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Abstract 

Increasing the level of autonomy of systems demands confident controlling and task management units. To 
ensure a trusted system operation, several core capabilities have to be fulfilled: reliable sensing abilities, 
efficient data processing, and well-organised information dissemination. 
Dependent on the field of application, different types of sensors are required to meet the given operational 
tasks. In context of pattern recognition and object surveillance scenarios, electro-optical (EO) sensors offer 
superior sensing capabilities. Regarding to processing of high-resolution image data, real-time aspects rep-
resent one of the most challenging issues, especially in the domain of resource-limited, embedded systems. 
This paper presents a novel concept for hardware-accelerated computation of high-resolution EO sensor 
data using FPGAs (Field Programmable Gate Arrays). The concept focuses a complete integration of the 
image processing chain. Reconfigurable FPGA technologies combine the flexibility of general-purpose pro-
cessors with the advantages of application-specific integrated circuits. We introduce two data processing 
approaches that utilise specific FPGA capabilities: data and task parallelisation. Data parallelisation reduces 
the amount of data to be treated by a discrete processing entity. Task parallelisation concatenates weak 
pattern detection methods to a strong detector. These strategies, used separately or combined, enable the 
conversion of sequential image processing chains to parallelised hardware design. 
The concepts in this paper improve the confidence of pattern recognition results significantly. At the same 
time, the computation speed increases, especially in comparison to microcontroller based processing units. 
This allows an energy-efficient realisation of complex high-resolution image processing tasks in resource-
limited, embedded environments. 
 

Index Terms Hardware-acceleration, real-time image processing, embedded image processing, pattern 
recognition, parallelised hardware design, reconfigurable hardware, data parallelisation, task 
parallelisation, high-resolution EO Sensors, FPGA, Fuzzy fusion, Fuzzy logic 

 

 

1. INTRODUCTION 

Automated systems interact bi-directionally with the envi-
ronment, in which they are operating. They affect the 
environmental state by executing actions and percept 
various characteristics and dynamics of the system’s adja-
cencies [1]. Sensor data establishes the basis for all con-
trol, actuation and decision processes of an automated 
system. Sensor data quality has a major impact on the 
robustness of the world model (belief) and the reliability of 
system function. These considerations lead to important 
capabilities of automated systems: 

• Robust sensing devices for environmental exploration 
• Efficient, flexible (real-time) data exploitation 
• High-capacity communication concepts 

Depending on the application, automated systems are 
equipped with complex, highly interconnected sensor 
systems, which acquire a huge amount of heterogeneous 
data. In the context of pattern and object recognition in 
surveillance applications, electro-optical (EO) sensors are 

the most suitable choice. They are affordable and provide 
a huge amount of good-quality, high-resolution image 
data. 

The management and exploitation of image data in a 
limited, finite time frame (real-time) is a crucial challenge, 
especially in resource-limited, embedded systems. E.g. 
the processing of Full-HD colour images (1920x1080 pixel 
resolution) with a frame rate of 30 frames per second 
needs over 186 million operations per second if only one 
operation per pixel and channel has to be executed (com-
pare [2]). In other words - more than 1GB data needs to 
be processed within less than six seconds. The execu-
tional costs increase non-linearly with rising complexity of 
used methods or with aggregation of different image pro-
cessing methods. 

2. STATE OF THE ART 

Hardware-based real-time image processing has been 
focussed by multiple research groups worldwide. Imple-
mentations for different low-end applications [3] such as 
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barrel distortion correction [2] or scratch detection [4] were 
presented during the last decade. In addition to the accel-
eration of dedicated image processing methods, hardware 
has also been used to speed up other steps of the image 
processing chain, e.g. for classification of objects [5] [6] or 
faces [7]. 

This is only a brief extract of a wide range of applications 
realised by hardware-based image processing solutions. 
But all papers referenced above map only a share of the 
whole system functionality on hardware. The concept 
presented in this paper supports full hardware integration 
of the complete image processing chain including image 
data acquisition, processing, and result dissemination. 

