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Abstract
Implementation of Euler based induced drag estimation is considered exemplary for two planar and two highly
non-planar lifting systems employing farfield analysis technique. Basic induced drag characteristics are
provided by means of farfield analysis established as well as on linear potential methodology employing a
vortex-lattice approach. Euler based span efficiencies are found to agree reasonably with those predicted by
potential theory, although individual spanloads and downwash distribution differ considerably. Particular for
the crescent biplane, reduced downwash compensates performance penalties introduced by uneven
distribution of lift. Supposed impact of higher order effects on induced drag characteristics of highly non-planar

lifting systems could not be verified for systems under consideration.

NOMENCLATURE 1. INTRODUCTION

b = span, [m] For a commercial aircraft during stationary cruise flight,
Co = Drag coefficient, [/] induced drag accounts for roughly 40% of the total drag. In
CL = Lift coefficient, [/] other flight conditions its contribution can be even more
c = chord, [m] profound. For take-off or landing, induced drag constitutes
D = Drag, [N] up to 90% having major impact on flight performance as
E = Span efficiency, [/] explained by Kroo [18]. Several concepts for reducing this
T = x-component of the unit normal vector drag portion have been presented over the last decades.

(1,0,0), /] Besides rather conventional approaches like wing tip
h/b = Height to span ratio, [/] extensions (e.g. winglets), more radical concepts regain
M = Mach number, [/] attention. Renewed interest has emerged in highly non-
n = Unit normal vector (nx, ny, nz), [/] planar lifting systems which has led to several conceptual
p = Pressure, [Pa] design studies recently. (e.g. Jemitola and Fielding [16],
R = Gas constant, [Ukg-K] Salam and Bil [24], [25], Foong and Djojodihardjo [9],
s = Entropy, [J/K] Jansen et al. [15], Mamla and Galinski [20], Verstraeten and
% = Velocity vector (u, v, w), [m/s] Slingerland [32], Hicken and Zingg [11], Demasi [4], Sun et
Y = Specific heat ratio, [/] al. [29]). FIG 1 provides an overview of different highly non-
AH = Variation of total enthalpy relative to planar lifting systems and associated theoretical span
freestream, [J/kg] efficiencies.
As = Variation of entropy relative to
freestream, [J/K] \/ 1.03 —1s
S = Surface’ [mz] ——
a = Angle of attack, [°]
A = Aspect ratio, [/] O o5 I—I 138
n = relative span, [/]
p = Density, [kg/m?] I I 1.41
Q = Volume, [m? > < 132
Subscript ; 143
ell = Elliptical
[ = induced — 13 : 146
ff = Farfield
LE = Leading edge FIG 1. Highly non-planar liting systems, Kroo [17]
ref = Reference
r = Root Within these studies, induced drag estimates are commonly
t = Tip obtained by means of numerical approaches based on
°° = Freestream

linear potential flow theory. Accounting for the large design
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space during conceptual design phase, the Ilow
computational effort involved makes these extremely
attractive, facilitating a rapid evaluation. Vortex-lattice and
panel methods are classical representatives, prescribing
the trailing wake as a flat and thin vorticity sheet leaving the
trailing edge in the freestream direction. Although this
shape differs generally from the physical, rolled-up and
force-free wake, sufficiently accurate induced drag
estimates can be provided for planar wings at small angle
of attack. (Smith and Kroo [28]). In particular, this is enabled
by the streamlined wake model itself, only permitting force
contributions perpendicular to each trailing vortex filament.
The wake is therefore essentially drag free. Roll-up process
can be assumed to occur so slowly that the near-field
portions of the wake, having the most dominant influence
on the bound vorticity and therewith on the induced drag,
are not extensively altered from their initial shape.

The validity of this assumption however becomes
problematic in the context of highly non-planar lifting
systems. The vertical displacement of the lifting elements
promotes a high degree of non-planar character in the near-
wake, potentially exaggerating non-linear wing-wake
interactions. By means of a hybrid wake-relaxation
procedure, Smith [26] imposingly demonstrated that even
for planar wings, higher order effect have a perceptible
impact on the induced drag which should not be
disregarded. For a split-tip planform, creating a non-planar
wake, induced drag estimates obtained with streamwise
and force-free wake model differed significantly (Smith
[26]). Even for the well-known elliptical wing, deviations
between force-free and drag-free model are evidently
given.

