Deutscher Luft- und Raumfahrtkongress 2012
DocumentID: 281506

INTEGRATING THE EUROPEAN PROXIMITY OPERATIONS SIMULATOR
WITH THE FORMATION FLYING TESTBED

F. Rems,
GSOC, German Aerospace Center, Oberpfaffenhofen, Germany,
Institute of Astronautics, Technische Universitdt Minchen, Garching, Germany

Abstract

The European Proximity Operations Simulator EPOS (part of GSOC, Oberpfaffenhofen near Munich) allows
simulating Rendezvous and Docking scenarios involving two spacecraft and integrating rendezvous sensors
(Hardware-in-the-Loop). Mockups of the spacecraft are mounted on two industrial robots. Both spacecraft
can be moved in six degrees of freedom each, thus simulating relative orientation. A real-time control system
operates the robots, involving the Real-Time Operating System (RTOS) VxWorks combined with
Matlab/Simulink Real-Time Workshop. This environment demands that any customer adapt his simulation
code, satellite simulator etc. to EPOS' real-time control. In detail, this involves considerable effort and time
which may obliterate the benefits of a Hardware-in-the-Loop simulation with EPOS. This paper presents the
author’s diploma thesis in a compressed form. Its aim is to reduce this effort distinctly by designing,
implementing and testing a software package which connects any external satellite simulator, “as it is”, via
Ethernet to the EPOS real-time control system. Although this strategy solves many problems, new ones are
created, like the fact that a non-deterministic network, like Ethernet, is used in a real-time environment. To
cope with these problems, an application layer communication protocol is developed, specifically tailored to
meet EPOS' needs. It comprises two sub-protocols, the Simulation Connection Protocol (SCP) and the
Remote Simulation Protocol (RSP). Among many other tasks, these protocols realize a data connection
between two Simulink models, monitor packet delay, manage the interaction between an external simulator
and EPOS (realization of starting conditions, timing...) and interpolate the robot trajectory in-between
external simulator commands. These communication protocols are implemented in the form of Simulink S-
Functions, not only compatible to Windows but also to the Real-Time Operating System VxWorks. SCP/RSP
is tested using a demo scenario running on a Formation-Flying-Testbed. This simulation environment is a
multi-satellite simulator developed by the Formation-Flying group at GSOC. It is illustrated that connection
quality in the local EPOS network allows coupling an external simulation with EPOS via Ethernet, as long as
the external simulator's sample frequency is not too large. Moreover, drift, e.g. the time differential between
the external simulator's clock and the EPOS real-time clock, shows to be in the limits of timer hardware
precision. As a result, simulations can be run for many hours before drift becomes a problem. SCP/RSP
adds to the flexibility of EPOS. Before, an initial speed and angular velocity different from zero was
inconvenient to realize. SCP/RSP carries out this task automatically, by determining an initial trajectory when
needed. Software running on the EPOS real-time control system has to run at a frequency of 250Hz
obligatorily. SCP/RSP allows running an external simulation at a much lower frequency by translational and
rotational interpolation. And SCP/RSP simplifies the simulation process. External simulations can be started
and stopped without the need to restart the EPOS real-time simulation.

1. INTRODUCTION
11.

external simulator.

In the following, a description of EPOS is given and the
motivation behind the development of the interface is
outlined. After a brief presentation of the FF-Testbed as
well as of the complete simulation configuration (EPOS +
FF-Testbed), the developed communication protocol is
described. Provided services and functions are explained.
Thereafter, some experimental results are given
concerning interface performance, followed by a brief
exposition of possible extensions and future development.

1.2,

Overview

This paper is a compressed version of the author's
diploma thesis, which was written in the second half of
2012 at the German Space Operations Center (GSOC,
part of German Aerospace Center) in Oberpfaffenhofen
near Munich. The author was mentored by the Institute of
Astronautics (LRT) at the Technische Universitat Minchen
(TUM). The works’ central objective is the realization of an
Ethernet interface (e.g. communication protocol software)
for the European Proximity Operations Simulator (EPOS),
which is a real-time controlled Hardware-in-the-Loop

European Proximity Operations Simulator

The European Proximity Operations Simulator (EPOS) is a

simulator for Rendezvous and Docking (RvD) scenarios
(see 1.2). This interface allows for an easy and flexible
connection of an external simulation system to EPOS. The
Formation-Flying (FF) Testbed — a multi-satellite simulator
developed at GSOC - represents an example of such an

Hardware-in-the-Loop (HiL) simulator for the last phase
(25m to Om) of Rendezvous and Docking (RvD) scenarios
involving two spacecraft. While physical simulation of
satellite dynamics on ground is virtually impossible, its
accurate numerical simulation is much easier and leads to

Deutscher Luft- und Raumfahrtkongress 2012

very good results. And whereas a realistic sensor output
(camera, sensor for contact forces...) is hard to simulate
numerically, real sensor hardware can easily be used on
ground. EPOS profits from combining numerical models of
satellite dynamics and real hardware for RvD simulations.

The central elements are two standard 6 Degree-of-
Freedom (DOF) industrial robots. One of them, a KUKA
KR100HA, is mounted on a linear rail, which is 25m long.
The robot can be moved on that rail in order to simulate
the approach of two satellites in space. Thus, the linear
rail constitutes one additional degree of freedom. The
other robot is a KUKA KR240 and is mounted at the end of
the rail, its base fixed in the laboratory. Each robot is
equipped with a breadboard attached to the tool flange
which can be used to mount satellite mockups or sensor
devices. Furthermore power supplies with different
voltages as well as various data interfaces are available.

