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Abstract

In this report, we present the development of a robust altitude control system for a quadrocopter. The controller has been
developed on the basis of a reasonable simple mathematical model. Therefore it must not be sensitive to deviations of the
real system from the plant model, which is taken into consideration for controller design. Furthermore, the control system
shall be adaptable for different types of input sensor data (e.g. pressure altitude, GPS, or SLAM position measurements).
Since the quadrocopter should be able to operate outdoor, a good rejection of external disturbances such as wind gusts
should be provided as well. Taking into account all the constraints mentioned above, the control system should still
ensure good tracking performance. After the definition of a linear model for the vertical quadrocopter motion, the plant
parameters were identified by an iterative comparison of simulation and experiment results. Based on this plant model an
altitude control system has been developed according to the Linear Quadratic Gaussian (LQG) design with Loop Transfer
Recovery (LTR) in order to fulfill the robustness requirements mentioned above. The LQG design includes a full state
feedback controller as well as a Luenberger observer to provide estimates of the system states which cannot be measured.

1. INTRODUCTION

The development of unmanned aerial vehicles (UAV)
has become a common field of interest in the aviation
industry in the recent years. As in the beginning of UAV
development the design was mainly driven by military
applications, nowadays more and more possible civil fields
of application emerge. These include search and rescue
missions, environmental observation tasks, inspection of
buildings and electricity pylons and traffic observation. The
design of suitable UAV airframes and flight control systems
is driven by companies as well research institutions and
universities.

One class of UAV that is very popular for flight control
system development are so called quadrocopters. An
example is shown in figure 1. The configuration with four
rotors makes it highly agile and holds out the prospect of a
variety of effective control methods. The other advantages
of a quadrocopter include:

• Modular set up enables easy modifications with
advanced sensors or other equipment

• Small size provides the possibility of indoor
experiments

• High payload

• Reasonable low price

There has already been a lot of progress in the
development of position control systems for quadrocopters:
In [9], [10] and [11] remarkable tracking accuracy and

performance has been achieved, even for high speed
manoeuvres on strongly curved trajectories. However,
this control approaches rely on a visual motion tracking
system as it has been described in [1]. Such a system
restricts the range of applications for the robot, since it only
fulfills the required tasks in a known, defined environment.
An alternative approach for position determination and
navigation is the so-called Simultaneous Localization and
Tracking (SLAM) method [5]. It works indoor as well as
outdoor and is fully independent of external signal sources
such as GPS satellites. A common method to improve the
performance of the SLAM algorithm is the fusion of SLAM
and inertial measurement unit (IMU) data [2].

In this context this paper deals with the development
of an altitude control system for a quadrocopter. The
controller has been developed on the basis of a reasonable
simple mathematical model. Therefore the control algorithm
must not be sensitive to deviations of the real system from
the plant model. Furthermore, the control system shall
be adaptable for different types of input sensor data (e.g.
pressure altitude, GPS, or SLAM position measurements).
Since the quadrocopter should be able to operate outdoor, a
good rejection of external disturbances such as wind gusts
should be provided as well. The complete control algorithm
should be executed onboard, therefore the control system
must not be too complex since the computation power of the
onboard microprocessor is limited. Taking into account all
the contraints mentioned above, the control system should
still ensure good tracking performance. From these points,
the following set of requirements can be stated:
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Figure 1: Asctec Pelican quadrocopter used as test bed for the
developed controller. The Pelican is equipped with
GPS-, IMU- and pressure sensors. It comes with an
autopilot board that has a low level processor for data
fusion and stabilization and a high level processor for
user applications.