3. HARDWARE-ACCELERATED                           
IMAGE PROCESSING 

Due to high computational costs of high-resolution image 
data exploitation, general-purpose-processors, as utilised 
in today’s automotive or avionic domain, are not capable 
anymore to fulfil the requirements stated above (compare 
[8] [9]). Application-specific, embedded processing tech-
nologies shall be introduced, which offer powerful compu-
ting capabilities to real-time applications. Primarily recon-
figurable, integrated circuits like Field Programmable Gate 
Arrays (FPGAs) provide efficient, reliable high-
performance-computing with a maximum of flexibility and 
scalability. FPGAs have a slightly less logic density com-
pared to application-specific integrated circuits (ASICs) but 
they combine the flexibility of multi-purpose-processors 
with the outstanding processing speed of ASICs. 

FPGAs consist of free configurable logic blocks (CLBs), 
which were meshed by a programmable switching net-
work. They accommodate the application-specific pro-
cessing modules including all data- and control-paths. This 
allows an optimisation of processing architecture with the 
respect to the functional and timing requirements of the 
underlying application. Together with an unlimited diversity 
of configurable serial and parallel on-chip-interfaces, 
FPGAs are qualified for applications in which high-
performance-computing is required. 

Custom EO sensor devices are apparelled with a multi-
tude of interfaces (e.g. Ethernet, FireWire and USB) and 
standards (e.g. GigE Vision, Camera Link) for image data 
retrieving. Additionally all peripheral units, subscribing to 
image processing results communicate via arbitrary inter-
faces. Both sensor data acquisition and result dissemina-
tion function is provided by stand-alone IP-cores that are 
uncoupled from the image processing part. 

Generally an image processing module comprises data 
acquisition, data exploitation and result dissemination. A 
real-time system allows a maximum processing duration 
less than the reciprocal of camera sensor frame rate. 
Therefore the sum of data acquisition time, data exploita-
tion time and result dissemination time is a determining 
factor. The computational effort of data acquisition and 
result dissemination is assessable. But the infinite diversity 
of image data, high complexity of image processing algo-
rithms and their sequential character cause a high compu-
tational effort and minor predictability of processing dura-
tion. 

4. SYSTEM DESIGN CONCEPT 

To enable a system to process a huge amount of image 
data in real-time, two processing strategies are suitable to 

maximise the profit of reconfigurable hardware: data paral-
lelisation and task parallelisation. 

4.1. Data Parallelisation 

Data parallelisation splits the large-scale image data input 
into data subsets, which were processed simultaneously 
by multiple uniform processing modules. This strategy 
speeds up a single processing step by introducing a work-
load distribution (compare Fig. 1). 

Each processing instance receives a share of the input 
image, which has been split prior (split step). The partial 
results were reassembled (merge step) to the final result 
after processing of each module has been completed. 

 

Fig. 1: Data parallelisation (here: Debayering) 

4.2. Task Parallelisation 

The task parallelisation utilises a set of heterogeneous 
image processing modules. Each module receives image 
data and executes simultaneously different low-level im-
age processing methods. 

 

Fig. 2: Task parallelisation (N parallel processing modules) 
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The low-level image processing modules (weak detectors) 
generate heterogeneous intermediate results, which are 
weak and unsorted referenced to the global detection 
goal. It is unknown at this stage, whether the detections 
belong to the wanted object (true positives) or not (false 
positives). For this reason the intermediate results com-
prise primary detections (red) and various, heterogeneous 
secondary detections (green, see Fig. 2). The primary 
detections are the most significantly characterizing low-
level detections due to the global recognition task. They 
are strongly application-specific and need to be chosen 
conscientiously. The secondary detections are used to 
estimate the potential of the primary detections. The po-
tential denotes the detection’s probability of belonging to 
the wanted object. The primary detector has an enhanced 
detection sensitivity to avoid loss of true positives. 