Induced lift is another important non-linear effect, which,
unlike wake shape is unique to non-planar lifting concepts.
It is generated by the vertical components of the bound
vorticity, in- or decreasing the local streamwise velocity and
therewith altering the near-field. A wake shed by a non-
planar system is therefore not necessarily lift free,
conflicting with the simple farfield lift model based on drag
free wake shape. The inseparable relationship between
induced drag and lift makes this is a critical issue.

Computational methods based on the Euler equations
depict the most comprehensive inviscid flow model and
provide an improved representation of the vortical flowfield.
Trailing wake shape is inherently included in the solution
process and is not required to be specified a priori. Non-
linear effects, systematically neglected by linear potential
methods can therefore be resolved. However, induced drag
prediction based on Euler equations is not compelled to
provide more accurate estimates compared to linear
potential methods. Part of problem certainly stems from the
application of surface pressure integration (near-field
approach) and cancellation of opposing pressure forces
close in magnitude on inadequate dense grids (Chao and
van Dam [3]). Although refining may introduce some
improvement, it does not remove the source of problem
completely but increases computational effort. This can be
a critical point within conceptual design where a quick
estimation is mandatory especially when optimization
procedures are involved. Numerical diffusion, whether
introduced explicitly for stability reasons or implicitly in the
discretization process, distorts accurate induced drag
prediction (e.g. van Dam and Nikfetrat [31], Chao and van
Dam [3], Bourdin [2]).

Mid- and farfield approaches have been successfully
employed to circumvent these issues. Motivated by
momentum theorem, integration of flow field variables is
performed on cutting planes downstream of the lifting
element (Trefftz plane) or involves volume integration over
parts of the computational domain. In contrast to surface
pressure integration technique, mid- and farfield
approaches permit drag decomposition and therewith a
phenomenological breakdown into physical components.

Although mid- and farfield approaches have made their
proof over years, the technique has not been integrated into
any commercial CFD code yet. Very recent experience with
these methods in conjunction with Navier-Stokes solver can
be found in Destarac [5], Gariépy et al. [10], Hue, D. and
Esquieu [13] and Vos et al. [33].

The present work intends to illustrate basic induced drag
characteristics of two planar and two highly non-planar
lifting systems obtained by means of a commercial Euler
flow code. Comparison is made towards estimates based
on linear potential methodologies using lifting line as well as
biplane theory and a vortex-lattice method. Comment is
given concerning the accuracy and necessity of Euler
based induced drag estimation methodology with particular
focus on highly non-planar lifting systems during conceptual
design phase.

2. EULER BASED INDUCED DRAG ESTIMATION
2.1 Farfield drag estimation theory

This section briefly discusses the farfield drag extraction
methodology presented by Destarac and van der Vooren
[6]. In general, farfield approaches provide a number of
advantages over nearfield methods. A critical obstacle in its
application is related to the creation of spurious entropy
drag due to numerical diffusion and smearing of the vortical
wake on progressively coarsen grids. Induced drag decays
as the location of Trefftz plane is moved downstream while
spurious drag shows the opposing trend. Different
approaches are available to correct farfield induced drag.

Assuming that upstream and lateral flowfield boundaries
are sufficiently far away of the lifting system, the general
farfield drag expression on a Trefftz plane can be given as:

(1) Dy = ffs (o(u =)V - 7) + (0 — po)i) dS

Fundamental idea of drag decomposition is based on the
separation of the axial velocity defect into components
correlating to reversible or irreversible phenomena. Since
viscous and wave drag are not considered within this work,
spurious entropy drag represents the only irreversible
source while induced drag is related to the reversible
process of adding transverse kinetic energy to the flow
downstream of the lifting element exclusively. Destarac and
van der Vooren [6] employed thermodynamic properties to
describe the axial velocity defect due to irreversible
phenomena as follows:

y-1
AH 2 v

As
(2) Al = Uy 1+2@—m (€R> — 1| — Uy

Applying Gauss theorem, the drag force produced due to
irreversible phenomena can be expressed as:
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@) Dirreversivie = fff (V : pAﬁV) an
Q

Here the volumetric integration is performed over the entire
control or fluid domain Q. Limiting the integration to areas
of irreversible drag production, in the present case to the
flow volume Quake containing the trailing wake, equation (3)
gives the spurious entropy drag created as:

@ Douriows = [ fﬂ

Performing estimation on a sufficient large Trefftz plane, far
enough downstream for longitudinal gradients to be
negligible, induced drag is given as suggested by Bourdin

[2]:

(5) pi= ||

with the vector fl

. e <v2 +w?2—(1- MEO)Au*2>

(V- pATY) dQyake

wake

fi-nds

Stp

(6) fi= 2 —2vAu*
—2wAu*

The axial velocity defect due to reversible processes is
expressed by Au* and can be calculated via:

2 At = + ( 1 As AH)
(7) U =U— Uy u°°yM§oR uZ
Direct estimation based on equation (6) leads to an
underestimation of induced drag due to exchange with
spurious entropy drag as Trefftz plane proceeds
downstream. By applying equation (4) to a control volume
bounded between vortex origin and Trefftz plane, induced
drag estimates can be corrected and become independent
of Trefftz plane location.

(8) Di,corrected = Di + DSpurious

2.2 Euler solver

Simulation results are obtained with the commercial solver
ANSYS Fluent 14.5 [1], employing a cell-centered finite
volume formulation for Euler flow equations. According to
the steady and incompressible flow conditions (M«»=0.2),
the segregated pressure based solver and second order
upwind spatial discretization scheme with high order term
relaxation is used. Hybrid initialization is performed
enabling the external-aero favourable settings. Equation (4)
and (5) are implemented into Fluent as user-defined field
function and monitored as convergence criteria. This is
important since, judging convergence based on nearfield
estimates is inappropriate as stated by Gariépy et al. [7].
The solution is considered to be converged when induced
drag coefficients vary less than 0.1 drag count per 100
iterations.

3 PLANAR REFERENCE SYSTEMS

This section discusses relevant test cases and flow
conditions for validation purpose of the presented farfield
analysis within ANSYS Fluent 14.5. To limit the complexity,
to avoid undesirable distortion by compressibility effects
and to assure comparability towards results issued from
other sides by means of linear potential methods, the flow
is studied at a Mach number of M»=0.2 and an angle of

attack of a=4°.
3.1 Planform geometry

Two planar systems, characterized by an elliptical chord
distribution are considered.

9) c(m) =cy(1—n?)

In particular, these are the classical elliptical wing, having
an unswept straight quarter-chord line (x=0.25) and a
planform with an unswept straight trailing edge (x=1.00),
referred to as crescent wing. The leading edge location is
given by:
(10) (1-n%)

Both systems are untwisted using NACA 0012 airfoil
sections with sharp trailing edge. To avoid numerical
issues, the span is generally terminated close to the wing
tip (n=0.999) to achieve a non-zero chord length.

x () = xe(1—

FIG 2. Isometric view elliptical and crescent planform

Elliptical and crescent planform are illustrated in FIG 2.
Geometrical data describing both lifting systems can be
found in TAB 1.

b b/2 1 (b/2) Sref A Cr Ct
[m] | [m] U [m?] " (m] | [m]
5.491 | 2.745 | 0.999 | 4.318 | 6.982 | 1.000 | 0.051

TAB 1. Geometric properties planar reference systems

Planforms have been chosen advisedly being very well
documented and validated. Foremost the crescent wing
was analysed thoroughly within numerous studies (e.g. van
Dam [30], Hunt et al. [14], Smith and Kroo [28], Lam and
Maull [19], Mortara and Maughmer [21], Smith and Kroo
[27]). Hereby, the crescent planform depicts an important
special case as it achieve least induced drag of all planar
systems, but also sheds planar wake at a certain angle of
attack. As non-linear impact on induced drag, introduced by
non-planar wake can therefore not be expected, the
streamlined wake model provides exact representation
within linear potential methodology. Deviations between
induced drag estimation based on drag-free and force-free
wake shape using Euler codes are therefore not likely to
exit. This is in contrast to the elliptical wing shedding a non-
planar wake and potentially exhibiting non-linear impact on
induced drag. Although the amount may be admit able
small, discrepancies are noticeable as pointed out by Smith
[16].

3.2 Numerical grid

Grids are created using the CutCell Cartesian meshing
approach within ANSYS Workbench 14.5. This type of
gridding strategy is found most suitable for present purpose
as it delivers high element quality while requiring minimum
user input, facilitating an integration into optimization
procedures during conceptual design. Rapid size changes
due to hanging-node configurations can be accomplished,
resulting in grids typically containing 80-95% hex cells,
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yielding potentially very accurate solutions (ANSYS [1]).
Curvature based refinement is enabled to provide sufficient
element size and density in respective regions (e.g. leading
edge). Explicit sizing function are employed at trailing edge
and in wake region (body of influence).

i)

Vi rvrrv vy 3

O O Y O

|

FIG 3. CutCell based grid

Grid sensitivity studies are performed based on a set of
continuously refined grids and a Richardson extrapolation
adapted from Ferziger and Peric” [8]. The computational
domain is rectangular shaped with its outer dimensions
being 40x15x20 meters throughout the study. The
downstream boundary is placed 27m away from the lifting
system. Element numbers range from approximately 1
million to 4 million for the coarsest to finest grid respectively.