• Robustness with respect to plant parameter variations

• Robustness with respect to measurement noise

• Robustness with respect to process noise

• Good reference signal tracking performance

• Vanishing steady-state tracking error

• Simple control system architecture

The chosen design technique is the Linear Quadratic
Gaussian (LQG) design with Loop Transfer Recovery (LTR)
as it has been described in standard control engineering
and flight control systems literature [4], [6], [7], [8], [12],
[13]. The LQG design approach includes the design of
a full state feedback controller as well as a Luenberger
observer to provide estimates of the system states which
cannot be measured. A disadvantage is the high number
of design parameters, which have to be adapted to ensure
that the system meets the requirements. However, with
the Loop Transfer Recovery approach, there is an effective
method available to decouple the feedback controller
design from the observer design and thereby make the
entire design process more clear. Besides, the number of
design parameters can be reduced to few scalar values,
which can be carefully chosen to receive a good tradeoff
between robustness and performance. Additionally, the
system is augmented by an integrating action in order to
improve the tracking performance.

2. PLATFORM DESCRIPTION

The platform used as test bed for controller development is
a AscTec Pelican quadrocopter (figure 1). It is equipped with

an autopilot board and comes with predefined stabilization
and attitude control algorithms. The vehicle’s attitude is
determined by inertial reference units (IMUs). Lateral
Position estimates are available from GPS measurements
that are fused with accelerometer readings. A pressure
altimeter provides an altitude signal, that is fused with
accelerometer data as well.

The autopilot board is equipped with two
microprocessors, a Low-Level (LL) and a High-Level
(HL) processor. Almost all sensor data is processed
and fused on the LL processor. The predefined control
algorithms are executed on the LL processor as well.
The LL processor code is protected and thereby not
available for user applications. However, the fused sensor
data is communicated to the HL processor via a serial
interface, so that all data is available for control purposes.
The HL processor is reserved for user applications. It is
freely programmable and can transmit attitude and thrust
commands to the LL processor. As an alternative, the
attitude controller can be bypassed, so that the motor
controllers are directly actuated by the HL processor.

3. CONTROL THEORY FOUNDATIONS

3.1. Linear Quadratic Gaussian Control

Linear Quadratic Gaussian (LQG) control is based on
a linear, time-invariant plant model that is disturbed by
process and measurement noise:

(1)
ẋ = Ax+Bu+Bww , w ∼ (0,Qn)

y = Cx+Du+ v , v ∼ (0,Rn)

where x is the plant state vector, u is the input vector and
y is the output vector. The matrices A, B, C and D are the
state matrix, input matrix, output matrix and feedthrough
matrix of the plant. The vector v is the measurement noise,
w is the process noise, and Bw is the process noise input
matrix. The vectors v and w are uncorrelated, unbiased
white noise processes, with the covariance matrices Rn

and Qn.

Figure 2 shows the structure of a LQG controller. Basis
for the LQG controller is a Linear Quadratic Regulator
(LQR) where all system states are fed back by a feedback
gain matrix K. An optimal solution for K can be found from:

(2) K = −R−1BTX ,

where X is the solution of the algebraic
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Figure 2: Structure of the LQG controller with integrator augmentation at the plant output. The controller includes a
Luenberger observer for state estimation as well as a command feedforward channel and an integrator channel.

Matrix-Riccati-Equation (ARE) [8, p. 126]:

(3) 0 = ATX−XA+XBR−1BTX−Q

The matrices Q and R in (2) and (3) are design parameters,
that define the behavior of the resulting regulator.

The LQR principle requires knowledge of the complete
state vector. However, only the quadrocopter altitude is
measured here. Therefore the controller is extended by
a Kalman filter, that estimates the unknown system state
based on received measurements. This combination of the
LQR with a state observer is referred to as Linear Quadratic
Gaussian (LQG) control. The observer gain matrix KF can
be found from:

(4) KF = XCTR−1
n ,

where X is the solution to the ARE:

(5) 0 = AX+XAT −XCTR−1
n CX+BwQnB

T
w

3.2. Loop Transfer Recovery

It can be shown, that the linear quadratic regulator
has certain guaranteed robustness properties, namely an
“infinite” gain margin and a phase margin of at least
60◦. Additionally, the LQR remains stable for all model
uncertanities, where m(ω) < 1/2 [12, p. 566 f.].
Unfortunately, these properties do not apply automatically
for the combination of the LQR with a Luenberger observer
that is described in the previous section. This calls for a
design of the state observer that recovers the loop transfer

properties of the LQR. In order to achieve this goal, the
LQG/LTR approach is a method for the proper selection of
the design parameters of the LQR as well as the observer.
The name arises from the fact that the elements of a
Linear Quadratic Gaussian controller (LQG) are determined
in a way that promises loop transfer recovery (LTR). First,
a state feedback controller is designed according to the
equations (2) and (3). The final design should satisfy the
robustness requirements and show a good performance.
Then a Kalman filter is designed using equation (4) and
equation (5). To achieve loop transfer recovery, the following
design parameters are chosen:

Bw = I(6a)

Qn = μ2Qn0 +BBT(6b)

Rn = μ2Rn0(6c)

where Qn0 and Rn0 are the initial noise covariance
matrices of the plant model. Using this set of parameters
it can be shown that for sufficient small values of μ the loop
gain of the entire system approaches the loop gain of the
LQR [12, p. 570 ff.]. Note that the filter design can be further
simplified when choosing Qn0 and Rn0 as identity matrices.
This simplification can be made, since the influence of Qn0

and Rn0 decreases quadratically with decreasing values of
μ.

4. CONTROLLER DEVELOPMENT
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Figure 3: Plant model. The vertical quadrocopter motion is
modeled by a point mass under the influence of
the gravity and a velocity-dependend damping force.
The quadrocopter can be controlled by a thrust force
in z-direction, that is the PT1 response to a thrust
command signal.

4.1. Plant Model

Since in this paper only the vertical motion of the
quadrocopter is considered, the quadrocopter is modeled
as a point mass that is restricted to move only in z-direction
as shown in figure 3. Additionally to the thrust force T and
the gravity G = mg, a velocity-dependent damping force
ζż is introduced. The quadrocopter motion in z-direction is
then described by:

(7) mz̈ + ζż = T −mg

The actually applied thrust T is modeled as the simple
lag filtered response to a dimensionless thrust command Tc

that is amplified by a constant factor Tmax:

(8) Ṫ =
Tc · Tmax − T

τ
, Tc ∈ [0, 1] ,

where τ is the thrust system time constant. However, in
order to enable the application of the LQG/LTR design the
integrating action of the controller is described as part of the
plant model. Therefore an additional state is required:

(9) xI =

∫
(r − y)dt

The state vector of the plant is then defined as
x = [z ż T xI ]

T .

The plant parameters are identified by an iterative
comparison of simulation results and experimental data:
In an iteration loop the identification routine minimizes a
quadratic cost index that is calculated according to:

(10)

J =

nData∑
i=1

[
(zsim,i − zexp,i)

2+

α1(żsim,i − żexp,i)
2+

α2(z̈sim,i − z̈exp,i)
2
]
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Figure 4: Simulation results after the parameter
identification compared to experimental results.

Table 1: Plant parameters

Parameter Nominal Min Max

m 1.7 1.65 2.45

τ 0.0487 0.01 0.1192

ζ 0.4286 0.2395 0.6176

Tmax 43.5417 41.9049 45.1786

The factors α1 and α2 in equation (10) allow for an
individual weighting of velocity and acceleration in the cost
function.

Figure 4 shows a comparison of the simulation results
after the parameter identification and the corresponding
experimental data, using the weighting factors α1 = 1.0 and
α2 = 0.5. Note that the parameter identification was carried
out several times for sequences of climb and descend flights
in order to gain data for statistical considerations. The
results of the parameter identification are shown in table 1.