All primary and secondary detections are forwarded to a 
Fuzzy Logic Rating layer (FLR). The FLR evaluates the 
primary detections involving all secondary ones. It aggre-
gates intermediate results generated by various pro-
cessing modules. 

The primary detections rated with a minimum potential 
value are forwarded to the post-processing. It generates 
object candidates based on the knowledge of the 
searched pattern (geometric characteristics) and classifies 
the candidates into wanted objects and rest. 

Both data and task parallelisation strategy incorporate into 
the real-time image processing concept. Data parallelisa-
tion is used within the different image processing modules 
of task parallelisation (see Fig. 2). 

4.3. Image Processing Modules 

Task parallelisation strategy for image processing on 
programmable hardware utilises a high degree of parallel-
isation. Discrete, independent picture elements (pixels) 
can be computed simultaneously using logic instead of 
computing them serially as done by general-purpose-
processors. E.g. an exposure correction, which is a multi-
plication of each pixel value with a fixed factor, is a loca-
tion-independent operation that can be executed on all 
image pixels simultaneously. The computational speed-up 
increases proportional to the number of pixels computed 
parallelly and the image resolution. 

To maximise the benefit of reconfigurable hardware, main-
ly low-level detectors shall be utilised. Their elementary 
algorithms don’t use iterations or recursions and their 
scale depends on source image size only. The processing 
time of low-level image processing modules can be de-
termined explicitly. They reduce implementation complexi-
ty and minimize logic consumption of the FPGA, which is 
need for a maximum of processing parallelism. 

Hardware implementations suitable low-level processors 
could be separated into pixel-, edges-, model-, region-, 
texture-based, and interest point detection methods. Pixel-
based methods assume pixels with intensity or colour 
greater than a threshold as foreground and the remaining 
as background. Edges-based techniques extract high-
frequency components of the image data by convolving 
the source image with a derivation kernel. Model-based 
pattern extraction methods base on the knowledge of 
unique characteristics of the wanted pattern. A well-known 
example is the Hough transformation for line extraction. 
Region- and texture-based methods detect segments of 
coherent pixels with similar attributes (intensity, colour or 

texture) and interest point detectors educe significant 
points like e.g. SIFT key points [10] or corners. 

4.4. Fuzzy Logic Rating 

The Fuzzy Logic Rating layer receives all primary and 
secondary detections from the low-level image processing 
modules. It evaluates all primary detections involving all 
secondary ones based on a Fuzzy logic approach. The 
FLR combines heterogeneous intermediates of common 
source data. This separates this approach from conven-
tional fusion systems that combine sensor data from dif-
ferent types of sensors. The major advantage of the FLR 
is the aggregation of different weak detectors to a strong 
detector, producing confidential, robust detections with 
higher detection robustness. 

Fuzzy logic is a form of probabilistic logic theory that uses 
blurred descriptions to decide whether a featured element 
belongs to a set or not. It uses parameterised membership 
functions of e.g. exponential (1) or potential type (2). The 
function ���� indicates the probability of set membership 
of an element with feature��. The function parameters 
determine feature expectation���, deviation tolerance��� 
and sharpness��	 [11]. 

�
��� � ������� ��
 (1) 

����� � �
� � �� � ��� �� 

(2) 

The benchmark � is in the interval���� ��, while 0 means 
the featured element does not belong to a set and 1 indi-
cates a certain membership. The decision threshold is 
defined at 0.5. 

The potential function type ���proved its suitability in a 
wide range of technical and non-technical applications. It 
has advantageous mathematical properties as derived in 
[11]. Due to that fact all potential estimations in this paper 
base on potential type���. 