4 HIGHLY NON-PLANAR LIFTING SYSTEMS

The geometric properties of two highly non-planar lifting
systems are presented in the following. Like for the planar
reference systems, induced drag characteristics are
studied at a Mach number of M»=0.2 and an angle of attack
of a=4° using ANSYS Fluent 14.5.

4.1 Planform geometry

As shown in FIG 1, various highly non-planar systems are
conceivable. For present analysis, a biplane arrangement
is found most favourable, as the lifting system does not
experience any planform intersections; vertical geometry
components do not exist.

FIG 4. Isometric view elliptical and crescent biplane

This does simplify the geometry creation and gridding
process to a great extent. More important, flow interactions
introduced by intersecting lifting elements (e.g. X-Wing) or
between horizontal and vertical lifting surfaces (e.g. C-
Wing), undesirable during this early stage of analysis, are
avoided. The non-linear impact by induced lift should
therefore be restricted to contribution resulting from angle
of attack and are not related to geometric non-planarity

itself. Derived from the classical elliptical and crescent wing
planform described in section 3.1, local chord distribution is
given by equations (9) and (10) as well. FIG 4 shows both
lifting systems, referred to elliptical and crescent biplane.
Geometrical data describing both planforms can be found
in TAB 2.

b | b2 n®2)] Ser | A | o | o | hib
[m] | [m] [ [m?] [ [m] | [m] 1
5.491(2.745|0.999 | 8.636 1.000 [0.0510.200

TAB 2. Geometric properties non-planar lifting systems

Equal airfoil sections (NACA 0012) are used; planforms do
not incorporate any geometric twist. The height to span ratio
(h/b) was chosen to a common value of 0.2, while no
longitudinal staggering was implemented. By definition,
conclusions concerning non-linear impact on Munk’s
stagger theorem [22] cannot be given anyway, as condition
of minimum induced drag are not enforced actively and
therewith not fulfilled.

4.2 Numerical grid

A set of continuously refined grids are generated for both
non-planar lifting systems using Cartesian CutCell meshing
approach. Shape of computational domain and outer
dimensions comply with those presented for the planar
systems under section 3.2. Element numbers range from
approximately 2 million to 6 million for the coarsest to finest
grid respectively.

5 RESULTS AND DISCUSSION

Results gained for planar, as well as for both highly non-
planar systems are presented in the following. In the
present context, span efficiency is defined as the induced
drag of a system producing an ideal elliptical spanload
relative to the induced drag of an arbitrary system carrying
same lift at equal projected span.

Cpi
11 e=—24
(11) Co:
Comparison is made towards linear potential

methodologies, employing lifting line theory and the vortex
lattice code AVL [7]. Estimates within AVL are obtained by
means of Trefftz plane analysis. The impact of panel
density and spacing was studied carefully. Half-cosine
spacing in spanwise direction and a cosine spacing in
chordwise direction employing 60x50 elements was found
to yield converged results (compare Hoefling et al [12]).
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FIG 5. Convergence plot
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A convergence plot is provided exemplary in FIG 5. It
becomes obvious, that convergence judging based on
nearfield is inappropriate for present analysis technique. To
obtain converged farfield results, higher amount of
iterations is mandatory.

5.1 Planar reference systems

Span efficiencies computed with ANSYS Fluent 14.5 are
given in TAB 3 based on standard surface pressure
integration, as well as on the farfield technique discussed in
section 2. In addition theoretical prediction based on lifting
line theory and vortex-lattice methodology are provided.