FIG 1. EPOS Facility

In a typical scenario, the mockup of the target satellite is
mounted on the front panel of the KR100HA (on linear
rail). The servicer satellite is then represented by the
KR240 (fixed), which may carry sensor equipment and
docking systems on its front panel. Angular and relative
transversal movement of both satellites can then be
simulated by moving the 6 DOF robots and including the
linear rail as a 13th DOF.

Control of the EPOS facility and simulation of RvD
scenarios is achieved using a set of computers, each
fulfilling a specific task in the system and being connected
via different types of networks. Facility control can be
structured in three different levels (see FIG 2). The first
level corresponds to the Application Control System
(ACS). The second Level is associated with the Facility
Monitoring and Control System (FMC). And finally the third
level encompasses the Local Robot Control Units (LRC).
Both the ACS and the FMC are comprised of two PCs, a
Man Machine Interface (MMI) running Windows XP and a
Real Time computer (RT) running Wind River VxWorks,
respectively. The LRC consists of two identical KUKA
Robot Controllers (KRC) which are directly connected to
the particular robots. All these components are
interconnected by an Ethernet Windows network via
switch. To fulfill real-time requirements, ACS/RT and
FMC/RT communicate through EtherCAT, where the
FMC/RT serves as master and the ACS/RT as slave. For
connecting both KRCs with the FMC/RT another network
is used, the so called Robot Sensor Interface (RSI) from
KUKA.

ACS/MMI ACS/RT
Level 1: ACS S
Application N %
Control - -
System Windows VxWorks
A Slave
RvD Sensors etc. f————& Ethernet | EtherCAT
'V Master
Level 2: FMC FMC/MMI FMC/RT
Facility Q - N %
Monitoring and g < » QS
Control System % %
Windows VxWorks
[RSI
v
KRC 1 » KRC 2
Level 3: LRC
Local ———\| ———\|
Robot
Control Units ﬁ ﬁ
Robot 1 Robot 2

FIG 2. EPOS Control System

The ACS/MMI is used to design a Simulink model of e.g.
satellite dynamics, sensor interfaces and controller
algorithms — all the elements necessary to command the
robots’ movements in a specific RvD simulation. This
model is translated to real-time code by Simulink Real-
Time Workshop (RTW) and run on the ACS/RT.
Movement commands are passed to FMC level, then to
LRC level, before finally fed to the robots, thereby
undergoing diverse processing (coordinate transformation,
checks to avoid a crash etc.). The FMC/MMI is used
mainly for monitoring purposes.

An Example for a HiL scenario: A camera is mounted onto
the servicer robot. Real-time images of the target mockup
are fed to the ACS/RT (on which the Simulink model is
running) where they are processed to estimate the target’s
position and attitude. This data is used to have the
servicer adapt its attitude and position depending on the
target, thus realizing a formation-flight.

The facts presented in this section are based on 1'2'3’4’5,

where more detailed information about EPOS can be
found.

Deutscher Luft- und Raumfahrtkongress 2012

1.3. Expanding EPOS with an external
Simulator

The following scenario is considered: Some research
group has available some kind of simulator system
specifically designed to support the development of a
space camera, a docking mechanism or other RvD
hardware. This simulator may be a real-time capable
system, using an "exotic" RTOS or it may run with soft
real-time conditions using WinXP. There may by hardware
components (mockups) used in the loop. The simulation
may have been designed with a model-based approach,
for example a Simulink model, or with a low-level standard
programming language like C/C++ and FORTRAN.
Integrating such an external simulator directly with the
EPOS real-time control system, which means integrating
software and hardware interfaces into the real-time
Simulink model, necessitates various problematic tasks:

e Since the ACS/RT uses the RTOS VxWorks combined
with Matlab/Simulink Real-Time Workshop, the code
has to be ported to this operating system (in the form
of S-Functions). The compatibility with VxWorks may
require major changes to the code. Furthermore,
Simulink RTW may not support S-Functions written in
the programming language of the external simulator.
Even if Simulink RTW could be modified to do so, most
likely the effort necessary would be considerable.
Another possibility: The simulator uses Simulink blocks
which are incompatible with RTW or it may use a
totally different simulation environment (e.g. Modelica).
In that case the simulation would have to be designed
anew from scratch.

e As mentioned before, the simulation system could
include hardware connected to it, e.g. an on-board
computer. Then, interfaces which work together with
VxWorks are necessary. Since /O instructions aren’t
platform independent, most definitely these interfaces
have to be redesigned to fulfill compatibility. Moreover,
the ACS/RT has only a limited number of different
types of interface connections available (Ethernet,
serial port, USB without drivers at the time the diploma
thesis was written). However, the simulation system
may require other kinds of interfaces.

e The simulation on the ACS/RT has to run at a sample
frequency of 250Hz. However, satellite flight software
(and associated simulators) may run at considerably
lower frequencies. From this discrepancy follow
several problems. It may not be possible to make the
external simulator run at that high rate due to the
connected hardware components. Also, the required
computation power to make the simulation work at
250Hz could exceed the ACS/RT's capabilities. It is
conceivable to have the simulation run at 250Hz,
whereas the code of the external simulator is executed
at a lower sample frequency. But this may result in
“jumps” in commanded robot positions, overstraining
the robots’ acceleration capabilities.

e While integrating their software, the customers would
necessarily come in contact with EPOS internal
software and Simulink blocks. This requires additional
time and effort of the scientists and renders impossible
a “black-box’-like approach which is desirable from
perspective of the customer as an external EPOS user.

e The necessary procedure for realizing initial robot

conditions with speed and angular rate different from
zero is time-consuming and impractical. Before the
actual simulation is started, the customer has to
determine the initial conditions for each individual
simulation run, calculate a proper initial trajectory and
provide it to the EPOS FMC/MMI in the form of a file.
This procedure would prolong RvD tests needlessly.

