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Abstract 
Many robotic systems use active perception methods to sense the environment and execute specific tasks 
with pre-defined signal processing chains. The paradigm of active perception tries to enhance perceptual 
performance by dynamically interacting with the signal processing chain and their containing algorithms. In 
this article we propose a concept that uses such active perception techniques to perform mission relevant 
tasks onboard UAVs. The concept utilizes a resource base containing information on available active 
resources such as computer vision algorithms, hardware resources, available sensors and actuators as well 
as background knowledge such as previously trained models or geographic information. This resource base 
also includes attributes on applicability, capability and limitation of each item. Our idea is to generate a signal 
processing chain dynamically dependent on current mission needs. This is achieved by understanding which 
resources are likely to fulfill a specific mission task. Thereby specific focus shall be given to effectively 
balancing and distributing the resulting processes to be performed on available hardware resources, while 
taking into account limited processing power and energy supply. 

1. MOTIVATION 
In recent years development and research progress 
towards highly automated systems has increased 
tremendously in the field of mini and micro UAVs [1] [2]
[3]. Automation techniques for platform stabilization, 
guidance and control have been intensively investigated 
and developed in the past decades and are broadly 
applicable in the unmanned flight arena. However, when it 
comes to providing automation functions beyond mere 
platform locomotion, taking into account the actual 
intended purpose of the flight mission, only few 
approaches have been proposed. Such automation on 
mission management level has to understand mission 
goals, plan the course of further actions in various 
domains of platform and payload handling and be able to 
assess its own effectiveness [4]. 

On this level, also sensors will have to provide the 
necessary feedback on situational settings. The challenge 
in automating such perception capabilities lies in the broad 
spectrum of possible mission tasks. Our research effort in
the frame of the SAGITTA research program [5] initialized 
by Cassidian focuses on airborne active perception 
techniques seeking to provide skills for the “seeing and 
understanding” of missions relevant cues to the Missions 
Management System (MMS) of an UAV. 

FIG 1 depicts the general automation scheme capable to 
perform mission relevant tasks in a more automated 
fashion. The human operator is still involved, however 
mainly provides high level mission tasks to the MMS.
Information derived from the Mission Sensors are 
analyzed and attributed by the Sensor and Perception 
Management System and fed into the MMS and/or further 
to the operator. The general idea behind this approach is 
to provide automation mechanisms to the operator 
relieving him from excessive workload by dispatching 
complex tasks to the on-board system or saving mental 
resources e.g. to control multiple UAVs [6]. 

This paper concerns an appropriate concept for such 
Sensor and Perception Management in the field of 
reconnaissance and surveillance missions along the 
paradigm of active perception. Thereby the focus is on a
task-related vision sensor system utilizing machine 
resource and capability knowledge. We define that 
resources are available system elements such as 
processing units, sensors, actuators as well as image 
processing algorithms. Knowledge in this context 
describes features, capabilities and limitations of such 
resources. Our approach is based on the general concept 
proposed by Russ and Stütz [7] and adapted to our 
research project. 
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FIG 1. Concept for automation of an UAV through a 
Perception and Sensor Management System. 

The paper is structured as follows: In Section 2 we give a 
brief summary of related research and other projects. The 
SAGITTA demonstrator and Perception and Sensor 
Management elements are introduced in Section 3. The 
general system concept is proposed in Section 4 and shall 
give a basic idea of the interactions and concepts for a
realization of the Perception and Sensor Management 
functions. Section 5 will then describe the system 
concepts in-depth. Section 6 focuses on a simulation 
environment, especially for the purpose of knowledge 
generation which is discussed in Section 7. Finally, we 
give an outlook to further work in Section 8. 
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2. RELATED WORK 
The idea of active perception [8] also known as active 
vision [9] or image understanding [10] emerged in the last 
30 years. The general idea is to model the resources, 
especially the sensors, and design control strategies to 
fulfill determined tasks of a vision system using resources. 
There are several systems that implemented active 
perception techniques for various applications. Clouard et 
al. [11] proposed a concept for automatic generation of 
image processing applications using image processing 
libraries to construct image processing chains. Another 
concept is the knowledge-based approach by Matsuyama 
[12] [13] describing a blackboard where the results from 
various image processing algorithms are published and 
validated by a control system. A survey about content-
based image retrieval systems is proposed by Liu et al. 
[14] concerning the description and results of image 
processing techniques for a semantic level. 

