DGLR-Publikationsdatenbank - Detailansicht

Titel:

Pressure-Sensitive Paint Investigation of Double-Delta Wing Vortex Flow Manipulation

Autor(en):
G.E. Erickson, H.A. Gonzalez
Zusammenfassung:
A pressure-sensitive paint (PSP) technique was applied in a wind tunnel experiment in the NASA Langley Research Center 8-Foot Transonic Pressure Tunnel to quantify the effect of wing fillets on the global vortex-induced surface static pressure field about a sharp leading-edge 76°/40° double delta wing, or strake-wing, model at subsonic and transonic speeds. Global calibrations of the PSP were obtained at M = 0.50, 0.70, 0.85, 0.95, and 1.20, a Reynolds number per unit length of 2.0 million, and angles of attack from 10 degrees to 20 degrees using an in-situ method featuring the simultaneous acquisition of electronically-scanned pressures (ESP) at discrete locations on the model. The mean error in the PSP measurements relative to the ESP data was approximately 2 percent or less at M = 0.50 to 0.85 but increased to several percent at M =0.95 and 1.20. The PSP pressure distributions and pseudo-colored planform view pressure maps clearly revealed the vortex-induced pressure signatures at all Mach numbers and angles of attack. Small fillets having a parabolic or diamond planform situated at the strake-wing intersection were designed to manipulate the vortical flows by, respectively, removing the leading-edge discontinuity or introducing additional discontinuities. The fillets caused global changes in the vortex-dominated surface pressure field that were effectively captured in the PSP measurements. The vortex surface pressure signatures were compared to available off-surface vortex cross-flow structures obtained using a laser vapor screen (LVS) flow visualization technique. The fillet effects on the PSP pressure distributions and the observed leading-edge vortex flow characteristics were consistent with the trends in the measured lift, drag, and pitching moment coefficients.
Veranstaltung:
CEAS/KATnet Conference on Key Aerodynamic Technologies, Bremen, 2005
Medientyp:
Conference Paper
Sprache:
englisch
Format:
21,0 x 29,7 cm, 60 Seiten
Veröffentlicht:
DGLR-Bericht, 2005, 2005-07, CEAS/KATnet Conference on Key Aerodynamic Technologies - Proceedings; S.1-60; 2005; Deutsche Gesellschaft für Luft- und Raumfahrt - Lilienthal-Oberth e.V., Bonn
Preis:
NA
ISBN:
ISSN:
Kommentar:
in getr. Zählung;
Klassifikation:
Stichworte zum Inhalt:
aerodynamics
Verfügbarkeit:
Bibliothek
Veröffentlicht:
2005


Dieses Dokument ist Teil einer übergeordneten Publikation:
CEAS/KATnet Conference on Key Aerodynamic Technologies - Proceedings