Elliptical planform
eLt [/] eavL [] esp [/] err [/]
1.000 0.994 0.704 0.995
Crescent planform
eLt [] eavL [] esp [/] err [/]
1.000 0.999 0.726 1.001

TAB 3. Planar span efficiencies

Span efficiencies obtained by means of lifting line theory
equal unity for both planforms as chord is distributed
elliptical. Assessing accuracy in respect to these theoretical
values, Euler based surface pressure integration approach
is found to differ considerably (about 30% relative),
independent of planform. Although this had been expected
for reasons described above, the extent of deviation is very
high. In contrast to that, Euler based farfield estimation
yields significantly improved results. Estimates deviate less
than 1% from lifting line theory but indicate minor efficiency
differences between both planforms. This trend was already
reported by Smith [17], ascribing this effect to a more
elliptical spanload adopted by the crescent planform. In
fact, analysing corresponding spanloads for elliptical and
crescent wing from the Fluent solution in FIG 6, Smith’s
finding is confirmed.

1.40
1.20 \\\
= 100+
£, 080 1
S
© 0.60 T
<)
0.40 +
------------- Ideal elliptical
0.20 + Elliptical wing
’ Crescent wing :
0.00 : | | | i
0.00 0.20 0.40 0.60 0.80 1.00

n[/1
FIG 6. Spanload for elliptical and crescent wing (Fluent)

However, the non-linear impact on induced drag due to
non-planar wake shed by elliptical planform as described by
Smith [26] could not be reproduced. lts contribution is
therefore assumed to negligible as estimates obtained with
AVL agree reasonably well with Euler based farfield

analysis and also emphasize potential
benefits for crescent wing planform.

performance

The local downwash, created by the elliptical and crescent
planform are plotted against the dimensionless span
coordinate in FIG 7. Downwash shed by crescent wing
accords to the ideal constant pattern over large portion of
its span. Although of similar magnitude, local downwash of
the elliptical wing deviates from constant distribution,
foremost in the tip region, delivering a further indicator for
performance penalties experienced in respect to theoretical
baseline and crescent planform.

0.00
Ideal elliptical
Elliptical win
-0.01 + Crescentwir?g
-0.02 +
= T~
= -0.03 +
2
2
— -0.04 +
-0.05 +
-0.06 + t t t +
0.00 0.20 0.40 0.60 0.80 1.00
nl/1

FIG 7. Downwash for elliptical and crescent wing (Fluent)
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FIG 8. Span efficiency against downstream distance

Effectiveness and accuracy of presented Euler based
farfield approach and correction methodology is
demonstrated in FIG 8. Employing equations (2) to (8)
correcting induced drag by the fraction exchanged with
spurious entropy due to non-physical, irreversible
phenomena, estimates become independent of
downstream location. However, positioning Trefftz plane to
close to the lifting system or the downstream flowfield
boundary should be avoided as this can introduce
numerical errors to the solution. (Gariépy et al. [7])

5.2 Highly non-planar lifting systems

TAB 4 provides span efficiencies for elliptical and crescent
biplane, corresponding to estimation methodologies
employed above. Subjected to the condition of evenly
distributed lift, theoretical predictions based on lifting
line/biplane theory are presented informally. A deliberate
interpretation is however mandatory since an exact
compliance of this constraint was not enforced actively
within vortex-lattice and Euler based analysis. Although this
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might entail a disadvantage, it prevents distortion by
optimization procedure implemented to fulfil condition of
minimum induced drag by modifying local twist or incidence
angle.

Elliptical biplane
eurt[/] eavL [/] esp [/] err [/]
1.360 1.348 0.961 1.342
Crescent biplane
eLt [/] eavL [] esp [/] err [/]
1.360 1.351 0.984 1.352

TAB 4. Highly non-planar span efficiencies

Estimates established on vortex lattice methodology show
good agreement with minimum induced drag predicted by
linear lifting line/biplane theory. The relative deviation in
respect to theoretical baseline constitutes less than 1%.
Analysing corresponding spanloads, lift is found to be
distributed unevenly among bottom and top wing,
explaining discrepancies found above to some extent.
Minor performance benefits are indicated for the crescent
biplane configuration in respect to the elliptical system. An
elaborate discussion on results based on potential theory is
not given here but can be found in Hoefling et al. [12].

(Cre)(CLcavg) 1]
o
g

0.60 +
040 T Ideal elliptical
Elliptical Biplane
0.20 T Crescent Biplane
0.00 + + + + +
0.00 0.20 0.40 0.60 0.80 1.00

nl/]
FIG 9. Spanload for elliptical and crescent biplane

Employing standard surface pressure integration technique
within ANSYS Fluent yields span efficiencies, far below the
theoretical baseline and in the range of simple planar wings
for both systems. Deviations compared to lifting line theory
are of similar magnitude (about 30%) than for the reference
systems considered in section 4.1. Results obtained using
this technique are therefore not assumed to be plausible.
However it should be noted, that this judgment cannot be
made based on relative error in respect to biplane theory
exclusively, but is founded by experience from other sides
and findings in section 4.1 for planar systems.