 

Fig. 3: One-dimensional potential function �� 

In general applications, elements are characterized by 
more than one feature. They are described by a feature 
vector with dimension���. In that case the Modified 
Hamacher operator is used to treat all features of the �-
dimensional feature vector�� � ��� �! " �#�$. The poten-
tials ���%� of each feature �% are linked by 

��&�' � �( � ��) ��%�* �#%+� ��� , 
(3) 
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The Modified Hamacher operator (3) is used to evaluate 
all elements of the primary low-level detections. Based on 
the knowledge of the global detection goal, intelligent 
unique features have to be developed applying the sec-
ondary intermediates. Considering e.g. a set of edge 
points as primary detections, the edge point features are: 

• Magnitude 
• Orientation 
• Location in image space 
• Intensity or colour in source image 

It is not possible to decide if an edge point belongs to a 
wanted object by analysing the features above. Introduc-
ing more knowledge and a second low-level detector, the 
information content of an edge point can be enhanced. 
Imagine the searched object has strong boundaries that 
are easily recognisable by a Hough transformation-based 
detector. The resulting Hough lines are used to determine 
edge point’s probability of belonging to a searched object. 
Edge points near a Hough line feature a higher probability 
compared to edges far away from Hough line. 

 

 

Fig. 4: Orthogonal distance 	 between edge point -�� .� and Hough line (left) and appropriate po-
tential function (right) 

The right graph in Fig. 4 shows the falling probability for 
edges -%�� .� with increasing orthogonal distance�	 from 
Hough line. The potential function is given as 

���	� � �
� � / 0��1�� �� , 

(4) 

Not all secondary intermediate results are true positive 
detections. The approach reinforces false positive primary 
intermediates as well. To cope with that problem additional 
secondary detectors are introduced that conduce to the 
application’s detection objective. The use of numerous 
different weak detectors corporates with the good parallel-
isation capabilities of reconfigurable hardware. An arbi-
trary diversity of parallel low-level processors can be con-
figured in addiction to application and the available hard-
ware resources. The heterogeneous results of secondary 
detectors contribute dimensions of the primary detection’s 
feature vector�� � �	2 	3�$ (e.g. distance to nearest 
Hough line�	2, distance to nearest region�	3). Each entry 
in � determines a potential ��) ��%� by equation (2) and all 
potentials are linked by (3) to an overall potential���&�'.  

� � 4	2	35�#
6 ��� �!�78������%� �

9:
;��< �	2���=�	3�5��>��#�?@

A �� ��B�78�����&�' (5) 

The primary detections with overall potentials ��&�' great-

er equal the decision threshold are forwarded to the post-
processing step while the remaining are rejected (compare 
“Good” primary detections in Fig. 2). 

4.5. Post-Processing 

The post-processing step treats all “good” rated primary 
detections of the task parallelisation. Its design strongly 
depends on the application and generally comprises 

• Feature estimation 
• Classification and 
• Scene interpretation. 

If the low-level primary results are not directly interpretable 
regarding the global detection goal, an optional object 
reconstruction step might be necessary prior feature esti-
mation. Typical features describing a segment are e.g. 
translation-/rotation-/scale-invariant moments, contour 
code, width, height, volume, and compactness. 

Object features depend on position and orientation of both 
sensing system and the observed object. Rotation, trans-
lation and EO sensor’s lens imperfects cause distortion in 
image space. The application of in- and extrinsic EO sen-
sor parameter solves this problem. With their help all 
measurements in image are transformed to world and 
become independent from translation and rotation be-
tween sensing system and observed object. The classifi-
cation robustness in world space increases significantly. 

Multiple features of one object are combined to a feature 
set that represents a searched object candidate. All fea-
ture sets are forwarded to a ready-trained classifier, which 
arranges all candidates to different classes like wanted 
objects (positives) and rest (negatives). All positive classi-
fied objects correspond to successfully recognised objects 
of the target class. 