To realize active perception systems on UAVs computer 
vision algorithms for areal images are needed. Commonly, 
the interests are in global segmentation [15], road 
segmentation [16] [17] [18], object detection [19] [20] [21]
and tracking [22]. Since classification algorithms require 
knowledge about the object appearance there is a need of 
supervised or unsupervised learning methods [23]. In 
addition, sensor planning [24] is an important issue when 
managing the available sensors by parameters (gain, 
shutter times, zoom levels, etc.) and positioning.  

Real flight tests are very time consuming due to
preparation time and analysis processes. In addition, flight 
tests have to be repeated often because of missing data 
or evaluation purposes especially for perceptual systems. 
Therefore, simulation environments [25] can be used 
before flight tests for performance evaluation. Hummel 
and Stütz [26] proposed a generic simulation environment 
for vision sensors using a serious gaming engine where 
complex missions can be modeled. 

3. TARGET APPLICATION 
This section is related to the SAGITTA project. It gives an 
insight into the SAGITTA demonstrator and describes the 
mission scenario where the concept of our high level 
active perception system shall be demonstrated. 
Furthermore it contains information about the mission 
sensors and the gimbal configuration. The last section 
gives a brief overview of the Mission Management 
Computer (MMC), its hardware components and the MMC 
architecture. 

3.1. SAGITTA demonstrator 
The joint national initiative “Open Innovation / SAGITTA” 
was founded in 2010 by Cassidian, to respond to the 
growing need to future unmanned aircraft systems (UAS) 
and enhance the necessary technological skills. This 
cooperative approach, in collaboration with renowned 
German partners from industry, research and science 
aims to identify and evaluate relevant technologies, to 
enhance them and to integrate them as far as possible in 
the fixed-wing flying demonstrator SAGITTA (see FIG 2). 

The common goal of the “Open Innovation” initiative is to 
promote research activities in the “unmanned flying” scope 
through sustained cooperation in the relevant core 
technology areas. Our research effort in SAGITTA is to 
design an appropriate Sensor and Perception 

Management System providing mission relevant 
perceptual capability. In addition, we design the needed 
processing hardware as well as the mission sensors. 

FIG 2. Project partners participating in the SAGITTA 
technology demonstrator program. 

3.2. Mission Vignette 
The concept presented in this paper will be demonstrated 
along with other research topics on specified missions. 
Each mission contains a tactical situation, for example as 
shown in FIG 3. 
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FIG 3. A SAGITTA mission vignette example. The 
phases are: (1) take-off via departure point, (2) 
transit to target, (3) perception task “target 
identification”, (4) task finished, (5) wait for next 
task, (6) fuel critical, (7) land. 

In the given example our research will be demonstrated 
during the perception task phase “target identification”
which is defined as follows: There are two moving vehicles 
on a road, an ambulance and an armored vehicle. In FIG 3
the ambulance is marked with C (civil) and the armored 
vehicle is marked with T (target). The task is to distinguish 
between the two vehicles and track the target. Therefore, 
the perception tasks can be broken down into: 

– Road segmentation 
– Vehicle detection 
– Vehicle identification 
– Tracking and labeling 

In addition, to show the interaction with the operator, the 
identification of the target can be alternatively assisted  
through the operator by transmiting the images of the 
detected vehicles to the ground control station (GCS). The 
definition of the tasks include not only “what” has to be 
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done, but “how” the tasks have to be solved. This is the 
focus of the active perception concept that will be 
proposed in this paper. 