It is the motivation of the author’s diploma thesis to avoid
all these problems by designing a well-defined Ethernet-
based interface to connect any external simulation system
to EPOS. This means development and definition of a
communication protocol as well as implementation of this
protocol on the ACS/RT and, exemplarily, on an external
simulator. Thus, the external simulation system can stay
"as it is" and is simply connected to the EPOS Ethernet
network. No development work is required, except the
implementation of the communication protocol. Ethernet is
an established standard so that almost any conceivable
simulation system is equipped appropriately. Moreover,
the external simulator doesn't necessarily have to be
located in the EPOS control room. It doesn't have to be in
the same building and may even be in another city, as
long as the Ethernet link's latency is of reasonable
magnitude. However, there is one disadvantage which
comes with Ethernet. It is, by design, non-deterministic.
The time some piece of information takes from source to
target is of statistical nature. It will be shown to which
extent this fact influences the proper functionality of the
whole configuration.

As an example for an external simulator, the Formation-
Flying (FF) Testbed is used, a multi-satellite simulator
based on Matlab/Simulink that has been developed by the
FF-group at GSOC for realizing high-precision simulations
of FF algorithms. It consists of a number of different
components: A Windows PC serves as Flight Control
Computer (FCC) which simulates orbit and attitude
dynamics, including various effects like drag and solar
radiation pressure. The flight software runs on the
Onboard Computer (OBC), which is a SPARC architecture
embedded system. Additionally, a high-precision GNSS
Signal Simulator is used to supply two Phoenix GPS
receivers with real Radio Frequency (RF) signals.>®"®
FIG 3 shows how the FF-Testbed is connected to the
EPOS control system.

RF Signal| Hardware
GSS »> GNSS
External Sensors
Simulator: 4 Sensor Data 4
Formation-Flying (Serial Link) 3
Testbed
FCC < > OBC
ACS/MMI ACS/RT
Level 1: ACS .
Application @ P . @
Control N .
System Windows VxWorks
A Slave
RvD Sensors etc. fe—————§ Ethernet EtherCAT

FIG 3. External
Control

Simulator connected to EPOS

Deutscher Luft- und Raumfahrtkongress 2012

The communication protocol is implemented in C++. The
code is integrated into Simulink as c-mex S-function
blocks. Thus, one S-function block (denoted “server”) is
part of the Simulink model created on the ACS/MMI and
executed on the ACS/RT. Another S-function block is part
of the Simulink model running on the FCC of the FF-
Testbed, or generally on the external simulator. The
blocks establish the Ethernet connection between both
Simulink models, e.g. between EPOS and the external
simulator, and thus realize the communication protocol
presented below. In general, the external simulator
calculates spacecraft states (position, speed, attitude,
angular velocity) as part of the individual simulation. These
states are fed to the FCC S-function block which sends
them to the EPOS s-function block. There, the states are
used to have the robots move accordingly. Also, actual
robot states, as measured by EPOS, are sent back to the
external simulator.

2. SOFTWARE ARCHITECTURE

2.1. Two-Layer Architecture in the Context of

Computer Networks

The nature of the various tasks which have to be dealt
with in order to realize a connection between some
external simulation and EPOS suggest a splitting into two
parts or layers. Here, the author complies with the useful
and widespread concept of layers in software design.® FIG
4 illustrates the two layers, their connection and their roles
in software architecture.

The Simulation Connection Protocol (SCP) constitutes the
bottom layer. The implementation of this protocol is also
denoted SimCon. The Remote Simulation Protocol (RSP)
constitutes the top layer. The implementation of this
protocol is also denoted RemoteSim.

SCP provides a bidirectional connection of "raw" data in
the form of a vector of numerical values. The format in
which this data is exchanged is specified as a SimCon
packet. Moreover, SCP monitors connection quality
(packet latency, deadtime etc.) and signal status (link
intact or broken) and provides this information to RSP. It
also supplies the top layer with information concerning the
correlation between EPOS' simulation time and the remote
computer's simulation time. Thus, SCP can be said to
manage the actual data connection and associated low-
level functions.

External Simulator EPOS ACS/RT
o} . .
§‘ RemoteSim RemoteSim
o Client Server
(hd
RemoteSim RemoteSim
Packet Packet
5]
®
— SimCon H SimCon
2') SimCon
N Packet

FIG 4. Two-Layer Architecture

RSP deals with the different states of the simulation
process, i.e. facility initialization, realization of starting
conditions, seamless transition to actual simulation etc.. It
handles many other tasks, interpolation and timing being
only two of them. RSP utilizes the services provided by
SCP. RemoteSim communicates using RemoteSim
packets which are comprised of a number of values, each
having a well-defined meaning. Since a RemoteSim
packet is nothing but a data vector of numerical values,
SCP can be used to exchange these packets between
external simulation and EPOS ACS/RT. Thus, RSP can be
said to manage the interaction between remote simulation
and EPOS.

As depicted in FIG 4, the external simulation comprises
one instance of SimCon and one of RSP client. On the
EPOS ACS/RT one instance of SCP and one of RSP
server is required. Note that both are separate
components not only on this abstract level but also at code
level. However, both may be combined in one Simulink
block in the external simulation and one Simulink block on
the ACS/RT.