Next, object’s state (e.g. position, orientation) is computed 
(scene interpretation). Introducing multi-frame processing, 
dynamic properties like velocity or angular velocity of the 
positive classified objects can be predicted. Multi-frame 
processing uses more than one image frame and tracks 
detections over discrete time steps. The application of 
stochastic filters like e.g. Kalman filter can reduce noise 
and increase detection accuracy [1]. 

The next chapter introduces an example of this concept 
successfully applied to a practical recognition problem. 

5. EXAMPLE APPLICATION 

The aviation domain is an adequate field to demonstrate 
the practicability of embedded real-time image processing. 
The automation of flight-effecting functions based on visu-
al sensors is very time critical and demands efficient, real-
time sensor data exploitation. 

The chosen example application implements a runway 
recognition function for an aircraft autoland system. The 
system operates in an automated, unmanned aerial vehi-
cle during final approach phase. 

5.1. Image Processing Modules 

The EO sensor provides an 8-bit grayscale image with 
each pixel characterised by an intensity value from 0 
(black) to 255 (white). The following, typical properties are 
characterising runway representations in the test scenario: 

• Almost homogeneous runway surface 
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• Surface is brighter than surrounding area 
• Clearly recognisable runway boundaries 
• Long left and right, parallel boundary pair 
• Runway main orientation is vertical to horizon line 

Following these considerations, the input image is pro-
cessed by numerous processing modules. A blob detector 
searches for the homogeneous runway surface, and edge 
and borderline detectors are suitable for boundary detec-
tion. A horizon detector searches for the line separating 
earth surface from sky. 

The blob detector for runway surface detection consists of 
three separate steps. A threshold step separates fore- and 
background objects and generates a binary image�C. 
Threshold-based binarization is possible because of the 
homogeneous runway surface, which is much brighter 
than surrounding area. Second a morphologic closing (6) 
composed of dilatation D and erosion E with a circular 
structuring element �F fills holes in all fore- and back-
ground segments (closed image�C�GHI
�). 

C�GHI
� � C J F � �C D F� E F (6) 

Finally all detected foreground pixels are grouped to re-
gion segments. The runway surface detection results in a 
labelled image respectively a set of region segments de-
fined by bordering points. The Fig. 6 (b) shows the detec-
tion results of the blob detector. The runway surface (or-
ange) is well-extracted and labelled as a single region 
without internal gaps. Even the sky (image top, labelled 
green) is clearly separated from the earth ground. Chal-
lenging are connected taxiways left of the landing strip. 
They are identified as component of the runway and 
should be eliminated in final runway detection. 

 

Fig. 5: Resulting edge image, the colour indicates the 
orientation and colour saturation figures gradient 
magnitude 

The edge detector processes the image by convolving the 
source data K using two Sobel kernels�L�MN (in �- and .-
direction): 

K�� .� O L � P P L�Q R�K�� � Q . � R��
S+��

�
%+��  (7) 

L� � T� � ��U � �U� � ��V ��������LN � T � U �� � ��� �U ��V 
(8) 

It generates a set of edge points with location, magnitude 
and orientation. The Fig. 5 approves the decision to de-
clare edges as primary detections. The distinctive runway 
boundaries produce very significant, well-adjusted low-
level detections characterising a runway in image space. 

The Sobel edge detector is very robust but generates 
many false positives in addition to the real boundary edge 
points. Simple thresholding of the edge detections to elim-
inate points with lower magnitude is no appropriate solu-
tion. It causes loss of edges with lower response due to 
e.g. motion blur (see bottom edge line of the landing strip 
in Fig. 5). 