4.2. Frequency Domain Robustness Requirements

The basis for the controller development process are
robustness requirements that are formulated based on the
open loop transfer function of the system in the frequency
domain. The examined quantities are:

L(s) = G(s)K(s) (Loop gain)(11)

D(s) = 1 + L(s) (Return difference)(12)

T (s) = D(s)−1L(s) (Cosensitivity)(13)

where G(s) refers to the plant transfer function and K(s)

refers to the controller transfer function. Robustness
with respect to process and measurement noise can
be formulated in terms of L(s): For robustness against
process noise, the value of A(L(s)) should be high at
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low frequencies, while for robustness against measurement
noise, the value of A(L(s)) should be low at high
frequencies. Defining a desired system bandwidth of 10
rad/s, according to [8, p. 154 f.], the following boundaries
for the loop gain can be formulated:

A(L(s)) >
10

ω
. . . ω ≤ 1 rad/s(14a)

A(L(s)) <
20

ω
. . . ω ≥ 200 rad/s(14b)

Stability margins are formulated as a minimum value for the
return difference:

(15) A(D(s)) > −3dB

For the derivation of the robustness bounds for plant
parameter variations a state-space model that is disturbed
by additive uncertainties is considered:

(16)
ẋ = (A+ΔA)x+ (B+ΔB)u

y = (C+ΔC)x

The uncertain transfer function is then given by [12, p. 534]:

(17) G′(s) = G(s) + ΔG(s) ,

where

(18)

ΔG(s) = C(sI−A)−1ΔB

+ΔC(sI−A)−1B

+C(sI−A)−1ΔA(sI−A)−1B

From (18), a lower bound for the cosensitivity can be
defined [12, p 526 f.]:

(19) A(T (s)) <
1

m(ω)
,

where m(ω) is given by:

(20) m(ω) =
∣∣ΔG(jω)G−1(jω)

∣∣

For the determination of m(ω) the minimum and
maximum values of the plant parameters according to table
1 are taken into account. In an iterative routine every
possible combination of minimum and maximum values was
used to determine the boundary 1/m(ω) according to the
equations (18) and (20). This results an array of different
curves for 1/m(ω). The final boundary that is shown in
figure 7 is determined as the minimum of all curves.
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Figure 5: Loop gain plots and robustness boundaries of the
regulator for R = 10−2 and Q = diag([1 0.1 0 qI ]),
where qI varies in the range [10−2, 1]. The bold
line indicates the final choice of qI = 0.5.
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Figure 6: Return difference plots and stability boundaries of
the LQG controller for Rn = 1 and μ varying in the
range [10−4, 1]. The bold line indicates the final
choice of μ = 0.01.

4.3. Regulator Design

In a first step the LQR is designed assuming that all system
states are perfectly known. The design parameters Q and
R are varied as follows:

Q = diag([1 0.1 0 qI ]) , 10
−2 ≤ qI ≤ 1(21a)

R = R , 10−3 ≤ R ≤ 1(21b)

An examination of the influence of R has shown that a
value of 10−2 results in the desired bandwidth of 10 rad/s.
Figure 5 shows the resulting loop gain curves for varying
values of the integrator weighting factor qI . A value of qI =

0.5 results in satisfactory robustness against process- and
measurement noise.
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Figure 7: Cosensitivity plots and robustness boundaries of
the LQG controller for Rn = 1 and μ varying in the
range [10−4, 1]. The bold line indicates the final
choice of μ = 0.01.

4.4. Observer Design

The Kalman filter is designed according to the equations (5)
and (6). Note that for the observer design the plant without
integrator augmentation is taken into account. The following
design parameters are chosen:

Qn0 = I(22a)

Rn0 = Rn , 10−4 ≤ Rn ≤ 1(22b)

10−4 ≤ μ ≤ 1(22c)

Figure 6 shows the loop gain curves for different
values of μ, while Rn has been set to 1. The dashed line
indicates the loop gain of the LTR without observer that

results from the parameters chosen in the previous design
step. The loop transfer recovery effect is clearly visible: For
decreasing values of μ, the loop gain of the LQG system
approaches the loop gain of the LQR without observer.
However, too low values of μ result in very high values of
the elements of the observer gain matrix KF , which is not
favorable. Therefore, finally a value of μ = 0.01 has been
chosen (the bold line in figure 6), since this choice still
ensures the required robustness.