3.3. Mission Sensors and Gimbal 
We use three different sensors which are an electro-
optical (EO) camera, an infrared (IR) camera and a laser 
range finder. To deploy the SAGITTA sensor suite as 
flexible as possible, the sensors are not firmly attached to 
the UAV, but integrated into a gimbal which results in 
three major advantages: The sensors can be aligned 
independently of the attitude of the UAV, sensors can be
locked to view a distinct location, and the tracking of 
targets is made possible. In addition, the arrangement of 
the sensors within the gimbal is equal allowing image 
registration. The gimbal also provides a dedicated 
rotational attitude to protect the sensitive equipment 
against stone chipping during take-off and landing. 

The decision to use a complementary set of infrared and 
electro-optical sensors was based on the ability to scan a 
large spectral range for day and night operation.
Considering a flight altitude of about 1500 meters, a zoom 
able sensor is needed to get a more detailed view on
Regions and Points of Interests (ROIs, POIs) while 
maintaining the ability to scan large areas. This sensor 
combination has the following advantages: 

– Heat signatures, detected by the IR sensor, can be 
used to generate ROIs and POIs and further 
examined by the high resolution zoom-lens EO 
sensor. 

– Since the distance between target objects and the 
UAV varies, the zoom-lens can preserve a constant 
scale of the object making identification easier. 

– The laser range finder can assist the sensor suite by 
determining the distance to an object for identification 
and registration issues. 

All sensors and the gimbal are controlled by the Sensor 
and Perception Management System. 

3.4. Mission Management Computer 
The Mission Management Computer (MMC) onboard of 
SAGITTA is the processing hardware for the MMS and the 
Sensor and Perception Management System. Because 
weight, size and power consumption requirements play a
significant role we use an embedded CompactPCI system 
with single board computers communicating via a Gigabit 
Ethernet (GigE) switch. FIG 4 shows a simplified 
communication concept of the MMC. There are four major 
MMC components: 

– Decision Engine (DE): All general tasks commanded 
by the operator via the MDL (Mission Data Link) are 
interpreted by the DE resulting in a mission plan. This 
plan includes perception tasks for the Sensor and 
Perception Management System. 

– Mission Safety Shell (MSS): The MSS serves as a 
gateway ensuring that data sent to the Flight 
Management System (FMS) is not threatening 
SAGITTA e.g. by leaving the mission area. 

– Active Perception (AP): Our Sensor and Perception 
Management System is running on the AP board 
having direct access to the gimbal control unit. 

– Hardware Acceleration (HA): This board contains a 
Field Programmable Gate Array (FPGA) to accelerate 

image processing algorithm and utilizing the EO 
stereo system for an automated landing process. 
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FIG 4. MMC communication overview. Connections 
colored blue and red are GigE connections and 
serial interfaces respectively and realized through 
a custom backplane. All elements within the 
dashed box are MMC components. 

All components are installed in a conduction cooled 
housing making it robust to shock and vibrations as well 
as resistant against high humidity. 

4. OVERALL CONCEPT 
In this section we present our general approach on how to 
use available resources onboard a UAV to solve given 
perception tasks. Therefore, the fundamental idea and the
related system architecture are described. 

4.1. Fundamental idea 
An UAV platform is limited in payload such as sensors and 
computing resources due to restricted energy supply and 
weight limitations. Therefore it is difficult to add resources 
or to change the current payload configuration for every 
mission task that may arise. Hence our approach is to 
analyze the given UAV platform and derive a machine 
understanding about the perceptual capabilities in 
dependency of the available resources. In addition, this 
supports the case that if some resource became 
inoperative during mission time, the perception capabilities 
will then automatically be rearranged. Resources in this 
context are not only hardware but also software 
components, which in our case are computer vision 
algorithms and are modeled as Perception Modules
(PMs). 