The borderline detector is derived from the Hough line 
detection, but incorporates also edge point’s gradient 
magnitude -��W .W� as well its orientation�X��W .W�. The 
value -��W .W� is added to each accumulator point ��Y .Y�$�at: 

/�Y.Y1 �Z� � /�W.W1 [ Z , \]^�X��W .W��^_`�X��W .W��� (9) 

The length parameter Z runs from base point ��W .W�$ to 
upper and lower accumulator space boundaries. The 
accumulator space is equally sized to image space. After 
transforming all edge points, the resulting accumulator 
space�a is normalised with�bcd�ea��Y .Y��f��Y .Y� g ah�, 
so that each point of a has a magnitude in the 
val���� ��. The resulting parameter space indicates long 
edge lines with strong magnitude as show in Fig. 6 (c). 
White pixels indicate a high boundary rating and black 
pixel vice versa. The resulting accumulator space�a con-
tains location-depending boundary ratings and forms a 
look-up-table for all image points. Points with a higher 
rated location have a stronger plausibility to belong to a 
continuous edge line. 

   

(a) (b) 

   

 (c) (d) 

Fig. 6: Result images of (a) source image, (b) blob de-
tector, (c) borderline detector, (d) horizon detec-
tor 
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The horizon detector separates earth from the sky that is 
much brighter than earth surface during day time. Fur-
thermore, the sky is on image top if we assume normal 
aircraft operation in final approach phase. All pixels repre-
senting the sky are marked as foreground objects by blob 
detector. So horizon detection processes simultaneously 
the closed binary intermediate C�GHI
� of the blob detector. 

Starting with the first row (from image top to bottom) the 
first 0-1-discontinuity point is detected and stored. After 
processing all image columns, the horizon line slope � 
and intercept � are estimated by the least square method: 

� � ( ��% � �i��.% � .j�#%+�( ��% � �i�!#%+� � ������� � .j � ��i (10) 

The horizon detection generates a linear horizon function 
of .2 � k2��� � �� � � type (see blue line in Fig. 6 (d)). 
The orientation of the horizon in image space 
is�lm � nc`�����. The result of the horizon detector is 
robust in case of a two major requirements: The system 
operates during daytime at good weather conditions and 
no high buildings (e.g. in urban environment) or mountains 
are in the field of view. If these points are fulfilled, the 
horizon orientation is used to evaluate primary detection’s 
orientation (see section 5.2). Furthermore, robust horizon 
detection can be used to gate the primary detections be-
cause detections above horizon line could not belong to 
the runway detection. 

5.2. Intermediate Result Fusion 

The in section 5.1 introduced image processing modules 
generate several low-level results separated into primary 
(a) and secondary intermediates (b-d): 

(a) Edge points with location, orientation and magnitude 
(b) Regions with border point locations 
(c) Accumulator space with boundary ratings 
(d) A horizon line given by intercept and orientation 

Various features for each primary intermediate need to be 
determined prior primary detection rating on FLR layer 
(compare section 4.4). 

Following the considerations in the previous section, all 
edges tight to region boundary (Fig. 7) have a higher po-
tential ��o to be part of the searched pattern, compared to 
edges located farther. The distance from region 	3 is rated 
by equation (2). 

 
 

Fig. 7: Orthogonal distance 	 between edge point -�� .� and a border of a region (left); appropriate 
potential function (right, compare equation (4)) 

In addition to the region detections, the accumulator space a offers measurements to determine another feature: 
Edge points located on position with high boundary rating p�N have a major potential ��q to be part of the runway 
boundaries. 

Due to the fact that the major runway orientation is vertical 
to horizon line, the orientation of all edge points represent-
ing the long runway boundaries shall be vertical to hori-
zon’s orientation (X2O � XW � �rst). The orientation of short 
runway boundaries shall be similar to horizon orientation XW. 

��u �XW� � �
� � vwX2O � XWw�x y�z � �

� � �X2 � XW��x ��z 
(11) 

All features contribute a dimension in the feature vector��: 

� � { 	3p�NXW | ��� �!� ����7}}}}8 ����&�' � T��o��q��u
V �� ��B�78�����&�' (12) 

All edge points with overall potentials ��&�' greater equal 
the decision threshold �rs are forwarded to the post-
processing step and the remaining are rejected. The Fig. 8 
visualizes all “good” primary detections. 