Figure 7 shows the cosensitivity plots and robustness
boundaries of the LQG controller. It can be seen that
the boundaries for robustness against plant parameter
variations are satisfied with sufficient margins as well.

4.5. Implementation

In order to implement the developed control system on
the HL-processor of the quadrocopter, the structure shown
in figure 2 was converted to an equivalent discrete-time
system using the zero-order hold method. The resulting
control system structure is displayed in figure 8. Since
the update rate of the HL-processor is 1 kHz, the
resulting discrete-time system can be assumed to be quasi
continuous. Note that an estimated trim control signal
utrim = mg/Tmax is added to the control input u. This could
indeed be achieved by successive integration of the position
error, but this takes some time. Therefore, directly adding
utrim improves the performance of the system in the first
seconds when the controller is switched on. By the matrix
Δ = [0 0 0 δ]T an additional anti-reset-windup system is
implemented. This improves the controller performance
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Figure 9: Simulated step response of the controlled system
that is perturbed by process and measurement
noise. The system responds fast and with a low
overshoot.
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Figure 10: Simulation results of the uncertain plant with
randomly varying parameters

when the computed output exceeds the saturation. In this
case a signal with complementary sign is added to the
integrator in order to prevent a windup.

5. SYSTEM EVALUATION

5.1. Simulation Results

Figure 9 shows the simulated step response of the system
that is perturbed by process and measurement noise. The
system responds with an overshoot of approximately 5%
within a reasonable low time span and no steady-state
error remains.

In order to prove the robustness against plant
parameter variations the system was simulated repeatedly
with parameters that are randomly changed. The result
is displayed in figure 10. It can be seen that the system
remains stable in all cases. At the beginning of the
simulation the self-trimming behavior of the controller that
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Figure 11: Quadrocopter altitude during controlled
hover flight. The dashed line indicates the
constant reference altitude. After the hover
flight is established, a position accuracy of
approximately ± 20 cm is achieved.

results from the integrator augmentation can be observed.
After a maximum time of 6 s the controller establishes
steady hover flight that is only disturbed by the influence
of process and measurement noise. In the reaction to
the 1 m step command a maximum overshoot of 20% is
observed. This is still a good result considering that in this
simulation the plant dynamics differ significantly from the
nominal model.

5.2. Flight Experiments

Figure 11 shows the quadrocopter altitude when a constant
altitude command signal is given. The dashed line indicates
the constant reference altitude. Just as in the simulations,
after a time of about 5 s the hover flight is established.
Then a position accuracy of approximately ± 20 cm is
achieved.

Figure 12 shows the quadrocopter response to a 5 m
altitude step command. In the beginning of the experiment
it can be seen that the real quadrocopter weights less
than the nominal mass, since initially to much thrust is
applied. The controller compensates for this deviation
within a few seconds. For reasons of comparison the
results of a simulation, using the same step input signal,
are plotted against the experiment results. A remarkable
good compliance can be observed. This indicates that the
developed controller fulfills the requirement for robustness
against plant parameter variations, since it behaves as
expected even under real conditions.
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Figure 12: Quadrocopter altitude during a 5 m step
command and simulation results for the same
input signal.

6. SUMMARY AND OUTLOOK

A robust altitude control system for a quadrocopter was
developed based on the LQG/LTR approach. The control
system shows good tracking performance and satisfies
the required robustness specifications. Based on the
design process presented in this paper the existing altitude
control system can be extended to a full three-dimensional
trajectory controller. Using the attitude control system
provided by AscTec this can be done with minimum
effort: When the attitude dynamics of the quadrocopter
are inverted the high-level trajectory controller can directly
command the force components in all three directions as
proposed in [3]. Thereby, the principles and design tools
used for the development of the altitude controller can
directly be applied to the lateral position control.
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