This partitioning of tasks and responsibilities has several
advantages. SCP can be used separately as a universal
data connection. It may transmit sensor data from
simulation to simulation like visual information or
something similar. Furthermore, RemoteSim could be
combined with a different data exchange protocol/software
as long as it provides the services RSP requires.

In the terms of computer networksg, SCP and RSP
comprise the application layer protocol, as illustrated by
FIG 5. A RemoteSim packet is encapsulated in a SimCon
packet which then constitutes a network message.

Deutscher Luft- und Raumfahrtkongress 2012

j: Message

| Transport Layer TCP |
A
+v Segment

| Network Layer IP |

A
+ Datagram
Ethernet |

| Link Layer

Frame
Twisted Pair |

| Physical Layer

FIG 5. RSP and SCP in Protocol Stack

2.11.

SCP uses TCP/IP as transport- and network layer
protocol. A SimCon link uses two ports for two associated
connections: a data connection and a control connection.
As the terms suggest, data is sent via data connection and
control information is sent via control connection. Thus
SCP can be said to send control information "out-of-band",
similarly to the File Transfer Protocol (FTP) and the Real-
Time Streaming Protocol (RTSP).9 The reason for this is
simple. Suppose a large data vector is sent. While it is
transmitted, no other information can be exchanged. Using
another connection specifically for control information
obliterates this drawback. In a way, the multiplexing/de-
multiplexing algorithm of the underlying transport layer
protocol is exploited to send control information and data
vectors at the same time.® TCP is chosen as transport
layer protocol. It is preferred to UDP because of its reliable
data transfer (guarantee of complete transmission in right
order).® SimCon always establishes a point-to-point link
between two SimCon instances. Information is transmitted
in the form of SimCon packets with a well-defined
structure and of different types. Packets of type data are
sent using the data connection, all other types of packets
are sent via control connection. A packet received at the
wrong port is discarded.

Simulation Connection Protocol (SCP)

For clarity in the subsequent discussion, one of the two
communicating SCP instances is denoted “home” and the
other “target”. Home is where we think ourselves located;
target is the distant communication partner. This definition
is arbitrary and could be reversed at will, but it simplifies
explanations. SCP relies on time information provided by
the Operating System (OS). In general, this time on the
home OS differs from that of the target OS. This also is
valid for simulation time steps, since home and target
simulation are most likely not started at the same time and
sample frequencies are different. Therefore, some point in
time can be expressed in home time frame or in target
time frame, which is hereinafter expressed by superscripts
"and . At this point, it should be noted that SCP and RSP
don’t rely on any synchronous time signal between EPOS
and external simulator. At both end-points the
aforementioned system time supplied by the OS is used.

This design including the different types of SCP packets is
the basis for the services the protocol provides:

SCP allows for transmission of a vector of numerical
values from one SCP instance to another. The data
type can be chosen (floating-point double precision,
signed and unsigned 8-bit integer). For this purpose,
the SCP packet of type data is used.

A simple ping mechanism makes it possible to detect a
broken connection. In regular intervals, a SimCon
instance sends a packet of type ping. The receiving
instance responds with a packet of type ping return. If
this respond is not received after a certain amount of
time (timeout), the connection is considered broken.

SCP provides information about the correlation
between the simulation time steps of the two
communicating SCP instances. RSP requires this
information to ensure proper timing between EPOS
and external simulator. A SCP packet of type
reference, carrying the current simulation time step, is
sent at each time step. The receiving SCP instance
can thus correlate the time step of the simulation it is
embedded in with the one of the other SCP instance.
Assuming that the home instance receives such an
SCP reference packet sent by the target instance, then
the time step of transmission (contained in the packet)
equals the reference time step expressed in target time
frame nl,;. The packet is received at the time step
nlL .. Then the reference time step expressed in home
time frame is nfL; = nf, ., + 1.

The reason for +1 is illustrated in FIG 6: If the next
simulation time step at the home instance begins, the
RSP layer needs the reference time steps. However,
these have been determined just before the beginning
of the current time step. Suppose the home sample
time is considerably larger than the target sample time,
this would introduce a large error. Adding 1 corrects
this.

Based on the reference time steps, any point in time in
the form of a simulation time step expressed in home
time frame can be transformed into target time frame:

At
(1) n"= (0" —nf) - 2 + ngye
sample,t

Note that this mechanism neglects the packet's
transmission times, which are small, compared to the
external simulator's sample time (about 10Hz). Note
also, that rounding may be necessary with (1) to obtain
a full time step.

sent at the beginning of

A reference packet is
each new time step.

ne Steps. 334 (38 (38 X 37 (38)
Time Steps 33 ’ \
\ Reference Packet \
N
Home 3 4
Time Steps

Reference time steps
are used by RSP at the
beginning of a new
timestep..

Reference time steps
are determined upon
the receipt of a
reference packet.