 

Fig. 8: Good primary detections forwarded to Post-
processing step, the colour indicates the orienta-
tion and colour saturation the primary detection 
potential. There is a significant false positive re-
duction compared to Fig. 5 

5.3. Post-processing 

The post-processing step works on all edge points with an 
overall potential greater equal the decision threshold. All 
good rated primary detections have a high potential to be 
a part of the searched object. But edge points are not 
directly interpretable regarding the global detection goal of 
runway recognition. They need to be put in relationship by 
assembling them to more abstract geometries using speci-
fied combination rules. Therefore a multi-level grouping 
approach is used to detect objects with higher complexity 
in a set of lower-level structures. The runway boundary is 
a combination of simple shapes like lines and parallels. A 
line detector groups all adjacent edge points with similar 
gradient to a line segment. The resulting lines are com-
bined to closed structures by directly combining neigh-
boured line segments (Fig. 9). An appropriate choice of 
the grouping conditions (e.g. minimum line length, accept-
ed gradient deviation) produces good detection results as 
shown below. A detailed explanation of the multi-level 
grouping algorithm is given in [16]. 
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Fig. 9: Lines grouped from primary detections 

The finally resulting closed structures are now character-
isable with robust features. A conscientious choice of 
unique, application-beneficial features with good separa-
tion quality is important and has an obvious impact on 
classifier performance. 

The presented application example has been implemented 
in software and evaluated with both synthetic and real 
image data. Running the runway recognition system on a 
standard workstation achieves no real-time quality. But the 
image processing using task parallelisation demonstrates 
a robust elimination of false positives in the set of primary 
detections. This first software implementation proves the 
feasibility of the proposed concept for task parallelisation 
for hardware-accelerated processing of high-resolution 
image data. 

6. CONCLUSION AND FUTURE WORK 

High-resolution image data exploitation is challenging 
regarding the real-time aspect. The proposed concept in 
this paper faces these challenges by application of data 
and task parallelisation strategies for FPGA-based hard-
ware acceleration platforms. Therefore multiple, parallel 
low-level image processing modules are used and the 
intermediate results are fused. The deployed low-level 
detectors comprise input independent algorithms without 
iterations or recursions. 

The fusion of all low-level results is realised by the Fuzzy 
Logic Rating layer. The FLR reliably removes false posi-
tive detections of the primary detector. The weak primary 
detections are strengthened by several secondary low-
level results. This minimizes the computational effort of the 
post-processing step by reducing the data amount to be 
processed. 

The modularity of task parallelisation allows flexible, 
toolbox-like adaption of the image processing system. It 
flexibly supports adaption of the processing architecture 
based on well-modelled detection goal and application 
knowledge (static configuration). Furthermore, task paral-
lelisation offers system modification during operation (dy-
namic reconfiguration). Through the independence of the 
multiple low-level modules they can be replaced if the 
application changes or re-parameterised to adapt a detec-
tor to modified detection conditions. Also sensitivity of a 
low-level processing module can be enhanced if it gener-
ates no valid results. More sensitive re-analysing of image 
areas with probable detection candidates could achieve 
additional valid results (back-loop concept [12]). 

Developers have to consider application-specific environ-
mental parameters to choose a reliable primary detector. If 
no back-loop concept is used, the sensitivity of the primary 
detector shall be very high to avoid loss of true positives. 

Due to the strong sequential character of software-based 
image processing of a huge amount of high-resolution 
image data, a significant speedup will only be reached by 
a hardware implementation. Software does not support 
intensive data and task parallelisation as essential for this 
concept. Therefore, we are currently porting various low-
level image processing modules to a FPGA hardware 
platform. We focus efficient spreading and parallelisation 
of the image processing chain using the characteristic 
parallelisation strength of FPGAs. Goal is a complete 
hardware implementation of the entire image processing 
chain starting with data acquisition, exploitation including 
final result dissemination. 
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