FIG 5 depicts the structure of an example PM which in this 
case models a simple processing operator with adjustable 
parameters. The Description Interface provides access to
capabilities, domain and environmental constraints, and 
requirements towards other resources stored in the 
Knowledge Database. Adjusting parameters and 
observing the status of the PM can be achieved via the 
Control Interface. Each PM has an input and an output 
descriptor of various types (images, feature descriptors, 
interest points, etc.). The Processing Core contains the 
implementation of a computer vision algorithm and is 
controlled via parameters (Controller).  

For example, a Gaussian convolution 
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of an image f  with a filter mask g  expects an image as 
input and delivers an image as output. The parameters are 
the kernel width and the standard deviation � . The 
module description contains the following:  

– The perception capabilities are noise reduction and 
blurring. 

– It is independent from domain and environmental 
constraints. 

– The resource requirements are the input image, the 
memory consumption, the processing time and the 
necessary control parameters. There might be 
specific parameter sets for distinct cases like specific 
weather conditions or determined viewports. 

The granularity of the PMs has to be determined 
depending on the complexity of the required PM 
management and the utilization of the PMs. In the 
example of the Gaussian convolution a finer granularity 
can be a general convolution and a large-grained PM can 
be an image enhancement module. The level of 
granularity has the following consequences: 

– A finer granularity grants more flexibility for parameter 
adjustments and improves the perceptual capabilities 
but might also increase the complexity to manage the 
PMs. 

– Large-grained PMs can exclude simple and light-
weight image processing methods. It is also possible 
that the number of parameters rises for one PM and
therefore the complexity increases. An advantage is 
that the system only needs general computer vision 
knowledge to interact with the PMs. 

Control Interface

Processing Core

Controller

Input Output

Description Interface Perception
Module

- Capabilities
- Constraints
- Requirements

- Adjustments
- Status

Knowledge Database

FIG 5. Perception Module structure. 

Since several PMs have to be combined to fulfill a 
perception task (typical an object detection) it will be even 
more complicated finding the appropriate parameters for 
each PM within the processing chain. To overcome the 
complexity we will use Perception Strategies defined 
through expert knowledge. A Perception Strategy contains 
the information on what types of PMs are needed and in
which order the PMs can be processed in general. The 
Perception Strategies are represented in a template form 
where for example the location of interest can be an
airbase, a certain road or a village. Furthermore, there 
might be predefined parameter sets for various 
environmental conditions for different Perception Modules,
but we exclude this in the example depicted in FIG 6.

Finally, the application of such Perception Strategies on 
the available PMs will result in Perception Graphs. A
Perception Graph contains all possible Perception Module
combinations solving a perception task with definite 
template parameters as shown in FIG 7. 

FIG 6. Example of a Perception Strategy for the 
detection of an object at a determined location. 
Words highlighted bold are syntax while italic 
words are template parameters. 

Since the Perception Strategies are general knowledge 
available before mission, the related graphs can be 
generated during mission preparation by the Perception 
Solver (see Section 5). If a specific task is executed during 
a mission, like detecting a vehicle on a road, the related 
Perception Graph can be adjusted accordingly to the 
template parameters. An example of such an adjusted 
graph is shown in FIG 7 based on the Perception Strategy
shown in FIG 6 where the template parameters are the 
object and location type. 

FIG 7. Example Perception Graph for detecting vehicles 
on roads. With sufficient resources four possible 
processing chains are available for the task of 
vehicle detection on a road. Thereby, both 
feature extraction PMs having the same inputs 
and output but containing different algorithms. 

Since a graph can have multiple valid solutions it is 
important to know which resources are needed for each 
possible solution. We define that the terminology of a 
solution is a processing chain. Depending on available 
resources one or more processing chains can be selected 
for execution. 

4.2. System overview 
In the following section we propose a general architecture 
for a Sensor and Perception Management System capable 
to construct and execute such processing chains as
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described above, and taking into account the following 
design issues: 

– Our system shall receive a list of dedicated 
Perception Tasks which are coordinated in time and 
space. 