FIG 6. Timing Diagram for Reference Packets

Similarly to the reference steps, SCP provides a
reference time t™" which allows to transform any

Deutscher Luft- und Raumfahrtkongress 2012

point in time from target to home time frame and vice
versa, according to

(2) th = tTH 4 ¢T

Determining t™H is not trivial. It is not sufficient to
have the target instance transmit its current time to the
home instance, where the reference time is to be
determined, since the transmission time is unknown
and cannot be neglected (in contrast to determination
of reference time steps). Instead, a SCP packet of type
delay is sent at regular intervals. The target SCP
instance responds with a packet of type delay return.
The delay packet is sent at t{"rm’delay and received at

Uecvdelay- The delay return packet is sent at

T H H

ttrm,del:—xyreturn and received at trecv,delayreturn' The
delay return packet carries all these values in its
header.

tT

trm, delay return

‘tT

recv, delay

, Target

H H
t H 0 me t recv, delay return

trm, delay

FIG 7. Calculation of Reference Time

The point in time precisely between transmission and
receipt at the home instance is

H _ . (+H _4+H H
(3) tref =0.5 (trecv,delay return ttrm,delay) + ttrm,delay

and the according point between transmission and
receipt at the target instance

T _ (+T _ 4T T
(4) tref =0.5 (ttrm,delay return tre(:v,delay) + tren:v,delay

Now it is assumed that it takes the same amount of
time for transmission of delay and delay return packet.
Then the times (3) and (4) are identical, but expressed
in different time frames. With (2) it follows

() tToH = t?ef - tlTef

Note that the reference time is determined at regular
intervals with each received delay return packet and
averaged using all the calculated values up to this
point.

SCP supplies information about the transmission times
associated with each received data packet. Certain
header fields of SCP data packets are used to
determine these transmission times. For example, a
specific header field contains the time when the packet
is transmitted.

The pure transmission time, i.e. the time between
transmission at t%,,, and receipt of a data packet at

21.2.

th,, is denoted Send2Recv:

(6) Aty = t1l:lecv - (tT_)H + ttTrm)

The time between acquisition of data by the SCP
instance from the simulation at t}'cqu and output of this
very data at the other SCP instance to the simulation
at th,; is denoted Acqu20utput:

(7) Aty = tEut - (tT_)H + tgcqu

Acqu20utput includes processing time. Note that the
time transformation t™H" determined by SCP and
explained above is needed for calculation of
Send2Recv and Acqu2Qutput. Precision and reliability
of these transmission times strongly depend on the
validity of the reference time t™H and thus on the
quality of the Ethernet network. However, the service
of providing packet transmission times is for monitoring
purposes only and is not critical for combining an
external simulator with EPOS real-time control.

To explain deadtime, the following process shall be
considered. Data for a packet is acquired at the home
instance at time tf,‘cqu. This packet is transmitted to the
target, where its data is provided to this simulation at
some time step. During this very time step (possibly as
a respond to this data) a SCP packet is sent back to

the home instance, where this packet's data is
supplied to the home simulation at tf,. This time
interval is denoted deadtime:
(8) Atgeaq = tl(-)[ut - t!;lcqu
Target
| "
t] tils the
tjf ths the
l -
Home st ol
«—— Aty ——»

Atdead

FIG 8. Transmission Times

Remote Simulation Protocol (RSP)

As already indicated in FIG 4, RSP consists of a RSP
client and a RSP server. The former has to be part of the
external simulator's Simulink model and the latter is to be
included in the EPOS Simulink model (ACS/RT). Both rely
on the services provided by SCP. They communicate via
RSP packets, which are comprised of a set of double-
precision floating-point values. These RSP packets are
passed to the SCP layer, where they are sent and
received as the data section of SCP packets. Together,
RSP client and RSP server manage the interaction
between EPOS and the external simulator. RSP server
performs a variety of tasks:

It interpolates robot trajectories in-between the
commands received from the external simulator (RSP
client). This is necessary since the EPOS Simulink
model is executed with a sample frequency of 250Hz,

Deutscher Luft- und Raumfahrtkongress 2012

while the external simulator works with a much lower
frequency. Translational robot position is interpolated
using a cubic polynom, e.g. C" continuous. Rotational
robot attitude (quaternion) is interpolated using a
method developed by Kim, Kim and Shin™.

e As part of the simulation process, RSP server
calculates an individual initial trajectory whenever the
external simulator is started. This trajectory begins with
the current facility states and ends with the desired
initial conditions as transmitted by the external
simulator. The methods are identical to those utilized
with the aforementioned interpolation during regular
simulation (after the initial trajectory is finished).

e If the external simulator is stopped or if the connection
is broken, RSP server slows down the robots safely
and slowly without provoking a hard stop of the robots,
which would require a partial restart of the EPOS real-
time control system. Thus, start, stop and restart of a
simulation are reduced to starting, stopping and
restarting the external simulator only.

e The server part of RSP extrapolates robot position and
attitude, if commanded robot states expected to be
received from the external simulator (RSP client) are
delayed, e.g. are received after they are needed for the
next upcoming interpolation interval. Thus, RSP can
cope with occasionally delayed packets due to the
non-deterministic nature of Ethernet.

The RSP client is considerably simpler than RSP server.
The client performs the following tasks:

e |t calculates simulation start time (when initial trajectory
is finished) as well as duration of interpolation interval
and transmits this timing information (along with the
desired initial robot conditions) to RSP server.

e RSP client transmits desired robots states regularly
and in time, so that RSP server can determine
interpolated trajectories for the consecutive
interpolation intervals.

It is the interaction between client and server that
constitutes the RSP protocol. The subsequent description
of this interaction shall illustrate the interaction principles,
thereby omitting some details which would go beyond the
scope of this paper. FIG 9 illustrates the main actions
taken and information exchanged during a simulation,
from initialization to termination of the external simulator.