Span efficiencies delivered by means of farfield analysis are
in close consistency with estimates issued by linear
potential methodology with a relative deviation of about 1%
overall compared to lifting line/biplane theory. Near elliptical
shape of associated spanloads depicted in FIG 9
emphasize this result. In contrast to the planar reference
systems, the elliptical biplane adopts a more elliptic loading,
conflicting with reason given before to vindicate

performance benefits of crescent planform. This further
contradicts similar findings issued by Hoefling et al [12]
using high-order panel method. In this respect, other
reasons need to be given to provide meaningful
enlightenment of this result.

Analysing spanloads for each lifting surface individually,
bottom wing is revealed to produce considerably more lift
than the top wing for both highly non-planar systems
(compare FIG 10 and FIG 11). Lift created by top wing is
accordingly offset from ideal elliptical distribution towards
smaller values. Although this appears reasonable, as
channel flow in gap between both surfaces induces
overspeeds, it does not hold as a valid explanation for
prevailing efficiency differences between both systems
solely. Moreover, reflecting Prandt’'s [23] condition of
minimum induced drag of highly non-planar systems, span
efficiency of crescent biplane ought to be reduced
compared to elliptical biplane as its spanload exhibits lager
deviation from the elliptical baseline.
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FIG 10. Spanload for elliptical biplane
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FIG 11. Spanload for crescent biplane

Consulting in addition local downwash distribution given in
FIG 12, a consisting explanation can finally be provided.
Evidently, crescent biplane produces a more constant
downwash pattern than the elliptical biplane at a
substantially lower velocity level. While downwash
magnitude of elliptical biplane is similar to those given by
lifting line theory, downwash of crescent biplane is offset to
larger values. This is even more interesting when
considering that crescent biplane produces slightly more lift
under present flow conditions. Employing equation (12) as
an approximate correlation between induced drag per unit
span, sectional lift coefficient and downwash velocity, the



Deutscher Luft- und Raumfahrtkongress 2013

present result becomes more acceptable. In other words,
although spanload for the crescent biplane shows larger
deviations from the ideal elliptical reference, reduced
downwash velocities (over)compensate this effect and lead
to increased span efficiency in respect to elliptical biplane.

(12) Cq; = —Cp arctan (VK)

[ee)
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FIG 12. Downwash for elliptical and crescent biplane

Distribution of the latter further experiences a strong
downwash peak close to the wing tip, which is assumed to
be related to tip vortex roll-up close to the system.

6 CONCLUSION

Implemented Euler based farfield analysis has successfully
proven to be a reliably technique to accurately estimate
induced drag. Computed span efficiencies for highly non-
planar lifting systems investigated are in close consistency
with those predicted by linear vortex-lattice methodology.
This implies, that the impact of non-linear flow field
properties on the induced drag characteristics of present
highly non-planar lifting systems are small and can be
neglected. Non-planarity of system can therefore not be
assumed to introduce or even exaggerate non-linear flow
effects on induced drag necessarily. However is must be
admitted that configurations studied present a special case
within  non-planar systems. More complex wing
arrangements, deviating from the elliptical chord
distribution, may introduce more pronounced effects. This
is also supposed for configurations introducing induced lift
by vertical geometry components or closed systems like the
box wing.

Moreover it could be shown, that spanwise loadings
departing from the ideal elliptical distribution are not
compelled to introduce major performance deficits for highly
non-planar lifting systems. In that context, downwash
pattern of the crescent biplane is revealed to be reduced
compared to lifting line theory, compensating potential
performance deficits experienced by uneven lift distribution.
Source of this deviation needs to be studied more in detail,
however may be ascribed to higher order effects as these
have not be resolved by AVL.

Gained results encourage to pursuit implementation of
Euler based farfield analysis into conceptual design studies,
despite the fact of increased computational effort compared
to linear potential methodology (e.g. vortex-lattice method).
Discrepancies in spanloads and downwash distribution, not
resolved by vortex-lattice approach become important not
only within optimization procedures but also considering

imposed trim constraints for example.

Additional research effort is required to give more adequate
answer to the question of contribution of non-linear flow
field properties on the induced drag characteristics of highly
non-planar lifting systems in general. This involves detailed
studies on prevailing mechanisms of influence as well as
analysis of lifting systems with increased complexity.
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