– The UAV platform itself also shall be considered as a 
resource in terms of sensor positioning and 
locomotion. However, contrary to the resources 
mentioned above, this resource cannot be controlled 
solely by our system due to competing demands by 
other mission relevant subsystems. Therefore, we 
make arrangements to work around this iteratively by 
platform requests and feedbacks (see Section 5).

– The system shall configure its components dependent 
on the variable surveillance tasks during mission time. 

– To allow an adaption to different platforms, the 
system shall be independent from the resources. This 
means, that the available resources shall be 
recognized by the system defining its capabilities and 
limitations and therefore making it available for 
various, different platforms (e.g. fixed-wing or 
helicopter). 

On top level we divide the system into three layers (FIG 
8). The lowest layer comprises the resources controlled 
and managed by the Sensor Management layer. The 
Perception Management layer communicates with the 
Mission Management and uses the Sensor Management
to fulfill Perception Tasks. The Mission Management will 
be informed about the capabilities of the Sensor and 
Perception Management to be able to plan the mission 
tasks properly. Relating to the presented fundamental idea 
a typical process is as follows: When a Perception Task is 
sent to the Perception Management by the Mission 
Management, an appropriate Perception Graph will be 
selected and the resource requirements are proposed to 
the Sensor Management. The Sensor Management will 
verify the requirements dependent on the available 
resources and commit the feasibility to the Perception 
Management. Finally, the Perception Management will 
select and execute feasible processing chains and inform 
the Mission Management about the observation 
measurements. In addition, it might be possible that a 
Perception Task can only be fulfilled when the platform 
changes the attitude or altitude which will be committed 
via platform requests. 

Resources

Sensor Management

Perception Management

Mission Management

Platform
Requests CapabilitiesPerception

Tasks
Observation

Measurements

Requirements Feasibility

FIG 8. Overall system layout. The Mission Management
defines a top level system providing Perception 
Tasks to our system. 

5. DETAIL ARCHITECTURE DESCRIPTION 
In this section a more detailed description of the Sensor 
and Perception Management System architecture as 
shown in FIG 9 is presented. 

5.1. Perception graph analysis 
As introduced in Section 4 we use Perception Modules
and Perception Strategies to generate Perception Graphs
before flight. A Perception Knowledge database can be 
accessed by the Perception Solver containing the pre-
generated Perception Graphs. In addition, the Perception 
Strategies are also available within the Perception 
Knowledge database for dedicated parameter sets. 

If a Perception Task, sent from the Mission Management 
System, is received by the Perception Solver, the resource 
requirements are handed over to the Sensor Planner. The 
graph comprises the resource requirements through the 
inputs, outputs, parameters and configurations of the 
involved Perception Modules. Therefore, the Sensor 
Planner checks the requirements based on actual 
available resources. The following dependencies are 
considered: 

– The Sensor Configurator manages and grants access 
to available sensors. Hence, the Sensor Planner can 
determine available sensor resources through the 
Sensor Configurator. In addition, the Sensor 
Configurator can adjust the sensor parameters 
dependent on domain and environmental conditions. 

– Needed processing requirements are computed for 
each Perception Module within the actual Perception 
Graph by using memory and processing time 
information provided by the Module Controller.
Current free processing resources are monitored by 
the Processing Monitor making it possible for the 
Sensor Planner to determine if a certain processing 
chain can be executed.

– If a certain Perception Module carries platform 
dependent requirements, e.g. specific flight altitude, 
the Sensor Planner issues a platform request to the 
Mission Management layer. 

– In the most cases the sensors must be positioned for 
tracking and identification tasks. Therefore, the Gaze 
Control commands the gimbal and the Sensor 
Planner can retrieve the current state to check gimbal 
related requirements. 

– Knowledge about the domain (e.g. terrain) may be 
used for image processing tasks. Hence, topographic 
and topologic information shall be available and will 
be stored in the Domain Knowledge database. 

After the resource requirements have been analyzed by 
the Sensor Planner the results are committed to the 
Processing Coordinator determining possible processing 
chains. 