RemoteSim RemoteSim

Client Server
| EROS Facility
! ! Ready
! RSP Server Ready ;%
|

Calculate
Timing

Initialization Packet

Calculate
Initial Trajectory

|

|

|

| |
E Packet With Desired |
|

|

1

Robot States

Calculate
Interpolated
Trajectory

Conhnection
Broken
}é
|

Safe Robot
Slow Down

FIG 9. RSP Client/Server Interaction

It is assumed, that a connection has been established
successfully. The EPOS facilty undergoes some
preliminary processes upon startup that are not depicted
here. At some point the facility signals that it is ready.
Upon receipt of this signal, RSP server sends an
according message to the RSP client. Thereupon, the
client gets the desired initial conditions (from the Simulink
model running on the external simulator) and calculates
the simulation’s timing. For this timing, two values have to
be calculated. RSP client needs to know the initial time
step, marking the point when the initial trajectory is
finished. Beginning with the step after the initial time step,
RSP client will send desired robot states. The client initial
time step (subscript), expressed in client time frame
(superscript C) is

. Atini
(9) nFnit,c = Cell(-) + ngurr

Atsample,c

where n&,,, is the current time step, e.g. the time step
when the timing calculation is carried out and the
initialization packet is sent to RSP server, At;,; is the
initial time span, e.g. the time interval available to the
robots to realize the starting conditions and thus the
duration of the initial trajectory and Atsampie,c is the sample
time of the Simulink model the RSP client is embedded in,
e.g. the sample time of the external simulator. Note that
At must be of reasonable magnitude (30 to 60 sec) and
has to be provided by the user. On the other end, RSP
server must be informed about when the initial trajectory
has to end and when to expect the first regular simulation

Deutscher Luft- und Raumfahrtkongress 2012

command from RSP client containing desired robot states.
The server initial time step gsubscript s), expressed in
server time frame (superscript °) is

(10)

S — S = Atsample,c
Mipics = Nipigc + ceil ([1 +v]- _)

Al:sample,s

v is the forerun, a fraction of Atsampie,c/Atsamples DEtWEEN
0 and 1, that specifies a time span the desired robot states
are sent to RSP server earlier than needed, so that
varying packet transmission times and processing times
(calculation of interpolated trajectories) are regarded. The
forerun is added and thus the RSP server initial time step
occurs later, implying a spare time constituted by wv.
Atgamplec IS RSP client sample time, e.g. sample time of
the external simulator. Atgampies is RSP server sample
time, e.g. EPOS sample time (250Hz). nj; is the client
initial time step expressed in RSP server time frame. It can
be determined from (9) using the reference time steps
provided by SCP (see (1)).

C . Atsample,c S
Npef) Npef

S — C
(1 1) Djpitec = (ninit,c - Atgamples
nisnit_s, along with the initial conditions is sent to RSP
server in the form of an initialization RSP packet. As a
next step, RSP server calculates the initial trajectory and
has the robots move accordingly. Shortly before the initial
trajectory is complete (considering the forerun), RSP client
starts the actual external simulation and transmits the first
desired robot states. Precisely when the initial trajectory is
finished, RSP server uses the desired states to determine
the interpolated trajectory for the upcoming interpolation
interval and has the robots move accordingly. Again,
shortly before this interpolation interval is finished, RSP
client sends the desired robot states for the next
interpolation interval. Precisely when the current
interpolation interval is finished, the lately received robot
states are used to determine the interpolated trajectory of
the next interpolation interval and the robots are moved
accordingly. In this manner, this principle is repeated
during the simulation. The timing diagram shown in FIG 10
illustrates this with an example, where nf; =47,

nicnit,c =5,v=0.5and Atsample,c/Atsample,s =4

At some point, the external simulator may be stopped.
This is recognized by RSP server, which safely slows
down the robots to a soft halt. From there, a new initial
trajectory could begin, should the external simulator be
restarted by the user.

RSP Client

5 6 7

Desired Robot States
for time step 51

Initialization Packet
(init. server time step 47)

|
|
Keep Initial Trajectory
Station /! (inititial time step 47)

RSP Server

Desired Robot States
for time step 55

Interpolated Traj.
(using desired states
for time step 51)

Interp...
(using...
for...

]
! Forerun

FIG 10. Timing of Client/Server Interaction

3. SIMULATION RESULTS
3.1.

The simulation, the analysis in this section is based on,
has not been carried out using the complete configuration
depicted in FIG 3. Rather, a minimum configuration was
chosen to illustrate proper simulation interconnection. It is
not the purpose of this section to evaluate a specific FF
simulation with associated algorithms etc., but to show
that SCP/RSP works as it is designed and that the
principal setup - EPOS connected to an external simulator
via Ethernet - is indeed capable of realizing a serious
simulation. On the FF side, the Simulink model running on
the FCC constitutes the complete external simulator. No
other components are used. However, from perspective of
the RSP client, this makes no difference.

Test Scenario

The simulation running on the FCC (mainly) comprises the
RSP client and an enabled subsystem containing the FF
model. The sample frequency is 1Hz. Attitude is constant
for both spacecraft.

The EPOS part of the simulation configuration is
comprised of a RSP-Server block and another Simulink
block constituting the interface to the robots.

3.2.

In FIG 11 target spacecraft position during the initial
trajectory is depicted. To keep a good overview, only the x
component is shown, representative for the trajectory. The
plot comprises three curves: The requested position
(requested by external simulator), the commanded
position (given to the robots) and the current position
(supplied by EPOS).

