situation
that was determined by the type of development and the
data sources provided.
Disdvantages of the NEON Methodology We experi-
enced some weaknesses of NEON regarding the initi-
ation and the evaluation phases. In particular, guide-
lines for preliminary planning are missing in the pro-
cess model. Furthermore, NEON proposes evaluation
techniques which require the existence of comparable
ontologies to collect metrics data and compare them
for different ontologies. In bootstrapping development
projects, comparable ontologies are not available and
this approach cannot be applied.
Avantages of Ontologies We found several advantages
for using ontologies as knowledge representation mech-
anism. First, the ontology infrastructure, in particular
the open world assumption as well as the possibility
to import one ontology into another one, was helpful
to integrate knowledge from different sources. Using
this infrastructure, we could integrate the existing OWL
ontology for measures and units without complications.
According to this experience, we recommend ontology
reuse efforts from the beginning of ontology develop-
ment as well as the use of standardized ontology lan-
guages. Second, we applied reasoners to handle the
growing size and complexity of our ontology by checking
logical consistency. We could use off-the-shelf reason-
ers as we employed a standard ontology language and
not a modeling language such as UML with no formal
semantics.
Disadvantages of Ontologies Besides advantages, we
also experienced disadvantages by using ontologies.
First, a full consistency check of our final ontology using
a state of the art reasoner on a standard laptop required
more than 20 seconds. Accordingly, an interactive on-
tology development - checking consistency after every
modification of the ontology - could not be performed.
Instead, we checked consistency only after adding sev-
eral ontology elements which increased the difficulty of
pinpointing a malicious element in case of an incon-
sistency error. Second, we felt that the complexity of
an OWL class that represented structure decomposition
and component parameter aspects was already quite
big. Hence, we moved the component parameter as-
pects into special classes. While it is debatable when a
class becomes too complex, the problem of too complex
classes is independent of our specific case.
Lessons Learned from Ontology Evaluation We
learned three things while evaluating our AIRCRAFT on-
tology by expert interviews. First, expert involvement is
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crucial. Checking the correctness and completeness of
an ontology about a special domain can only be done
by involvement of domain experts. But those experts are
usually busy people and it is difficult to get their time. We
think we found a good compromise by evaluating a pre-
viously created ontology and revise it based on expert
input. Second, it cannot be guaranteed that all semantic
errors can be found by our evaluation method. Third, our
AIRCRAFT ontology was developed independently from
any design tool or application used by domain experts.
A negative consequence of this strategy was that the
developed ontology had no direct relevance to the daily
work of the domain experts and it was difficult for them
to assess the consequences of different solution alterna-
tives or to evaluate design decisions in a concrete con-
text. Therefore, we concur with the NEON recommenda-
tion to involve domain experts and to develop the ontol-
ogy in the context of a concrete application as soon as
possible.

7 RELATED WORK

There has been extensive work on the benefits of ap-
plying semantic technologies for the efficiency of model-
driven systems engineering, which has been the motiva-
tional background for our ontology development project.
Broy et al. [26] studied model-based systems engineer-
ing environments. They found that formal semantics of
system and process modeling languages are essential
prerequisites for seamless tool integration. We consider
our AIRCRAFT ontology as a contribution to future in-
stances of their theoretical framework in the aircraft de-
sign domain.
Reiss et al. [23] give a general overview on the applica-
tion of ontologies in the aeronautic domain. In particu-
lar, they address the differences and advantages of on-
tologies to other domain modeling techniques, such as
metamodels. There are other aeronautic related ontol-
ogy development projects. Different from our AIRCRAFT
ontology which is supposed to be applied in the context
of aircraft design, the ontology developing project by Va-
lente et al. [24] is supposed to be applied in the context
of flight operations where system behavior is more rele-
vant than system structure. In their study they describe
their experience in developing an ontology for air cam-
paign planning. For example, they encountered that on-
tologies made for different use cases can have different
structure which makes them less compatible. With our
AIRCRAFT ontology development process we aimed for
avoiding this “use-bias”.
Ontology-model integration of conceptual aircraft design
model is shown by Glas [29]. The methodology uses a
reference ontology which is derived form the integrated
models in an interactive process. As a result, the struc-
ture of the final reference ontology is closely aligned with
the structure of the source models. In contrast, the goal
of our development process described in this paper was
to design an ontology which is independent from a par-
ticular aircraft model.

8 CONCLUSION

Our motivation for developing the AIRCRAFT ontology
is the lack of a publicly available ontology for aircraft
design which can be used as a semantic reference
during consistency checking and integration of differ-
ent aircraft design models. We selected the NEON
methodology and followed its guidelines to develop the
AIRCRAFT ontology. We found the guidelines of the
NEON methodology appropriate for our context with
a few exceptions and describe our instantiation of the
NEON methodology in detail. The resulting AIRCRAFT
ontology is an OWL ontology which covers structural
system decomposition and component parameters of an
aircraft. It is publicly available from a GITHUB repository
under the EPL license. The AIRCRAFT ontology was
evaluated regarding correctness in interviews with two
domain experts and regarding completeness by testing
it with predefined competency questions. By presenting
our ontology development process based on the NEON
methodology as well as the resulting AIRCRAFT ontol-
ogy, we hope to enable colleagues to use the AIRCRAFT
ontology and extend or modify it to fit their needs.

Our next step will be to apply and exploit the AIRCRAFT
ontology in consistency checking and integration tools
for aircraft design models and evaluate its appropriate-
ness. This exploitation is supposed to improve the ef-
ficiency of services such as model integration as pro-
posed by Glas [29]. We also intend to exploit the AIR-
CRAFT ontology in existing aircraft design tools beyond
model consistency checking and integration. Our long
term goal is to contribute to the integration of seman-
tic technologies into system design tools as proposed by
Bauer and Roser [30], and to the establishment of knowl-
edge engineering as a natural part of systems design.
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