5.2. Resource Virtualization 
To allow a platform independent design the resources 
need a general control and data interface. Therefore, the
virtualization of the resources addresses the following 
issues: 

– All required data are stored in short-term buffers 
including sensor and gimbal data, as well as flight 
parameters. Therefore it is no longer necessary to 
acquire needed data from each resource directly and 
it supports algorithms requiring data of the recent 
past, e.g. for background subtraction. 

– It is possible for more than one processing chain to be 
executed in parallel to improve results. Therefore, 
data has to be interchanged by multiple Perception 
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Modules. Such data can be also stored within buffers 
of the Resource Virtualization stage. 

– Since the scenery to observe is often dynamical, 
sensor parameters and the direction of the sensors 
must be changed during perception chain execution.
A typical task would be the tracking of a vehicle. Such 
adjustments can be done via a control interface from 
the Processing Coordinator to the Resource 
Virtualization stage. 

– Considering a distributed computer system, the 
Resource Virtualization will also be used to 
synchronize and distribute data. 

In conclusion, the Resource Virtualization is an 
encapsulation of the available resources and a short-term 
data storage containing the data of recent times and 
providing a generic control interface to the available 
resources. In addition it provides interprocess 
communication (IPC) abilities. 

5.3. Process execution and validation 
As described above, the Processing Coordinator has 
access to the Perception Graph and the results of the 
verified resource requirements of the Sensor Planner. In 
general, there are three cases that can occur during the 
selection of the appropriate processing chains: 

– The simplest case is when only one valid processing 
chain is available for solving the Perception Task.
Hence, this processing chain is executed when 
sufficient resources are available or can be adjusted 

in processing performance (e.g. reducing image 
resolution). 

– When more than one processing chain is available 
through the graph, then the Processing Coordinator
will compute the needed resources for each 
processing chain cp and selects the optimal solution. 
The optimal solution is a minimum search of the cost 
function as shown in Formula (2), where 


 �Mc ,...,1�  and M is the number of processing 
chains. The number of Processing Modules is 
donated by cN  within the processing chain cp .

Hence, icm ,  is the memory consumption of the 

Perception Module i  in processing chain cp and m
is the total amount of available memory. The 
processing time consumption of a Perception Module
is denoted by ict , . In addition, remaining energy of 

the power supply can be taken into account as well as 
real-time issues.  

– In the case that are enough resources available, it is 
possible, to execute more than one processing chain. 

(2) ��
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FIG 9. System architecture for Sensor and Perception Management. 
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Since image processing algorithms are not entirely reliable 
it is good practice to validate their results. In addition, 
regarding the last case above, the results have to be 
checked for consistency. Therefore, the Result Validator
observes the Scene Representation containing the recent 
results of one or more processing chains, and represents 
the actual understanding of the environment. The first step 
is a plausibility check examining the results with 
knowledge about the target object or the environment. In 
general, the following issues are resolved by the 
plausibility check: 

– If an object shows an unusual behavior detected by 
using motion models, the result can be removed or 
corrected by probability calculations. For example, if a 
vehicle is tracked by the system and the vehicles 
trajectory suddenly changes, violating the maximum 
acceleration or the minimum turning radius, then the 
result might be discarded. 

– Superposition, in conjunction with a geographical map 
and segmentation results, can help to find false 
detections (e.g. a vehicle is detected on a house). 
The solution can be to discard or correct the result, for 
example by moving the location of the detected 
vehicle to a close road segment. 

– When additional information about the environment 
are detected, for example if the Perception Task is to 
find a moving vehicle and the system detects a 
parked vehicle, there a two possible solutions: The 
result can be ignored or committed to the MMS to 
enable reaction on unpredicted events. 