Initial Trajectory

Target Initial Trajectory

10~ :

8 e :
E ¢ AL z
» I R N Q\ Hahestehity
§ 4 ——Requested Target Position x =4
EE 27' ---Commanded Target Position x| = """
=] o Current Target Position x I5."1Y
n- H > = [£] 3 7 : X '\ ;

2 D r Xl 5 S EE 'y

0 10 20 30 40 50 60 70

Simulation Time [s]
FIG 11. Initial Trajectory

The plot starts at t=0, e.g. when the RSP server
simulation is started. Current position follows the
commanded position by an additional small delay of 32ms
due to EPOS control chain which cannot be seen in the
figure. Requested position is 0 at the beginning of the
simulation. As soon as RSP server receives the
initialization packet, the target starts to follow the initial
trajectory which approaches the requested position (and
speed) at facility initialization smoothly and asymptotically.
It is important to note that there are no edges in the
trajectory.

3.3.

In FIG 12 target position is depicted for a small time
interval during regular simulation, after the initial trajectory.
Requested speed changes every second, consistent with

Continuity of Interpolation

Deutscher Luft- und Raumfahrtkongress 2012

RemoteSim-Client sample frequency of 1Hz. The
interpolated trajectory which is commanded follows the
requested one precisely and smoothly. There are no
peaks or undesirable curving between S|mulat|on points.
That the interpolated trajectory is indeed C' continuous
becomes clear when looking at the associated speed plot,
depicted in FIG 13, where requested and current speed is
compared. Speed follows the requested values. There are
no jumps in velocity and therefore the first derivative of
position is continuous as required.

