DGLR-Publikationsdatenbank - Detailansicht

Titel:

Conceptual Design and Optimisation of an Advanced Rotorcraft Powerplant Architecture

Autor(en):
F. Ali, K. Tzanidakis, I. Goulos, V. Pachidis, R. d'Ippolito
Zusammenfassung:
This paper demonstrates the application of an integrated rotorcraft multidisciplinary design and optimisation framework, deployed for the purpose of preliminary design and assessment of optimum regenerative powerplant configurations for rotorcraft. The proposed approach comprises a wide-range of individual modelling theories applicable to rotorcraft flight dynamics, gas turbine engine performance and weight estimation as well as a novel physics-based stirred reactor model, for the rapid estimation of various gas turbine gaseous emissions. A Single-Objective Particle Swarm Optimizer is coupled with the aforementioned rotorcraft multidisciplinary design framework. The overall methodology is deployed for the design space exploration and optimisation of a reference multipurpose twinengine light civil rotorcraft, modelled after the Bol 05 helicopter, employing two Rolls Royce Allison 250-C20B turboshaft engines. Through the implementation of single-objective optimisation, notionally based optimum regenerative engine design configurations are acquired in terms of engine weight, mission fuel burn and mission gaseous emissions inventory, at constant technology level. The acquired optimum engine configurations are subsequently deployed for the design of conceptual regenerative rotorcraft configurations, targeting improved mission fuel economy, enhanced payload range capability as well as improvements in the rotorcraft overall environmental footprint, while maintaining the required airworthiness requirements. The proposed approach essentially constitutes an enabler in terms of focusing the multidisciplinary design of conceptual rotorcraft powerplants to realistic, threedimensional operations and towards the realization of their associated engine design trade-offs at mission level.
Veranstaltung:
41th European Rotorcraft Forum 2015
Medientyp:
Conference Paper
Sprache:
englisch
Format:
21,6 x 27,9 cm, 17 Seiten
Veröffentlicht:
DGLR-Bericht, 2016, 2016-01, 41st European Rotorcraft Forum 2015; S.-; 2016; Deutsche Gesellschaft für Luft- und Raumfahrt - Lilienthal-Oberth e.V., Bonn
Preis:
NA
ISBN:
ISSN:
Kommentar:
Klassifikation:
Stichworte zum Inhalt:
aerodynamics;aircraft design;aircraft reliability;civil aviation;deployment;engine design;exhaust emission;exhaust gases;footprints;gas turbine engines;gas turbines;helicopters;inventories;optimization;rotary wing aircraft;space exploration;tradeoffs;turboshafts
Verfügbarkeit:
Bestellbar
Veröffentlicht:
2016


Dieses Dokument ist Teil einer übergeordneten Publikation:
41st European Rotorcraft Forum 2015