If there is more than one processing chain concerning the 
same task a consistency check have to be performed. For 
example if three processing chains are running 
concurrently, and two processing chains find a vehicle on 
the same location and one does not, then the Result 
Validator will discard the result from the processing chain 
finding no vehicle. This can be realized by data fusion for 
example with a Kalman filter. When there are only two 
processing chains having varying results then there are 
several solutions: 

– The result from the more trustable processing chain 
can be retained, but the problem is which processing 
chain has the highest accuracy. For example, this can 
be solved when using classification algorithms [23]
evaluated on the same dataset. The calculated 
detection rate can then be used as a credibility factor 
and may also be included into the cost function (see 
Equation (2)) to balance processing requirements and 
accuracy. In addition, precision evaluations from 
literature can be interpreted as a credibility factors, 
e.g. for local descriptors [27]. 

– The most image processing algorithms have 
parameters (thresholds, filter masks, learning rates) 
[28]. Therefore, parameter sets can be defined for 
various situations. Dependent on the current results in 
the Scene Representation the parameter sets can be 
changed by the Processing Coordinator using the 
quality feedback from the Result Validator. 

– The simplest solution is to discard both results and 
wait for new measurements which are even. Asking 
the operator for advice is an alternative approach.
Therefore the Streaming module provides the ability 
to transmit images, videos or any further information 
to the operator. 

Finally, the results of the consistency and plausibility 
check are combined to a quality feedback for the 
Processing Coordinator to adjust the processing chains. In 
addition proven results will be sent to the Mission 
Management as Observation Measurements. 

6. EVALUATION AND SIMULATION 
ENVIRONMENT 

Due to cost and time factors it is very costly to develop 
and evaluate the concepts and algorithms in all aspects 
during real flights. Therefore a suitable simulation 
environment for testing close to the mission vignette is 
necessary. Such simulation environment would need to 
model and animate the mission scenario and to include 
the emulation of all mission sensors and the gimbal, as 
well as the flight dynamics of the SAGITTA platform. 

We selected the Virtual Battle Space 2 (VBS2) [29] engine 
as the basis of our simulation environment. VBS2 brings 
along a realistic graphical representation for EO and IR
sensors, sophisticated physics models, and a very wide 
range of supporting assets (textures, objects, decals, etc.) 
for modeling different scenarios. VBS2 allows a detailed 
modeling of imaging sensors including features such as 
opening angle, shutter speed or zoom-lens, as well as 
adding noise or distortions to realize realistic sensors. In 
addition the simulation of a gimbal is already integrated 
and can be adjusted to the dynamics of ours. 

The VBS2 engine shall not only be used to generate 
synthetic scenarios, but also to test the implemented 
image processing algorithms under different conditions. 
Therefore a specific scenario can be modified with 
different atmospheric and lighting conditions to gain insight 
in appropriate PMs and the optimal parameter settings for 
each PM. The VBS2 engine provides a realistic graphical 
simulation shown in FIG 10. Hence, the obtained 
knowledge (parameter sets, capabilities and limitations) 
can be also used on real video streams. 

FIG 10. Vehicle detection in a simulation and real image. 

FIG 11 shows the concept of the evaluation and simulation 
framework. The simulation environment consists of a 
VBS2 server and two VBS2 clients. The Server manages 
the Flight Management System (FMS), the flight dynamic 
and the auto flight system of the UAV. It is also 
responsible for the graphical simulation environment and 
the communication between the two clients. The camera 
sensors are simulated with the VBS2 clients, where one 
client is responsible for the EO sensor and the other client 
emulates the IR sensor and the gimbal. Positional 
alterations of the gimbal will affect both sensors. For the 
SAGITTA demonstrator only sensors with GigE Vision [30]
interfaces have been selected. Therefore, the video 
streams are converted and preprocessed into a GigE 
Vision virtual sensor, abstracting simulated sensors and 
real hardware. Thus, Hardware in the Loop Simulation 
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(HILS) without modifying software components or using 
other hardware is achieved. 

Perception and Sensor Management

Simulation environment

VBS2 Server

VBS2 Client VBS2 Client

Preprocessing and Conversion

Resources

Sensor Management

Perception Management

Knowledge Evaluator

FIG 11. Architecture of the simulation and evaluation 
framework. 