Target Position during Regular Simulation

-0.22
~~~~~ :{[—Requested Target Position x  |:

—-0724 i) ---Commanded Target Position x |:
E. ' ° Current Target Position x :
c -0.26
2
=
o -0.28
o

-0.3F ¢

120 122 124 126 128 130

Simulation Time [s]

FIG 12. Interpolated Position

Jarget Speed during Regular Simulation

-6
—Requested Target Speed X

— -6.2f ——~Current Target Speed x
[ o i =
E 64 =
»
T 66—
@ :
Q =
@ 68

{20

124 126 128 130
Simulation Time [s]

122

FIG 13. Interpolated Speed

3.4.

In this section, the demo scenario is used to present data
which allows ascertain the suitability of the local EPOS
network for realizing a distributed simulation via Ethernet.

Connection Quality

0.02

Time between Transmlssmn and Recelpt

—3Send to Recelve :
---Mean of Send to Receive |- | 10

0.015

Duration [s]

o

o o
(=) o
o —_

150 160 170 180

Simulation Time [s]

gP40

FIG 14. Send to Receive

FIG 14 shows the Send to Receive delay and its mean
(calculated at each point with the last 20 values). This
delay represents the time between transmission of the

packet by one SCP instance (here the external simulation,
e.g. RSP client) and receipt by the other SCP instance
(here the EPOS simulation, e.g. RSP server). As
expected, there are statistical variations. The mean value
is about 2.5ms. This is even below EPOS sample time of
4ms. Note also that changes occur at a 1s rhythm,
consistent with RSP client sample frequency of 1Hz.

Tlme between Acquisition and Output of Data

0.1
s e s e e —Acqulsmon to Output |
0.08 —--Mean of Acquisition to Qutputj
= 0.06 : :
2 ; g [] i : -
g 0.04 ——+ —=
S

SP40 . 150 160 170 180 190
Simulation Time [s]

FIG 15. Acquisition to Output

Compared to Send to Receive, the delay Acquisition to
Output depicted in FIG 15 is considerably larger. This
delay represents the time between acquisition of data from
the inputs of RSP client block and the provision of the data
to the outputs of RSP server block. Not only is the mean
larger, namely 20ms, but also the variation is more
distinct. This can be ascribed to two main reasons.
Acquistion to Output also includes the processing time of
the packet by the software. Various threads are at work in
parallel. Therefore, processing time may vary to some
degree. Moreover, acquisition of data and output of data
can only be carried out at discrete time steps. At some
point, server and client time steps may be located
temporally closer and at some point wider.

Deadtime in Seconds

gOOJ H H H” ] ,I ..... H( | H_
SR S WA Am IH‘HH i3 L

160 170
Simulation Time [s]

FIG 16. Deadtime

Another important delay value is deadtime depicted in
FIG 16 along with its mean. It represents the time between
acquisition of data by RSP server and output of the data a
specific received packet contains. It is the packet RSP
client has sent first after having received the
aforementioned packet from RSP server. Thus, deadtime
is a measure for the delay between a general command of
some sort and receipt of some kind of feedback
information related to this command. It is the deadtime the
connection introduces in the simulation system. The mean
deadtime is about 0.04s which equals about twice the
mean of Acquisition to Output. This makes sense from a
logical point of view, since two times the process of



Deutscher Luft- und Raumfahrtkongress 2012

acquisition and output of data is involved.

In order to appraise the impact of the presented data on
the simulation process, consider the range of reasonable
sample frequencies for the external simulator. The FF-
Testbed works with a frequency of at most 10Hz. Other
external simulations running flight software will work in that
area of sample frequency, too. Hence, the delay times in
this section, especially a mean Acquisiton to Output delay
of 20ms, are distinctly below critical values for the
simulation system. Individual peaks can be dealt with by
extrapolation (which RSP is capable of).

3.5. Drift

Drift is the time differential between the external simulation
and the EPOS simulation. It is different from zero if the
clocks the simulations are synchronized with don't run
precisely with equal speed. The tolerance of electronic
components alone dictates that a drift is to be expected.
With RSP, a measure for drift is the change in actual
forerun. The actual forerun showed to be about 10 °s/s.
This means that after 1000000s a drift of 1s can be
measured. This is well within the order of magnitude of a
quartz crystal's precision. Since SCP/RSP depends on the
clock, drift cannot be reduced any further.

4. CONCLUSION AND PROSPECT

A software package has been developed that allows
connecting an external satellite simulator via Ethernet with
the EPOS real-time control system, thereby reducing the
adaption effort for external customers and introducing new
functionalities. The distribution of tasks and responsibilities
led to the design of two application layer protocols. The
Simulation Connection Protocol (SCP) provides the data
connection, the Remote Simulation Protocol (RSP)
manages simulation interaction, where RSP relies on the
services of SCP. Both communication protocols are
implemented as Simulink c-mex S-function blocks.

A demo scenario was simulated. Interpolation even tested
with a sample frequency of 1Hz, e.g. interpolation intervals
of 1s, turned out to be absolutely smooth and continuous.
External simulators running at even such low frequencies
can work together with EPOS. Analysis of connection
quality showed a mean delay of 20ms including
processing from data acquisition at the remote simulation
to data output at EPOS. Considering a maximum sample
frequency of 10Hz, this delay is far below critical values.
Drift between the FF-Testbed and the EPOS ACS/RT was
within the limits of standard mainboard timer precision
(107%s/s). As a result, several hours of continuous
simulation are possible before drift becomes a problem.
The software cannot reduce drift any further, with the
given boundary conditions.

In the future, it might be beneficial to extend SCP/RSP
with a synchronization mechanism via Ethernet. A special
packet could be used to serve as a synchronization signal.
EPOS would provide the reference time. This would
obliterate the drift problem altogether and allow even
longer simulations. Another interesting idea is to not only
use the EPOS local network but to place the external
simulation in another building or even farther away.
Thorough examinations would be necessary concerning
packet delay and suitability of the connection for real-time
simulation (with an appropriately low sample frequency).

10

In summary, additional functionalities have been added to
EPOS with SCP/RSP developed in the author’'s diploma
thesis. Up till now, a simulation running directly on the
EPOS real-time computer was restricted to an initial speed
and initial angular velocity of zero for the
robots/spacecraft. Now, using an external simulation
connected via Ethernet, both initial speed and initial
angular velocity can be realized in the form of an
automatically calculated initial trajectory. Moreover, it is
possible to restart the external simulation or even a
different external simulation multiple times without
stopping the EPOS real-time simulation. The robots are
braked automatically, so that another initial trajectory can
be calculated as a starting point for another simulation.
Also, the tough restriction of a sample frequency of 250Hz
is circumvented by interpolation and extrapolation, if
required.

In this way, SCP/RSP contributes to the flexibility and
operational capabilites of the Hardware-in-the-Loop
Rendezvous and Docking simulator EPOS.

5. ACKNOWLEDGEMENTS

My diploma thesis which this paper presents in a
compressed form would not have been possible without
the kindly assistance of a variety of people. | would like to
thank my colleagues at the German Space Operations
Center: Dr. Toralf Boge, head of the EPOS group, Heike
Benninghoff and Tristan Tzschichholz. At the Institute of
Astronautics (Technische Universitdt Minchen), | have to
thank Prof. Dr. Ulrich Walter, head of the institute, and last
but not least Markus Pietras.

6. REFERENCES

[11 Boge T., Wimmer T., Ma O., Zebenay M., EPOS - A
Robotics-Based Hardware-in-the-Loop Simulator for
Simulating Satellite RvD Operations, The 10th
International Symposium on Artificial Intelligence,
Robotics and Automation in Space, Sapporo, Japan,
2010

Boge T., Wimmer T., Ma O., Tzschicholz T., EPOS -
Using Robotics for RvD Simulation of On-Orbit
Servicing Missions, AIAA Modeling and Simulation
Technologies Conference, Toronto, Canada, 2010

(2]

[3] Tzschicholz T., Boge T., GNC Systems Development
in Conjunction with a RVD Hardware-in-the-loop
Simulator, 4th International Conference on

Astrodynamics Tools and Techniques, Madrid, 2010

Boge T., Rupp Th., Landzettel K., Wimmer T.,
Mietner Ch., Bosse J., Thaler B., Hardware in the
Loop Simulator fir Rendezvous und Docking
Manéver, DGLR Jahrestagung, Aachen, 2009

(4]

[5] Gaias G., D'Amico S., Boge T., Hardware-in-the-loop
Multi-satellite Simulator for Proximity Operations,
11th Int. WS on Simulation & EGSE facilities for
Space Programmes; SESP 2010, Noordwijk,

Netherlands, 2010

D'Amico S., Autonomous formation flying in low earth
orbit, PhD thesis, Technical University of Delft, 2010

(6]



Deutscher Luft- und Raumfahrtkongress 2012

[71 D'Amico S., Larsson R., Navigation and Control of
the PRISMA formation: In-Orbit Experience, 18th
IFAC World Congress, Milano, Italy, 2011

[8] Montenbruck O., Nortier B., Mostert S., A Miniature
GPS Receiver for Precise Orbit Determination of the
SUNSAT2004 Micro-Satellite, ION Natinal Technical
Meeting, San Diego, California, 26-28 Januar 2004

[9] James F. Kurose, Keith W. Ross, Computer
Networking - A Top-Down Approach, Fourth Edition,
Pearson International Edition, 2008

[10] Kim, Kim, Shin, A General Construction Scheme for
Unit Quaternion Curves with Simple High Order
Derivatives, SIGGRAPH Proceeding 1995,
p.369-376

11