The evaluation environment consists of a Knowledge 
Evaluator where our Sensor and Perception Management
concept is embedded. The Knowledge Evaluator is 
responsible for the following tasks: 

– It shall send a Perception Task to Sensor and 
Perception Management while starting an 
appropriated mission, and compare the results from 
the simulation (ground truth) and the system to 
evaluate the quality. 

– The Knowledge Evaluator shall be able to test 
different processing chains or single PMs for 
determining the limitations and capabilities. 

In conclusion, the Knowledge Evaluator collects the 
results from the Sensor and Perception Management and 
tries to enhance the performance resulting in knowledge 
about the PMs. 

7. KNOWLEDGE GENERATION 
In this section we address the problem of how the 
knowledge about a certain Perception Module is gained.
There is a knowledge database in each PM as described 
in Section 4. This database contains two major items 
which are the description of the capabilities and limitations 
as well as required trained models. The capabilities and 
limitations of a PM can be obtained by the following: 

– Since a PM contains a computer vision algorithm, the 
developer or the publisher of that algorithm knows 
about its capabilities and limitations and can therefore 
describe the PM. This is also known as expert 
knowledge. 

– There is literature that evaluates and compares 
algorithms under various circumstances which can be 
used to describe additional abilities, as well as using 

the comparison to add a credibility factor, helping the 
system to select the most likely result. 

– The proposed simulation environment shall be further 
used to test a PM under various conditions to 
determine its capabilities and limitations as well as 
appropriate parameter sets for several situations as 
described in Section 6. 

The first issues must be done manually while the last point 
is a more automated way to generate the description of a 
PM. The training of the required models must be also 
included into the knowledge database and affects the 
capabilities and limitations of the PM. 

In the following, the process of knowledge generation will 
be explained with the help of a model-based vehicle 
classification PM. The first step is the training of the 
model. In general, this can be achieved by the following 
methods: 

– The common and most simple approach is to use an 
existing database for vehicle classification to generate 
the model. 

– The generation of synthetic databases with the 
proposed simulation environment requires more effort 
but can be automated. In addition, there is a risk that 
the synthetic databases are insufficient for real data. 

– The manual creation of a database with recorded 
flight data is possible but requires higher effort and
shall be avoided. 

If a database exists, a supervised training of the model 
can be done with several parameters resulting in multiple 
models which must be evaluated and the most appropriate 
models are then included into the knowledge database of 
the PM. The next step is to create or use a scenario where 
a vehicle shall be detected. This scenario should have 
various environmental options, like weather conditions, 
different vehicles and varying landscapes. The 
environmental options shall be defined by the specific 
application to reduce the effort. With the help of the 
simulation environment it is possible to evaluate the 
performance of the classification algorithm by comparing 
the predicted results and the ground truth from the 
simulation. By varying the environmental options and 
parameters of the PM, the capabilities and limitations can 
be extracted. For the example of the classification 
algorithm, the result will be a matrix containing the 
environmental options, parameters and the related 
detection rates, which can then be used to generate the 
knowledge about the PM. 

8. CONCLUSION AND FUTURE WORK 
In this paper we presented an active perception concept 
for UAV mission scenarios and disused its requirements 
and advantages. Since the concept shall be demonstrated 
on the SAGITTA demonstrator the mission sensors, the 
processing hardware and the mission scenario are 
described. Afterwards a deeper insight into the concept 
and the related architecture is proposed. Finally, we
discussed the advantages and the utilization of a
simulation environment and how the required knowledge 
databases are generated through the evaluation 
framework. 

In order to achieve a first implementation of the proposed 
Sensor and Perception Management concept, we will 
focus in the next steps on relevant functions to simulate 
the mission vignette and to evaluate our system to reveal 
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the possible limitations and enhancements of our 
proposed concept. Since our system is dependent on 
knowledge databases it is important to find a suitable 
knowledge representation language and a proper way to 
generate the knowledge. Hence the implementation and 
evaluation of image processing algorithms concerning the 
mission vignette will be used to find suitable knowledge 
descriptions. 
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